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ABSTRACT

In this paper, we construct a theory of geometric Euler systems, complementary to the
arithmetic theory of Rubin, Kato and Perrin-Riou. We show that geometric Euler systems
can be used to prove the finiteness of certain Galois representations of weight zero and we
discuss a conjectural framework for the existence of geometric Euler systems for motivic
Galois representations. We give applications to adjoint Selmer groups of certain classical
and Drinfeld modular forms.

Introduction

Let T be a Galois stable lattice in an irreducible ¢-adic Galois representation of a number field F'.
When T is motivic of non-negative weight, the conjectures of Bloch and Kato [BK90] on
L-functions predict that the Selmer group S(F,T ® Q/Z;) is finite. In this paper we give a
geometric interpretation of this conjectural finiteness in the case that T is locally isotropic of
weight zero. (We say that T is locally isotropic if the set of elements of Gal(F/F) which fix some
non-zero vector of T contains an open set.) This link with geometry is provided by a theory of
geomelric Euler systems: we formulate a conjecture on the existence of geometric Euler systems in
motivic cohomology and show that the existence of a geometric Euler system (for the Cartier dual
of T') implies the finiteness of S(F,T ® Q;/Zy) precisely when T is locally isotropic.

As an application we prove the following result.

THEOREM 1. Let f be a classical newform of weight k > 2, level N and arbitrary character. Let K
be a finite extension of Q containing the Fourier coefficients of f and fix a prime A of K dividing the
rational prime . Let Ty 5 be a Galois stable lattice in the A-adic representation py  associated to f
by Deligne. Assume that f is not of CM-type, that f is special or supercuspidal at all p dividing N
and that ¢ does not divide N. Then S(Q, End’ T\ ®Qe/Zy) is finite, where End’ Ty, is the space
of trace-zero endomorphisms of T} y.

We remark that a much more precise version of Theorem 1 (giving the order of the Selmer group
rather than merely its finiteness) has been obtained in [DFG] by Diamond et al. They use different
methods which do not require our assumptions at p dividing N; instead they require that ¢ > k and
that the residual representation py is absolutely irreducible when restricted to Gal(Q/E), with
E the quadratic extension of Q generated by the square root of (—1)~1/2¢. Recently, in [Kis02],
Kisin has also obtained results similar to ours in some cases with ¢ dividing N.

We note the following immediate corollary of our theorem.

COROLLARY 1. Let f be a cuspidal Hecke eigenform of weight k > 2 and level 1 and let K be a
finite extension of Q containing the Fourier coefficients of f. Then S(Q, End’ T\ ®Qq¢/Zyg) is finite
for all primes A of K.
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Our methods also work over function fields of characteristic different from ¢. In particular, we
have the following result; see § 5.3 for precise definitions.

THEOREM 2. Let F be a finite field of characteristic different from £. Let m be a non-CM automorphic
representation of GL(2) of the adeles of F(t) of weight 2, squarefree level and trivial character. Let
K be a finite extension of Qg over which we can define the (-adic representation p, associated to m
and let T, be a Galois stable lattice in the representation space of p;. Then S(F(t), End® T, ®Q,/Z,)
is finite.

Before we discuss the contents of this paper in more detail, we review some related notions.
Let T be a finite free Zy-module with a continuous action of the absolute Galois group of a number
field F'. The Selmer group S(F,T ® Q¢/Zy) of T is the subgroup of the Galois cohomology group
HY(F, T ® Qu/7Z) of elements satisfying certain local conditions at every place of F. A standard
approach to bounding such a Selmer group is Kolyvagin’s method of arithmetic Euler systems.
Roughly speaking, an arithmetic Euler system for the Cartier dual T of T consists of a twisted
norm compatible collection of classes cpr € H(F',T*) for a family of abelian extensions F’/F.
These classes descend via Kolyvagin’s derivative construction to classes in H!(F,T*/{"T*) for
arbitrarily large n. These derived classes have tightly controlled ramification and in some cases
one can use them together with cohomological bounds and duality theorems to bound S(F,T ®
Q¢/Zy). This mechanism is rather delicate; it has been worked out independently by Kato [Kat99],
Perrin-Riou [PR98] and Rubin [Rub00]. When T" corresponds to a motive of strictly positive weight
there is also a conjectural framework connecting the existence of arithmetic Fuler systems to p-adic
L-functions; see [Kat93] or [Rub00, ch. 9] for details.

Kolyvagin’s methods were applied in a different setting by Flach [Fla92, Fla95]. He used a
geometric construction to directly exhibit classes in H 1(Q,End0 T}") for f a newform of weight 2
and trivial character. He showed that these classes behave like the derived classes of an arithmetic
Euler system and thus obtained a bound on the exponent of S(Q,T ® Q;/Zy). These results were
generalized to certain higher weight modular forms in [Wes02a].

In this paper, we fit Flach’s work into a general setting of geometric Euler systems. This geometric
theory is strikingly different from the arithmetic theory. The fundamental difference is that the
existence of useful cohomology classes in H!(F,T*) (rather than in H'(F,T*/¢"T*) for large n)
in the geometric case forces T to be locally isotropic. The arithmetic theory is poorly suited to
locally isotropic representations (see the discussion after Proposition 2.3), so that we can regard the
geometric theory as filling in this gap in the arithmetic theory. In addition, the basic mechanism in
the geometric case is vastly simpler than in the arithmetic case and requires no additional hypotheses
beyond the assumption of local isotropy. Finally, we expect that geometric Fuler systems on motivic
representations should come from fairly simple collections of geometric data on the corresponding
motive. This allows for a straightforward and approachable set of conjectures. On the other hand,
at this point the geometric theory only allows one to bound the exponent, rather than the order,
of the Selmer group.

We now review the contents of the paper. As we have said, we expect that geometric Euler
systems can be used to prove the finiteness of S(F,T ® Qp/Z;) when T is locally isotropic. We
prove this in § 2. (In fact, our methods yield a bound on the exponent of the Selmer group, but we
have not attempted to make it explicit.) One of the key ingredients is the cohomological bound of
Proposition 2.1, which is a generalization of a result of Rubin. To make the ideas behind this result
more clear we present them in a general setting in § 1.

The remainder of the paper is concerned with the case where T is motivic. We review results
on motivic cohomology and regulator maps in § 3. We state our conjectures and their consequences
for the existence of geometric Euler systems in § 4. In § 5 we reconsider the case of adjoint motives
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and we construct geometric Euler systems for adjoint representations of modular forms as described
above.

Notation

Throughout this paper we fix a prime £ and a finite extension K of Q,. We write O for the ring of
integers of K and A for a fixed uniformizer. By the exponent of an O-module T" we mean the least
n > 0 such that \"T" = 0. If T is a free O-module, we write Tk (respectively T,,, respectively T, ) for
T ®p K (respectively T'/A\"T, respectively T ®p K/O). All group actions on such T are assumed to
be continuous and O-linear; in particular, the isomorphism T,, = T, [\"] respects any such action.
If T has an action of the absolute Galois group of a field (of characteristic different from ¢) we let
T'(i) denote the i-fold Tate twist of T'.

By alocal field (respectively global field) we mean a finite extension of Q, or F,((t)) (respectively
Q or Fy(t)) for some prime p. In the function field case we always assume that p # ¢. For a place
v of a global field F', we write Fr(v) for a choice of geometric Frobenius element in the absolute
Galois group of F.

1. Cohomological bounds

1.1 Restricted cohomology

Let p: G — Autp T be a continuous representation of a topological group G on a free O-module T'
of finite rank. We say that g € G is p-isotropic if dimg Tf’(:]L > 0 (or equivalently, if dimg (g—1)Tx <
dimg Tk ). If T is any subset of G, we define the I'-restricted cohomology group

HE(G,T) = ker (Hl(G, T)— [ H'(9), T)>
gel
where (g) denotes the subgroup of G generated by g. (Here and throughout the paper, all group
cohomology is defined with continuous cocycles.) Note that for a surjection G — G with kernel T,
we have HL(G,T) = H'(G,T). In the next section we show that we can obtain approximations to
this fact when restricting with respect to certain non-trivial cosets of I'.

1.2 Cohomology of O-modules

By a projective group G we always mean an inverse system {G,, },,>1 of finite groups. We write G
for the inverse limit of G,; we regard G, as a topological group with the inverse limit topology.
As an example, if T is a free O-module of finite rank, we define a projective group GL(T) by
setting GL(T),, = Auto T,,. A representation p : G — GL(T) of a projective group G on T is
simply an inverse system {py, : G;, — GL(T),, },>1 of group homomorphisms. We often simply write
p: Goo — Autp T for the inverse limit of p,; we say that p is irreducible if G acts irreducibly on
Tk via p.

PROPOSITION 1.1. Let 1 - T — G — G — 1 be an exact sequence of projective groups and let
p: G — GL(T) be an irreducible representation. Let v = {v,} € G be p-isotropic and for each
n fix g, € Gn mapping to v,. Assume that the exponents of the groups H'(G,,T,) are bounded
independent of n. Then the exponents of the groups H’%/nr‘n (én, T,) are bounded independent of n.

Proof. Let ¢ : G,, — T, be a cocycle in H%npn(én, T, ). By definition,

c(:Yng) € (:Yng - 1)Tn = (’Yn - 1)Tn (1'1)

for any g € I',,. Taking g = 1 shows that ¢(¥,) € (v, —1)7},. Using this and expanding out (1.1) via
the cocycle relation, we find that v,c(g) € (75, —1)T5,. It follows that ¢(g) € (v, —1)T,, for any g € I'y,.
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The restriction of ¢ to 'y, is a Gj,-equivariant homomorphism, so that ¢(T';,) generates a G,,-stable
submodule of (v, —1)T,. Since 7 is p-isotropic it follows from Lemma 1.2 below with 7" = (y —1)T
that there is an m, independent of n and ¢, such that A™¢(T',) = 0. Therefore, )\mH%nFn(Gn,Tn)

lies in H'(G,,,T},) via inflation and the proposition now follows from the boundedness of the latter
groups. U

LEMMA 1.2. Let p: G — GL(T) be irreducible and let T' be an O-submodule of T with T}, # Tk.
For any n, let M, denote the maximal G, -stable submodule of T,, contained in the image of T".
Then the exponent of M, is bounded independent of n.

Proof. For t € T, we let v(t) be the least integer n such that t € \"T. We claim that to prove the
lemma it suffices to prove that there exists an m > 0 such that

O[Goo)t D A+ (1.2)

for all ¢ € T. Indeed, assuming this, let ¢ € T" map to M,. Since M,, is G),-stable, O[G |t must
also map to M,; by (1.2) and the definition of M,,, we conclude that NOFMT Jieg in T 4+ A"T.
On the other hand, by hypothesis 7" does not contain \*T" for any a. It follows that we must have
v(t) +m = n; thus v(t) > n —m, so that A" kills M,, for any n.

By scaling, to prove (1.2) we may assume that v(¢) = 0, so that ¢ € T'— AT". Define

B, = {t € T — A\T;O0[Guo]t 2 A"T}.

We have T — \T = Un>0 B, since G, acts irreducibly on Tx. We show that each B,, is open; the
claim then follows from the compactness of T'— AT'. To show that B,, is open, we show that given
t € By, any t' € t + \"T1T lies in B,, as well. Indeed, since t € B,, and t' —t € A\"T!T, there is
0 € O[Gs) such that Aot =t/ —t. Thus (1+ Ao)t = t'. As A is topologically nilpotent we can choose
7 € O[G] with 7(1 4+ A\o) arbitrarily close to one. Since O[G|t' contains a neighborhood of the
origin in 7', we can in fact choose 7 so that (7(1 + o) — 1)t € O[Goo]t’. Thus 7' —t € O[Gt’, so
that t € O[Goo|t'. Tt follows that ¢ € B, as claimed. O

1.3 Locally isotropic representations

Let p: G — GL(T) be an irreducible representation of a projective group G on a free O-module 7.
We say that g,¢ € G4 are congruent at level n if g and ¢’ map to the same element of G,,.
A p-isotropic g € G is said to be minimal if there is an m such that dimg T[gfl = dimg T[ggzl for
all ¢’ congruent to g at level m. We say that p is locally isotropic if G has a minimal p-isotropic
element.

The key property of minimal elements is contained in the next lemma. Note that 79! is an
O-module direct summand of T for any g € G, since the action of g on T is O-linear.

LEMMA 1.3. Let g € G be p-isotropic. Then the cokernel of the map
Tg':l N Thgl:l _ Tg:l
is bounded independent of n and ¢’ congruent to g at level n if and only if g is minimal.

Proof. Set r = dimg T[g{:l. We assume first that g is minimal. Fix an m such that A\™ kills the
torsion submodule of T'/(g — 1)T'. It then follows from the isomorphism

T~/ im(T9=" — T9=") = (T/(g — 1)T)[\"]
that
ATI=LCim(T97 — 1971 (1.3)

for all n.
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Let ¢ € G4 be congruent to g at some level n > m and assume that dimg T[ggzl = r; by the
definition of minimality it clearly suffices to prove the lemma for such ¢’. Choose an O-basis t], ..., t..
of T9'=1. Note that ty,...,t. are linearly independent modulo A since T' 9'=1 is an O-module direct
summand of T'.

Each t; maps to T} =1 since ¢’ is congruent to g at level n. Thus by (1.3) we can choose t; o € T9=1
with
N =tio (mod \")
for each . In particular, ¢; 0 € AT, cancelling a factor of \™, we obtain t1,...,t, € T 9=1 with

ti=t; (mod \"™™). (1.4)
t! are linearly independent modulo A, so ¢; are as well; since T9=1 has rank r, by Nakayama’s lemma
(see [Mat86, Theorem 2.2]) it follows that t1,...,t, is a basis of T97L. As A\™¢; lies in the image of
T9=! in T¢=", we have thus shown that
A im(T9=1 — T9=Y) Cim(T9 =" — T971).
Combined with (1.3), we conclude that
NPT Cim(T9 =1 — T

for all sufficiently large n. This proves the first direction of the lemma.

For the converse, let g be p-isotropic but not minimal. By definition, for any n we may choose
¢’ congruent to g at level n but with dim T° [gg:l = s < r. Then T¢~! contains a copy of (O/A™M)",
while the image of T79'=! contains only a copy of (O/A")*. The lemma follows. O

2. Geometric Euler systems

2.1 Local conditions

Let F be a local field with residue field k£ and let T' be a free O-module of finite rank endowed with
an action of the absolute Galois group of F'. We always assume that F' does not have characteristic /.
We say that T is unramified if the inertia group I of F' acts trivially on T'; if T is unramified, we
say that it is pure of weight w if all the eigenvalues for the action of a geometric Frobenius Fr(k)
on T are algebraic with absolute value (#k:)w/ 2 under any embedding Q — C.

We define the finite/singular exact sequence
0— H{(F,T) — HY(F,T) — HX(F,T) — 0
as in [Rub00, § 1.3]; we use the crystalline definition of [BK90, § 3] in the case char FF = 0 and
char k = ¢. If T is unramified and char k # ¢, then we recall that
H{(F,T)=H'(k,T), (2.1)
HY(F,T) = H'(I,T)" W= 2 7(-1)" 0=, (2:2)
and the finite/singular exact sequence identifies with the inflation-restriction sequence. (The last
isomorphism in (2.2) follows from the fact that the maximal pro-¢ quotient of I is isomorphic to
Zy(1) as a Gal(k/k)-module.) Thus if T is pure of weight w, then H!(F,, T) is finite unless w = —2.

There are of course analogous definitions for 7),, n < oo and the analogues of (2.1) and (2.2) still
hold for T;,.

2.2 Selmer groups

We now fix a global field F' and a free O-module T of finite rank endowed with an action of the
absolute Galois group of F. (As always we assume that F' does not have characteristic £.) We assume
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that T is unramified at almost all places of F'. Although it is not essential to the method, we also
assume that 7' is crystalline at all v dividing ¢. For any n let F'(T},) denote the smallest Galois
extension of F' such that the Galois action on 7, factors through Gal(F(T,,)/F). We define the
Galois group of T to be the projective group Gr with Gr, = Gal(F(T},)/F); it is equipped with
a natural representation pr : Gr — GL(T"). More generally, if E/F is a finite Galois extension we
set Gr/p,, = Gal(E(T,)/F) and let pp/g : Gpyg — GL(T) denote the natural representation. For
Y € Gr/E,00, We let Py(Gr/p,n) denote the set of places of F', unramified in FE(7T},)/F and prime
to ¢, with Frobenius conjugate to v on E(T},).

For a finite set of places P we define the P-Selmer group

SP(F,T) = ker <H1(F, T)— [] H(F. T)>.
v¢ P

Set S(F,T) = S”(F,T) and define the restricted P-Selmer group

Sp(F,T) = ker (S(F, 7)— [ Hi (F., T)). (2.3)

veP
As before there are analogous definitions for the T},, n < oo.
PROPOSITION 2.1. Let T be as above and assume that pr is irreducible. Fix a finite Galois extension

E/F and a pr,g-isotropic v € Gp/g - Then we can choose finite subsets P, of P(Gr/g,n) such
that the exponent of Sp, (F,T,,) is bounded independent of n.

Proof. The Selmer group S(F,T,) is finite for each n by [Rub00, Proposition B.2.7]. We may
therefore choose finite Galois extensions FE, /F(T),) such that E, C F,;; and

S(F,T,) C HY(E,/F,T,).

Let G be the projective group with G,, = Gal(E,/F). If v is a place of I, unramified on 7" and in
E/F, then by (2.1) and (2.3) we have

Sy (FTh) © H‘%Fr(v)}(éann)v (2.4)

in the notation of § 1.1; here Fr(v) € G,, is any choice of Frobenius at v.

The exponent of H!(Gp /Ems L n) is bounded independent of n by [Rub00, Theorem C.1.1]; thus
Proposition 1.1 shows that the exponent of

H3 oy, bt (Gns Tn)

is bounded independent of n, where 7, is a fixed lift to G, of the image of v in G /En- Fix n and
for each g € Gal(E,,/E(T,)) fix a place vy of F', unramified on 7" and in E/F, with Fr(v,) conjugate
to Jng in Gal(E,/F). Then the set P, of these v, lies in P, (G7/g,n) and by (2.4) we have

Sp,(F,T,) C H} Gal(En/E(Tn))(éan)‘
The proposition follows. 0

2.3 Locally isotropic Galois representations

We say that an irreducible Galois representation 1" is locally isotropic if there is some finite Galois
extension E/F' such that pr/p : Gp/g — GL(T') is locally isotropic. We call any such E an isotropy
field for T'. Note that if T" is locally isotropic, then so is any twist of T' by a character of finite order. If
TV = Homp(T, O) is the contragredient of T', then G = Grv (so that Py(Gp/g,n) = Py(Grv /g, n)
for any v € Gr/p o and any n) and T' is locally isotropic if and only if TV is.
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If T is locally isotropic, then the set of places v with Fr(v) isotropic has positive density. Thus if
T is pure of weight w (in the sense that it is pure of weight w locally at almost all places of F'), then
it must have weight zero. Furthermore, if T* = TV (1) denotes the Cartier dual of T, then H(F,,T*)
is infinite for any v with Fr(v) isotropic. Nevertheless, we have the following fundamental result.

LEMMA 2.2. Assume that pp is locally isotropic. Let E be an isotropy field for T and let v be
minimal ppvg-isotropic. Then the exponents of the cokernels of the maps

H (Fy, T%) — Hg (Fy, T7,)
are bounded independent of n and v € P(Gr/g,n).

Proof. For v € PV(GT/E, n) the above map can be rewritten as
(TV)Fr(v)zl N (TX)FT(U)Zl _ (Tg/)'y:l

by (2.2). The lemma thus follows from Lemma 1.3 and the fact that P,(Gr/g,n) = Py(Grv /g, n).
U

The simplest examples of locally isotropic Galois representations are adjoint representations:
for H, an arbitrary Galois representation, the trace-zero adjoint 7' = End% H of H is locally isotropic
with isotropy field F' (at least when it is irreducible). We investigate this example in more detail
in § 5. In this case, bounds on the Selmer group of T" have applications to the deformation theory of
H/\H; see [Wes02a] for details. More generally, locally isotropic representations of algebraic groups
can be used to generate many locally isotropic Galois representations; see [Wes02b] for examples of
this construction.

An especially interesting example related to an orthogonal group occurs in the cohomology of
Hilbert modular surfaces. Let F' = Q and fix a real quadratic extension F/Q. Let f be a cuspidal
Hilbert modular eigenform for E of weight (2,2); assume that f is not the base change of a form
over Q. For sufficiently large O, we can associate to f a free O-module H; of rank two with
an action of Gal(E/E); see [Tay89, Theorem 2|. The determinant of Hy is the product of the
cyclotomic character and a character 0 of finite order. Let H ¢ be the conjugate of H; and set
Ty = Hf ®0 Hf(—1). Then T} descends to an irreducible representation of Gal(Q/Q); in fact, it
occurs in HZ (X , (9(1)) for an appropriate Hilbert modular surface X over Q. If p = pOp is inert
in £/Q, then by [HLR86] the action of Fr(p) on Ty has the matrix

g
0 Oéq}

EOY ’
Py

where aspByp = 07 (Fr(*B)). Since the eigenvalues of this matrix are asp, By, =4/ spByp, we conclude
that Fr(p) is isotropic on T as long as 6¢(Fr()) = 1. It is now not difficult to see that T is locally
isotropic with isotropy field E(6y).

2.4 Duality

Let T be a Galois representation as in § 2.2; we do not yet assume that T is irreducible or locally
isotropic. Fix a Galois extension E/F and v € Gr/p . We say that the Cartier dual 7* admits a
geometric Fuler system at -y if there is an m such that the cokernel of the map

SUHFE T - HN(F,, T*) (2.5)
is bounded independent of v € P, (G7/g,m).
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PROPOSITION 2.3. Let T' be a locally isotropic Galois representation. Let E be an isotropy field for
T and let v be minimal ppv p-isotropic. If T admits a geometric Euler system at vy, then S(F,Tw,)
is finite.

Proof. For any n and any set of places P we have the local/global duality exact sequence (see
[Rub00, Theorem 1.7.3])

SP(FTy) — @ HL(Fy, Ty;) — S(F,T)Y — Sp(F,T)" — 0. (2.6)
veP

We apply this for varying n with P = P, given by Proposition 2.1 for ~; in particular, the Sp, (F,T},)
are bounded independent of n. Since P, C P (G7/g,n), the exponent of the cokernel of the first map
in (2.6) is bounded independent of n by the definition of a geometric Euler system and Lemma 2.2.
Thus the exponent of S(F,T},) is bounded independent of n by (2.6). Every element of S(F,Ty) lies
in S(F,T,) for some n, so that this implies that S(F, Ty ) has finite exponent. It is also co-finitely
generated by [Rub00, Proposition B.2.7], so that it must now be finite. O

Note that it is essential for the above proof that there exist minimal isotropic elements.
Indeed, the bounds on Sp, (F,T;,) require v to be isotropic and Lemma 2.2 (which relies crucially
on Lemma 1.3) then requires v to be minimal. This is why the notion of a geometric Euler system
is only useful for locally isotropic representations.

The arithmetic theories also require the use of an isotropic element ; see [Kat99, Section 0.6]
and [Rub00, Section 2.2]. In fact, they require that dimpg T;é:l = 1. Thus we cannot apply the
arithmetic theory in any case where dimg T %:1 > 1 for all 4. (A simple example of such T is
the adjoint of a representation of rank at least three.) In particular, the arithmetic theory is not
applicable to many locally isotropic representations.

3. Algebraic cycles

3.1 Local conditions on motivic cohomology
Let R be a discrete valuation ring with fraction field ' and residue field k. Let X be a proper,
smooth variety over F. For an integer d, consider the complex

P Kk(x)— P k(=) - P z (3.1)

rexd-1 reXd reXdt+l

Here X' denotes the set of points of codimension i on the scheme X, the first map is the tame
symbol and the second (which is more important to us) is the divisor map. We define the motivic
cohomology group H?\fl(Jrl(X ,Z(d + 1)) to be the cohomology of (3.1). Elements are represented by
formal sums ) (Z;, f;) of pairs of codimension d cycles Z; on X and non-zero rational functions f;
on Z; such that > divz, fi = 0 as a Weil divisor on X. (We note that this definition agrees after
tensoring with Q with the usual definitions of motivic cohomology via K-theory or higher Chow
groups; see [Jan90, § 6], for example.)

Scholl [Sch00, Theorem 1.1.6] defined a canonical Q-subspace

H A (A(X),d+ 1) — HYTH(X, Z(d + 1) Q) Q (3.2)
Z

via de Jong’s theory of alterations. We use this to define local conditions in motivic cohomology as
follows. Let Hﬁflzl(){, Z(d + 1)) be the image of Hiflfl(X, Z(d + 1)) in the cokernel of (3.2). There
is then a natural surjection

divg : H3g ™ (X, Z(d + 1)) — HGEH (X, Z(d + 1)),
We define Hﬁﬁl(){, Z(d+ 1)) to be the kernel of divy.
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Alternately, if X — Spec R is a proper smooth model of X — Spec F' with special fiber X}, the
localization map in K-theory yields a map (see [Wes02a, § 3.1])

divy, : H3 (X, Z(d + 1)) — A%X;,

sending a pair (Z, f) to the divisor of f on the special fiber of the scheme theoretic closure of Z
in X. Here A%X}, is the Chow group of codimension d cycles Xj. Then div;, factors through div),
and induces an isomorphism

HAGE (X, 2(d + 1) 2 imdivy, /(im divg)iors.

In particular, this gives a geometric method to check local conditions in the case of good reduction.

3.2 Regulators

We now assume that F' is a local or global field of characteristic different from ¢. For a proper,
smooth variety X over F, an integer d and sufficiently large r, we can define a requlator map

(Ryxa: HA (X, Z(d + 1)) — HY(F, HZ (X, Ze(d + 1))).

(Here X is the base change of X to a separable closure of F.) The case where 7 can be taken to be
zero is considered in [Wes02a, § 2.2]. There are three additional difficulties in the general case: the
presence of torsion in He?tdﬂ(f( ,Zy(d + 1)); the existence of denominators in the Chern character;
and the failure of purity in étale cohomology. All three difficulties can be resolved by taking r large
enough; see [Tho84, Theorem 3.5] for the required purity results. We omit the details.

Let 7(X,d) be the least value of r such that {"Rx g is defined. The next result shows that the
regulator map respects the local conditions on the source and the target.

PROPOSITION 3.1. Let F be a local field with residue field k. Set T = H24(X,Z;(d + 1)) and fix
r > r(X,d). Assume that either X admits a proper, smooth model over Spec Op or char k # ¢. Then
("R x,q maps Hiﬁfgl(X,Z(d +1)) to HY(F,T). In fact, if chark # ¢ and X — Spec O is smooth,
then there is a commutative diagram

div _ _
H2Y (X 7(d + 1)) ——s Ad X, ——s H2 (X, Zy(d)) O

[FRX’dl J/Z

H'(F,T) ———— H}(F,T) ——— T(-1)""®"=!
Here ¢, is the cycle class map and the isomorphism on the right is the smooth base change.

Proof. When char k # /¢, the first statement is [Nek, Theorem B|. The case chark = ¢ is [Niz97,
Theorem 3.1]. The existence of the commutative diagram is proved for r(X,d) = 0 in [Wes02a,
Theorem 3.1.1]; the proof there is easily adapted for r(X,d) > 0 as well. O

3.3 Motivic Selmer groups

We now assume that F' is a global field; as always, we assume that F' does not have characteristic £.
Let X be a proper, smooth variety over F. Let P be a set of places of F' containing all places of
residue characteristic ¢ at which X has bad reduction. For any d, we define the motivic P-Selmer
group SY(H?**(X),Z(d + 1)) as the kernel of the map

P div, : H3{H (X, Z(d + 1)) — @ HgL (Xp,, Z(d + 1)).

v¢ P v¢ P
Here div, is the composition of restriction from X to Xg, with divy,. We record the following
consequence of Proposition 3.1.
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COROLLARY 3.2. Let P be a finite set of places as above. Then
U Rx a(Sh(H?*TH(X), Z(d + 1)) € ST (F, HE (X, Ze(d + 1))
for r > r(X,d).

4. Conjectures

4.1 Statements

Let X be a proper, smooth variety over a global field F' of characteristic different from ¢. Let S be an
open subscheme of Spec O and let X — S be proper and smooth with generic fiber X — Spec F.
Let Py denote the complement of S in the set of places of F'. Our basic conjecture is the following.

CONJECTURE 4.1. Let Z be an algebraic cycle on a smooth fiber X, of X — S. Then a non-zero
integer multiple of Z is homologically equivalent (on the geometric fiber X,) to an algebraic cycle
which is trivial in the Chow group of X.

For our applications we formulate a uniform combination of Conjecture 4.1 with the conjecture of
Tate on algebraic cycles (as in [Tat65, Conjecture 1]). We first need to introduce some terminology.
Let T be a free O-module with an action of the absolute Galois group of F. We say that T is
pre-motivic for (X, d) if there is an O-linear map with finite cokernel hp : H, gt(X ,O) — T compatible
with Galois actions. Note that 7" is then pure of weight d.

Let T' be pre-motivic for (X, d) and fix a finite Galois extension E/F. Let G7/p be the Galois
group of T' over E with representation pr/p : Gp/g — GL(T). In this context, for v € Gp/p o We
restrict the set P, (G /B> n) to contain only places in S. We immediately check that this restriction
does not affect any of our previous results.

CONJECTURE 4.2. Let T be pre-motivic for (X,2d). Fix a finite Galois extension E/F and v €
G7/B,00- Then there is an m such that the cokernel of the composition

SRUUH I (), 2(d + 1)) @ 0 T2 ANX, @) O < HE(X,, 0(d) = T 7(g) 0=
Z Z

(4.1)
is bounded independent of v € P, (G7/g,m).

The surjectivity of (4.1) after tensoring with K is implied by Conjecture 4.1 and the Tate
conjecture for the fiber X,. To see this, it suffices to show that (c o div]) ® K is surjective for any
v ¢ Py. Fix such v and fix t € H2Y(X,, K(d))™®=1. By Tate’s conjecture and Conjecture 4.1 there
is a codimension d K-cycle Z on X,, trivial in A%1X ® K, with ¢,(Z) = t. By the definition of the
Chow group there is, therefore, a codimension d K-cycle Y on X and a rational function f on Y
with divisor Z; that is, f has a trivial divisor on the generic fiber of X and

0 wgéPOU{v},

Z w=w.

divy, (Y, f) = {

Thus (Y, f) lies in S U (H241(X), Z(d 4 1)) and ¢ o div),(Y, f) = ¢, so that (c o div)) ® K is
surjective.

The basic motivation for these conjectures comes from the conjectures of Beilinson (as extended
to incomplete L-functions by Deligne) and Bloch and Kato. Indeed, assume that char F' = 0 and let
T be a motive occurring in H2?#+1(X) with Q-realization T;. Deligne’s generalization of Beilinson’s
conjectures (see [Sch92, Conjecture 4.2]) and the functional equation predict that

ord,—q Lp(T, s) = ranky Shy(T, Z(d + 1))
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for any set of places P; here Lp(T,s) is the L-function of T with Euler factors at P removed and
8/1\34 (T, Z(d + 1)) is the P-integral motivic cohomology of T. Comparing this equality with P = ()
and P = {v}, we expect that

dim Ty(d)* =" = rank S} (T, Z(d + 1)) — rank Sy (T, Z(d + 1)). (4.2)
On the other hand, localization and the cycle class map yield a map
SUHT, Z(d + 1)) © Q, — AT, ® Q — Ty(d)™ =" (4.3)

which is trivial on Spq(T, Z(d+1)). By (4.2), we are then naturally led to hope that (4.3) is surjective;
this is conjectured (in a slightly different form) in [BK90, Conjecture 5.3]. Conjecture 4.2 is simply
a uniform version of this; we have avoided passing to the motivic cohomology of T for simplicity.
For more discussions along these lines see [Fon92, Mil92].

4.2 Evidence

Conjecture 4.2 is known in a few cases. It is virtually trivial in the case d = 0 (so that T'= O): for
any v we can choose w, € Op which is a unit away from v but has ord, w, = h with h the class
number of Op. The elements (X, w@,) € H},(X,Z(1)) prove the conjecture for any v in this case.

We analyze Conjecture 4.2 more carefully in the case of adjoint motives in § 5. We use the
methods of Mildenhall and Flach as in [Wes02a] to verify the conjecture when X is a self-product
of a Kuga—Sato variety (respectively Drinfeld modular curve) and 7" is the adjoint representation
attached to certain classical modular forms (respectively Drinfeld modular forms). An interesting
variation of these ideas is provided by [Ots00], where Conjecture 4.2 is proven for the Fermat quartic
surface z§ + 25 = 21 + 23 over Q.

4.3 Consequences

PROPOSITION 4.3. Let X be a proper, smooth variety over F' and let T' be pre-motivic for (X, 2d).
Fix a Galois extension E/F and v € Gp/p - Assume that Conjecture 4.2 holds for some proper,
smooth model X — S, T and ~. Furthermore, assume that Hl(F,,T(d + 1)) is finite for w € Fy.
Then T(d + 1) admits a geometric Euler system at .

Proof. For r > r(X,d) and any v € S the composition of the regulator "R x 4 with hr induces a
map
Ry : S EPHY(X), Z(d + 1)) 02 0 — SPVEHE, T(d + 1)),
If X, is smooth and v does not divide ¢, then ¢" times (4.1) factors through Rt , and the map
SPYHF T(d+ 1)) —» HY(F,, T(d + 1)) (4.4)

by Proposition 3.1. It thus follows from Conjecture 4.2 that for some m the cokernel of (4.4) is
bounded independent of v € P, (G B> m). The proposition follows from this and the finiteness of
HY(F,,T(d+ 1)) for w € Py. O

COROLLARY 4.4. Let T be a locally isotropic Galois representation. Fix an isotropy field E and a
minimal ppv,p-isotropic v € Gr/p . Assume that there is an integer d such that T*(—d — 1) is
pre-motivic for some (X,2d) and such that Conjecture 4.2 holds for some proper, smooth model
X — S, T*(—d — 1) and v. Assume also that H!(F,,T*) is finite for w € Py. Then S(F,Ts,) is
finite.

Proof. This is immediate from Propositions 2.3 and 4.3. U
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5. Adjoint motives

5.1 Basic properties

Let S be an open subscheme of Spec O for a global field F' of characteristic different from £. Let
X — S be smooth and proper with generic fiber X — Spec F' of dimension d. Let H be a pre-
motivic Galois representation for (X, dy); we further assume that Hg is actually a direct summand
of Hgto (X,K). Let r = rankp H and set T = End) H. Note that the existence of the Galois
equivariant trace pairing T'® 7' — O implies that 7" = T'(1).

LEMMA 5.1. T(—d) is pre-motivic for (X x X,2d).

Proof. 1t follows from the Kiinneth formula and Poincaré duality that T (—d) is a direct summand
of Hgtd(X x X, K). In particular, there is a projection

h:H}(X x X,K) — Tk(—d).

The image of Hgg(X: X Xi, O) under h must be commensurable with 7'(—d), so that some multiple
of h will send H34(X x X,0) to a finite index submodule of T(—d). This is the statement of the
lemma. O

Let G and G be the Galois groups of H and T', respectively; we simply write p : Gy — GL(H)
and ad’p : Gy — GL(T) for the natural representations. Note that there is a natural surjection
of projective groups v : Gy — Gr; the kernel of v, (which we usually write simply as v) consists
precisely of those elements of G~ which map to scalars under p.

LEMMA 5.2. Assume that T is irreducible. Then T is locally isotropic and F' is an isotropy field
for T. If v € G is such that p(v) has distinct eigenvalues, then v(vy) is semisimple and minimal
ad® p-isotropic.

Proof. For g € Gp o, the eigenvalues of g on Endg Hi are the ratios of the eigenvalues of p(g).
In particular, every g € G1,o has dimg Tig(:1 > r — 1, with equality precisely when g has distinct
eigenvalues. The lemma follows. O

Note that there may not exist any v such that p(vy) has distinct eigenvalues; in that case, the
minimal ad® p-isotropic elements include those with the smallest number of trivial eigenvalues on H.

For any place v € S we let I'! denote the graph of the ith power of the Frobenius morphism on
the fiber X,; we can regard I'! as a codimension d cycle on X, x X, or a codimension d + 1 cycle
on X xg X. We let A4(X, x X,) denote the subgroup of A%(X, x X,) generated by I'L,... I"~L.

PROPOSITION 5.3. Let v € Gp o be such that p(y) has distinct eigenvalues. Then there is an m
such that the map

AL(X, % X,) QO 5 HE(X, x X, 0(d)F@=1 1L, 7=t (5.1)
Z

has cokernel bounded independent of v € PV(V)(GT,m). In particular, to prove Conjecture 4.2 for
XxgX — S, T and v(v), it suffices to show that there is a non-zero integer e such that eI’} ... el'" !
are trivial in A% x g X) for all v € Py, (Gr,m).

Proof. By assumption p(7) has distinct eigenvalues; thus we can choose m large enough so that
p(Fr(v)) has distinct eigenvalues for all places v € P, (Gr,m). For any such v, it follows from

basic linear algebra that the endomorphisms p(Fr(v)),..., p(Fr(v))"~! generate (End% Hj)®)=1
over K. We then easily see that the order of

TFO=1/(Op(Fr(v)) + - + Op(Fr(v))™ 1)
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is bounded independent of v € PV(W)(GT, m). By standard compatibilities in étale cohomology we
have hy o ¢(I')) = p(Fr(v))*, so that this proves the first statement.

For the second statement, fix v and i. Since we are assuming that el is trivial in AT (X x g %),
we can write

e, = "divy, f; (5.2)
where the Z; are irreducible codimension d cycles on X xg X and f; is a rational function on Z;.
In particular, ) divz, f; has no support on the generic fiber X x X, so that we can regard

3=2>.(Zj, f;) as an element of H/2\fl(+l (X x X,Z(d + 1)). (It may happen that some Z; have no
support on the generic fiber, but this causes no problems in the argument.) By (5.2), we have

0 Pyu
diVu)3 = {erz Z i ,UO {v}7

Thus 3 € Sﬁu{v} (H?+1(X),Z(d + 1)) satisfies div, 3 = eI’ The proposition follows from this and
the first statement. O

5.2 Classical modular forms

We now specialize to the case FF = Q. In [Wes02a, Theorem 4.2.3], optimal annihilators are
obtained for the adjoint Selmer group attached to a sufficiently well-behaved classical modular
form of squarefree level. Using the results above it is straightforward to extend these methods to
prove the finiteness of the adjoint Selmer group for a more general class of classical modular forms
of arbitrary level.

Let f be a newform of weight k + 2 (with & > 0), level N and arbitrary character. For suffi-
ciently large K, we can associate to f a two-dimensional K-representation Hy j of Gal(Q/Q).
This representation can be realized as a direct summand of H QH(E;{;,K ) where Ej is a certain
canonical resolution of the k-fold product of the universal generalized elliptic curve over the modular
curve X1(N). Ejy has a proper, smooth model & — SpecZ[1/N]; see [Wes02a, § 4.2.1] for details
and references.

Fix a Galois stable O-lattice Hy in H f; it is pre-motivic for (Ey, k+1). Let py : Gy — GL(Hy)
be the associated representation. Set Ty = End( Hy with representation ad’ py : Gpp — GL(T}).
Let v : Gg ¢ — Gr,¢ be the natural map. T is pre-motivic for (Ej x Ej, 2k + 2) by Lemma 5.1.

PROPOSITION 5.4. Let Ty be as above and let v € G t,oc be such that p¢(7y) has distinct eigenvalues.
Then Conjecture 4.2 is true for &, x &, — SpecZ[1/N], T}, and v (7).

Proof. Fix p not dividing N and let I'), denote the graph of Frobenius in E}, , X Ej ,. We show that
12T, is trivial in AF+2(&. x &). The proposition then follows from Proposition 5.3.

Let T}, be the pth Hecke correspondence; it is a codimension k£ + 1 cycle on &, x &. Let A be
the unique normalized cusp form of weight 12 and level 1; we regard A as a pluricanonical form of
degree 6 on X (V). The two projections T}, o — Ej, give rise to two maps T}, g — X1(IV). We let f,
be the rational function on 7}, which is the ratio of the pullbacks of A under these two maps.

As observed in the weight 2 case by Flach (see [Fla92]), it is a consequence of the Eichler—
Shimura congruence relation that divy, f, = 6FZ — 6I', with Fg the Verschiebung; see [Wes02a,
Lemmas 4.1.1 and 4.2.1] for the higher weight case. (The essential idea is explained in a different
context in the proof of Proposition 5.6 below. Note that it is assumed in [Wes02a] that N is
squarefree; however, the same proof works in general since we assume here that p does not divide NV.)
Since Ky, X By, =T, + Fz\?/’ it follows that divr, p_6fp = —12I",. This proves the proposition. [

THEOREM 5.5. Assume that f is not of CM-type, that f is special or supercuspidal at all p dividing
N and that ¢ does not divide N. Then S(Q, Ty ) is finite.
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Proof. Since f is not of CM-type, there exist v € Gy .o such that ps(vy) has distinct eigenvalues.
Thus by Proposition 5.4 and Corollary 4.4, we need only check that HSI(QP,T]T ) is finite for p
dividing N. This follows from our hypotheses and [Sch00, § 2.3.13]. O

We omit the case where f is a principal series at some p dividing N, as then Hsl((@p, T}k ) is infinite.
However, one should be able to deal with this case by a more careful analysis of the geometry of
E). x Ej. at places of bad reduction.

5.3 Drinfeld modular forms

Let F be a finite field and let F' = F(t). In this section, we adapt the ideas of Flach as in the
previous section to study adjoint representations of certain Drinfeld modular representations over F.
We restrict ourselves to the case in which the geometry of the associated Drinfeld modular curve is
sufficiently well understood.

Let n be a squarefree ideal of F[t] and let S be the complement of n in Spec F[t]. Let My(n)
be the Drinfeld modular curve of level n studied in [Gek86b]; it admits a proper, smooth model
Mop(n) — S. Let A denote the adeles of F' and let 7 be a cuspidal automorphic representation of
GL2(A) of weight 2, level n and trivial character as in [Tam95, § 3]. For an appropriate choice of
O we can associate to 7 a pre-motivic Galois representation H, for (My(n),1); H is free of rank 2
over O and there is an equality

L(s — %, Ty) = L(s, Hy )
of local L-factors for almost all places v of F. We also know that H is special for v ¢ S. Set
T, = End, H,; it is pre-motivic for (My(n) x My(n),2) by Lemma 5.1. Let p; : G — GL(H,),
ad’ pr : Grrx — GL(T}) be the associated representations and let v : Gy — Gr . be the natural
map.

PROPOSITION 5.6. Let Tx be as above and let v € Gy« be such that pr(v) has distinct eigenvalues.
Then Conjecture 4.2 is true for Mo(n) x Mo(n) — S, T and v(7).

Proof. The proof is nearly identical to the proof of Proposition 5.4 once we assemble the corre-
sponding geometric data: we show that 2(1 — ¢%)T', is trivial in A%2(Mo(n) x Mg(n)) for any p € S,
where ¢ is the order of F. The proposition then follows from Proposition 5.3.

Fix p € S and let T, be the Hecke correspondence at p regarded as a codimension 1 cycle
in Mg(n) x Mg(n). We let A be the Drinfeld cusp form of weight ¢ — 1 and level 1 defined in
[Gek86b, § 2]; we regard A? as a pluricanonical form of degree g2 — 1 on My(n) as in [Gek86a, § 5].
We then define f, as the ratio of the pullbacks of A? under the two projections T, b, — Mp(n).

Set 8" = S — {p}; T, xg S’ is birationally isomorphic to My(np). By [Gek86b, Corollary 3.4
and § 4], the divisor of f, on My(np) is a linear combination of differences (0;) — (o0;) of cuspidal
divisors. Here 0; and oco; are a pair of cusps lying over a single cusp of My(n). They thus coincide
on T, € Mg(n) x Mo(n) as well and it follows that the divisor of f, on T} xg S’ is trivial.

We compute the divisor of f, on the fiber of T, over p via the Eichler-Shimura relation of
[Gek86b, § 5]. As a cycle on Mo(n), x Mo(n)p, the fiber of T}, is the sum of I'y and its transpose T’y .
We compute the divisor of f, separately on each component. For T'y, the first projection to My(n), is
an isomorphism while the second is totally inseparable. Since A? is a pluricanonical form of degree
q> — 1, it follows that fp has a pole of order ¢>—1on I'y. By a similar computation, we see that f,
has a zero of order ¢> — 1 on FX .

We conclude that the divisor of f, on T} is (1 — ¢*)(Ty — Ty). If @y is a uniformizer at p, the

divisor of wg_qQ fp on T}, is thus 2(1 — q2)Fp. This completes the proof. O
As in the classical case, we immediately obtain the following result.

330

https://doi.org/10.1112/50010437X03000113 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X03000113

GEOMETRIC EULER SYSTEMS FOR LOCALLY ISOTROPIC MOTIVES

THEOREM 5.7. Assume that 7 is not of CM-type. Then S(F(t), Tr ) is finite.

We make the bound we have obtained on S(F(t), T ) explicit in the case that p, is surjective
and [ > 7. Since [ > 7 and My(n) is a curve, we can define the regulator map with r = 0. Using
both assumptions, we can show that Sp, (F,T},) in Proposition 2.1 is trivial for all n; see [Wes00,
Proposition II1.5.1]. If 7y is chosen so that its eigenvalues have distinct residues in O/, the cokernels
of Lemma 2.2 and (5.1) are trivial as well. Finally, the groups HZ(F,,T*) vanish for w ¢ S by
[Wes00, Lemma 1.5.2]. We conclude that 2(¢? — 1)n annihilates S(F, Ty o) where 7 is a constant
depending on the cokernel of the map H}, (My(n),O) — H,. We expect that 1 should be related to
congruences between m and other automorphic representations.

It would certainly be preferable to construct a cohesive Flach system for T as in [Wes02a].
Unfortunately, it appears that not enough is yet known about the structure of the Hecke algebra to
complete this construction; see [Tam95, pp. 241-242].
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