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On Deducing the Properties of the Trigonometrical
Functions from their Addition Equations.

By R. F. MUIRHEAD, M.A., B.Sc.

1. Take first the Addition-Formula of the Tangent :

. . tanr>: + tan»/
tan(a:+ ?/)=- — - - - I.

1 - tana; tany

, tana; + tanO
Takey = 0, .-. tan.T = - - (1)J ' 1 - tana: tanO v '

Assume that 1 - tana; tanO is not zero for all value of x - - II.
and we have tana;( 1 - tana; tanO) = tan.r + tanO

.-. tanO(l+tan2a:) = O - - - (2)

Assume that there is one value at least for x for whir;h

tan2a;=t=-l and 1 - tan.T tanO 4= 0 - - I I I .

and we have tanO = 0 - - - (3)

tana; + tan( - .r)
Hence 0 = tanfx' - x) — ^

v ' I + tan-.x-

.•. tana; = t an ( - x) • - - (4)

hence, writing - y for y in I.

tan.r - tan?/ „
tan(a:-i/)=r - - (o)

v 1 + tan.r tanv/ v '
Again tan(a; + /i) - tana; = tan/i(l + tan2a;)-=-(1 - tana; tanA) - (G)
By taking h small enough, the denominator may be made positive,
so long as tana; is finite. Hence tan(a; + /«)>tana; and as x increases
from 0, tana; increases at an increasing rate, and must eventually
become = 1

R . R
Let — be the value of x which makes tan—= 1 IV.
Then

3*(
1 - tan2R \tanR

Hence tan(2R + a;) = — j — ^ = tan.r • - - (7)

Thus tana; is periodic, and the period is 2R.
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Again tan(2R - x) = tan( - x) = - tan.r.

tanR - tan.x 1
And tan(R-.r) = - _

1 + tanK tana; tan*

Hence the graph of tana; might be roughly sketched.

1 * R
Again l = t a n -

4
T> T>

Hence t a nT~ = * J'2 ~ l •'" t a n T = ^ 2 ~ 1

In this manner we can calculate tan— where n is any integer.

Hence by the Addition Formula we can find tan-^- where m is

any integer, and in this way we can approximate to the value of
the tangent of any angle between 0 and R; and then, using (4)
and (7) to that of any angle whatever.

R depends on the unit of angular measurement; or vice versa, if
R be arbitrarily chosen, the unit of measurement depends on it.

If we take the limit when x = 0 of tanx/a; to be =1 as in radian
measure, we get from (6)

dtana; , „ dta.n~Jx 1
—r- 1 + tan2a;, or —y— =:dx dx 1 + x-

x - i ^ a!8

whence t an lx = a; —— + -—-
3 5

. •• -K- = tan"11 = 1 - - — + ^ —+ etc.

2. It will appear that the Addition Formulae of the sine and
cosine are not sufficient to determine all their properties, or in
other words, that the trigonometrical functions are particular cases
of more general functions having the same Addition Equations. I
have therefore, in what follows, extended the scope of the paper so
far as to determine what these more general functions are.
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Let <f>(x) and \ft(x) be two functions of x such that

- - - IT.
so that <fi and \p are functions having the same Addition-Formulae
as the sine and the cosine respectively; we shall seek to deduce from
I. and II. the nature of <j> and \fs, pointing out as we proceed, any
further assumptions that we make as to the nature of <j> and \p.

In I. put y = 0 . \ 4>{x) = 4>(x)\f(Q) + \p(x)<j}(0)

.: * * ( W ( 0 » - t(x)<t>(0) " " (1)

Similarly from II. f(x)(l - f(0)) = - <f>(x)<}>(0) - - - (2)

Multiplying across and transposing,

[Wx)Y+{*(«)}»{i -^(O)}<KO)=o - - (3)

Assume that (<f>%)2 + ( ^ ) s is not = 0 for all values of x - - I I I .

This is certainly true if <t>(x) and. x//(x) are real and not both
always = 0

Hence either <£(0) = 0 or 1 - ^(O) = 0

Now if <£(0) = 0 then by (1) <A(0) = l unless c£(a;) = O for all values
of x or ^(a;) = °o for all values of x.

And by (2) ^(0) = 1 unless \p{x) = 0 for all values of x or 4>(x) = oo for
all values of x.

On the whole then, the alternative <£(0) = 0 involves also that
= 1 if we assume :

There is some value of x for which <j> or tf> is neither
oo nor 0. - IV.
And it is clear that, on this assumption, the equation <£(0) = 0 can
be deduced from the other alternative ^(0) = 1. Hence finally

Put y = - x in I. and II. and we have

<t,(x-x) = <f>(x)i(~x) + f(x)4>(-x) - (5)

Kx-x) = 4ix)4i-x)-4(xM-x) - (6)
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Eliminating successively \p( - x) and 4>( - x) w e have

Assume (i/a-)" + ((jixf= 1 - - - - V.
(Xotc that this includes Assumption 111.)

Hence by (7) and (8), 4>(x) = -</>(- a;) • - - - (9)

4>(x)= xp{-x) - - - - (10)

Hence from I. and II., by putting - y for y, we have the
Subtraction Formulae :

\ - - - (11)

It is clear that at this stage V., (9), (10), and (11) are all equiva-
lent, so that any one of them being assumed, the others would
follow.

As in books on Elementary Trigonometry we can now deduce
from I., II., and (11) all the formulae for functions of multiples or
submultiples of x, and such formulae as

( x + y\ Ix - y\
2 ¥VT) •

Assume now that </>(;»:) is not always =0 and is real and con-
tinuous, and that it becomes positive * at first as x increases
from 0 - - - - - - - VI.

and consider the identities

./>(* + h) - <J>(x) = 2<

(12)

We see that as x increases from 0, so long as \p is positive, <£ is
increasing, and >p is decreasing at an accelerating rate.
Hence there must be a value of .<• for which \p first becomes = 0 .
Let that value be II.

Then vKR) = O. Hence by V., c/>(R) = 1 - - - - (13 )

* The contrary supposition, that it is negative at first, would lead to similar
results.
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Then f(R - x) = ^ R f x + 4>R<f>x

Similarly <£( R - a;) = ij/x

0
0
1 = - </>(3R) = <£(5R) = -
] =

(14)

Hence <j>(ili + x) =</>.« and i/'(4R + a;) = xpx - - - - (15)

Thus <f> and \p are both periodic functions, the period being = 411,
and it is clear that if the values of <f> from x = 0 to x = R were
tabulated, we could at once find the value of 4> or \p for any other x
by means of (14) and (15).

We are in a position to trace the <f> and if curves roughly, and
they are obviously similar to sina; and cosa;, the unit angle being

— of a right angle.
xC

The actual values of </> and <p for as many values of x as we
please can easily be calculated, e.tj.,

— 1= —~~f^' an (^ w e must take the upper sign

since ^ is positive till x = R.

Hence also 4>l~) = - " - - (16)

By repeated application of the formula

we can get the value of ^(x) for ;is small a value ot: ,<: as we please :
thence finding <l>(x) for the same value of x by means of V., we
could, by the Addition Formulae, interpolate as many values as we
pleased of </> and \p between the values found, of which (16) is a.
specimen.

Thus we have shown that the two functions defined by I., II.,
III. , IV., V., VI. are one-valued.
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Since the sine and cosine satisfy these assumptions, </> and \f>
must be identical with them.

If we suppose the sine and cosine defined geometrically, then to
prove their identity with the functions <f> and \p as above conditioned,
it would only be necessary to prove geometrfcally the Addition
Equations and the Subtraction Equations and verify the assump-
tions III., IV., VI.

R is arbitrary, and its choice determines the unit of angular
measurement. To connect R with the limiting value of <j>(x)/x we
might use the formula

n+o /i+72 /l+VlT + Jya)

2"

. •. =- = a certain number x k, where k is the limiting value when

2
x = 0 of <f>(x)lx. The number referred to is of course —. Instead

IT

of choosing R arbitrarily we might choose k, and so fix R.

3. In order to prove that the assumptions III., IV., V., VI. are
all necessary we should have to show that if any one is omitted, the
functions <j> and \f/ may be different from the sine and cosine.

The assumptions III., IV. are obviously necessary, and the
generality gained by dropping them is not of interest. I t is other-
wise with assumption V., viz.: (<£a;)2 + (^a;)2 = 1. Suppose this
assumption dropped, so that <f> and ^ are now conditioned only by
I., II., III., IV., VI., and let & and ^ be thus defined :

We can easily verify that </>j and ^ satisfy I., II., III., IV., VI.

Again {<k(2*)}2

= 1
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Thus the functions fa and ^, satisfy the condition <£i2 + ^,2 = 1, and
are therefore, as we saw, identical with the sine and cosine of x.

To find the nature of the more general functions <f> and ^ let us

put <*>(*.•) =/(*)&(*)
then by (17) we get \p(x) =J{x)xp1(x)

Substituting in the Addition Formulae we get

Hence, as in the proof of the Exponential Theorem,

f(x) = a", where a is an arbitrary constant.

Thus the most general functions conditioned by I., II., III., IV., VI.
are o'sina; and a*cosa;. The special case a = 0 giving sina; and cosa;
is got by introducing either V. or any of its equivalents.

If we drop Condition VI. as well as V.r i.e., if we admit
imaginaries, the present mode of treatment becomes inconvenient.

In VI. the assumption of continuity is required by the occur-

rence of >̂la; + -^-1 and V'(a; + "H~) o n * n e right hand sides of

equations (12). By writing (12) in the form

we see that if ^ ( - ^ l - ^ " has a finite limit, the functions are con-

tinuous, i.e., if <f>(x) begins by being continuous, it must remain so,
and f also.

4. The Addition Equations I. and II . can also be discussed as

follows :

Take f(x) = i^{x) + ^(x) )
t • I " " " ' ^

(19)

Similarly g(x + y) =g(x).g{y) - -(20)

Hence f(x) = a' and g(x) = b", where a and b are arbitary constants.
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Hence <j>(x) = —(a* - b")

There is no restriction as to the values of a and b, as we can verify
by substituting in I. and II.

But if <f> and xp are to be real functions of x, since by (21)
a" = \p + (f>i, b'' = tp - (f>i, it follows that a and b must be complex
quantities having the same modulus, say A, and equal and opposite
amplitudes, +B.

Hence i/-(.x) = A'COSB.T, </>(.T) = A*sinBa: - - - (22)

Although this result agrees with the general result obtained by
the previous method, it is to be noted that we have not proved
exactly the same thing. Here we have identified A*cosBa: and
A'sinBa; as defined analytically with the functions </> and ip. In the
previous method the analytical expressions for sine and cosine were
not assumed.
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