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The limits of time stepping when used to

solve the long wave equations numerically

K. Tronson

The two approaches (the hydrodynwnical-numerical and the

harmonic methods) to the solution of the' long wave equations are

compared, enabling an analysis of the limits imposed by time

stepping. The minimum time scale of motions, which may be

modelled by the time stepping scheme, is determined from the

stability condition derived for the harmonic method.

1. Introduction

The problems of tidal dynamics may be solved numerically by at least

two methods. These use finite-difference methods to describe the

dependence of the variables on position. The first method, proposed by

Hansen [2], uses a suitably stable finite-difference approximation for the

time derivative and the dependent fields are stepped forward in time. This

method is often described as the fflV-method. The transformation of the

dependent variables from a function of time to a function of frequency

provides the basis of an alternative method usually referred to as the

harmonic method.

Since the spatial dependence may be treated in the same way for these

two methods, a detailed comparison provides an insight into the effect of

the discretization of the time dependence. Transformation of the stability

condition from the time to the frequency domain and vice versa provides

"sensible" lower and upper limits on the time step and frequency

respectively.
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The results, expressed in matrix notation, are illustrated by a

numerical example.

2. Comparison of EN and harmonic methods

The linearized long wave equations integrated over depth may be

written as

(2'3) 8x dy + 3t ° '

using the following notation:

t the time;

£ the elevation of the sea surface;

U, V the components of the total stream;

F , G the components of surface stress;
8 S

F_, G_ the components of bottom stress;

h the undisturbed depth of the water;

/ the coriolis parameter;

g the acceleration of the earth's gravity.

For this analysis, the bottom stress is assumed to take the form

where r is the linear coefficient of friction.

The boundary conditions are that the normal velocity on a closed

boundary (the shoreline) is zero, and the elevation is given at an open

boundary (an artificial boundary dividing the region of interest from the

open sea).

By assuming values for £/, V and C at t = 0 , the problem becomes

an initial value problem. It has been shown that the solution after a

time, T , is independent of the initial conditions if frictional

dissipation is included. The value of T depends on the rate of
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dissipation.

The equations may be expressed in a discrete form, so that the U, V

and C fields may be stepped forward in time. The system is either

explicit or implicit, depending on the form of finite-differeace used. An

example of an explicit scheme as given by Heaps [3] is

= -TfU.(t) + [l - irK-U) - igh.EAt) + £ G At) ,
It f f t • 1 £• U fc- P Sir

1*

for i = 1, ..., n , where T is the time step, and .A, B, C and D are

W "dV 3C 3Cthe finite-difference forms of the derivatives T— , r~, IT2- and -r2-ox oiy da; ay

r e spec t ive ly . These equations wr i t ten in matr ix notat ion are

U(t+ T) = (J-xK)U(t) + TFV(t) - TgHDZ,(t) + ̂  F It) ,

V(t+T) = -TfU(t) + (I-xK)\l(t) - -zgBEZit) + X G ( t ) ,
P °

where it is implied that

The matrices H, F and X are diagonal matrices such that H. . = h. ,
'W If

F. . = / and K.. = r/h. . All non-active elements should be removed from
Iris 'V'lr *V

the vectors U, V and £ , so that the matrices are irreducible. An

active grid point is defined as a point on which the dependent variable is

not defined by a boundary condition and is within the region of interest.

The terms due to outer boundary forcing can be absorbed into the surface

forcing terms. The matrices H and K remain diagonal although there are

now two forms of each. Nothing can be said about the structure of the two

forms of F , except that they are not likely to be diagonal. The final

form of the equation is

(2.It) Z( * + T ) = Gz(t) + W(£) ,
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where

z(tf = \l(t)T,

and

(2.5) G

I-XK

J-iX.

-T [A-

The equations which form the basis of the harmonic method are the

Fourier transforms of (2.1), (2.2) and (2.3). The resulting equations are

d\ioi + f) - U(x, 0) - fV = -gh || + i

• s(x, o) + 7p + Y~= o ,

where ~ represents the Fourier transform. The discrete form of these

equations may be written as

(2.6) QZ = S ,

where

and

(2.7)

•£oiT+.X l

Setting F (t) and G (t) to be periodic, with period NT , causes
o 8

the field z(t) to oscillate with the same frequency after a time, T ,

enabling a comparison between the methods, since
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f
0=1

where K = e . For u = 2ir/iVT ,

I
0=1

(I-KG)
TK

IK 1 | i

( 2

to the order u . The HN analogues of the fields Z and S are ,

respectively,

N -i2-nj/N
(2.8) Z = I 2 - z(t+jx) ,

and

(2.9)

where

S + Tb = i I
3=1

[o, o , -

Equation (2.1*) may now be written as

(2.10) (5+Ti?)7 = s + ib ,

where

(2.11) R =

-co2/

-<D2J

^AF^ -u>2I-g [AH^D+BH^]

Writing Z = Z + h + h , equation (2.10) may be divided into

(2.12)

and

= S ,
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(2.13) (6+Ti?)h2 = -rb .

The HN and harmonic formulations are equivalent for T •* 0 , as

11211 l-T

and

2 l

which tend to zero as T -*- 0 , for Q not singular.

3. Stability

The stabil i ty condition for the time stepping scheme may he written as

(3.1) |Xfc| 2 1

where the ^j,'s a^e the eigenvalues of G . Consider the matrices G

and (?2 , where

(3.2) G = Gx + 0[T2) ,

and

Platzman [4] has shown that, for a Richardson grid, a particular structure

of F and F , and zero friction, the matrix G? has pure imaginary

eigenvalues iBj, . The inclusion of friction would produce eigenvalues of

the form

-ak + iyk '

with

ak > 0 and |yfc| 2 |Bfc| .

Hence the eigenvalues of G.9 A, i , could be written as
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The approximation for A, gives

2
(3.3) 2 2 2 2

and for zero f r i c t i o n (ou, = o) (3 .3) becomes

(3.10 2: 1 .

Since the time stepping scheme is stable, the elements in G of the order

of T must be sufficient to reduce |X^| below 1 .

The more usual stability condition, as stated by Fischer [I] is

(3.5) T 5 i r ,

and

(3.6) T 2 , / * 0 ,
/2max(?z)

where 6 i s the minimum distance between adjacent grid points and o is

a constant; usually c. = 1, 2 , or v2 , depending on the grid scheme.

Unlike condition (3-1), no account has been taken of the boundary.

In the transform method, condition (3-5) becomes

(3.T) q, > 2 7 T m ^f ) % > 0 ,

as there i s no res t r ic t ion on the maximum value of N .

Providing Q i s not singular, equation (2.6) may be solved for a l l

values of (0 . For large values of w the solution has no physical

significance and an upper l imit needs to be determined. Equation (2.6)

may be written as
/ \ A A

[tuir-G2Jz = s .

If H is formed by the eigenvectors of £„ , then
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giving

1
z = -ill diag

To avoid aliasing, the condition

(3.8) 0)5max(|6fe|J

must be satisfied. This condition may be developed intuitively. At least

two grid points are needed to define a wave with a maximum frequency of

(3.9) u :

In the time stepping regime, this becomes

( 3 < 1 2 ) TMTS

which is not a stability condition in the sense of equation (3.5), but a

measure of the minimum time scale (MTS) which is consistent with the

spatial discretization.

Let p be the fraction of the total number of time steps which are

sufficient to completely describe the RN solution. The ratio of (3.5)

to (3-10) with N = 2 provides an approximate estimate of p ,

T,

P =
STAB min/z

MTS
max/j

It is assumed that the time step used would be Tom.,, . A smaller value of

T would reduce p but provide no additional information.

4. Numerical example

To measure the errors arising from the time discretization, i t is

necessary to disentangle the effects of space discretization. To provide

a basis for comparison an analytic solution is required. Accordingly, a

simple example has been chosen and the analytic, HN , and harmonic

solutions found.
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The model used was a rectangular basin (206 Km long) of constant

depth (1(0 m) , open at one end. The open boundary was assumed to

oscillate with" an amplitude of 0.1 m and a period of 12 hours. Figure

1 provides a comparison of the three solutions for the amplitude of the

surface elevation oscillations as a function of position.

0.7 •

c
o

a 0.5

co

f 0.3

a.

<

0.1

x harmonic solution

analytic solution

50 ICC. 150.

Distance aiony basin (Km).

200.

Figure 1. The amplitude of the surface elevation oscillations given by

the HN , harmonic, and analytic methods for a simple example.

A similar comparison for the phases of the transport and elevation are

shown in Figure 2 (page 330). The maximum value of T given by equation

(3.5) is 9.3 minutes.

Ho significant error is apparent due to spatial discretization, as the

harmonic and analytic solutions are equivalent. The error in the HN

solution for surface elevation increases away from the open end, while the

error in the phase of the transport is approximately constant along the
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HN solution

harmonic solution

— analytic solution

+ 4- -t- +

50. 100.

Distance along basin (Km).
150. 200.

Figure 2. The analytic solution for the phase of the surface elevation

oscillations ( ) and the phase of the transport ( )

compared with the respective solutions given by the HN and

harmonic methods.

basin. The phases of the surface elevation and transport, found by time

stepping, lag the analytic solution.

From numerical experiments it seems that the effect of violating

condition (3.9) is to give a solution which decays very rapidly away from

the open boundary,

5. Conclusions

The analysis shows that the error in the numerical solution using the

HN method arises from the need to ensure stability, as well as from the
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discretization of the time. For the example considered, the error arising

from the use of finite-difference methods used to describe the spatial

variations is negligible compared to the errors induced by time stepping.

The analysis of the stability conditions provides a measure of the

number of time steps which are unnecessary except to ensure stability. To

keep these to a minimum, i t is necessary to minimize the range of depths

within the model.
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