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On spectra of Hankel operators on the
polydisc

Željko Čučković, Zhenghui Huo , and Sönmez Şahutoğlu

Abstract. We give sufficient conditions for the essential spectrum of the Hermitian square of a class
of Hankel operators on the Bergman space of the polydisc to contain intervals. We also compute the
spectrum in case the symbol is a monomial.

The study of spectral properties of Toeplitz and Hankel operators acting on the
Bergman space is a difficult topic. In recent years, some progress has been made in
understanding spectral properties of Toeplitz operators. We highlight the result by
Sundberg and Zheng [SZ10] who have proved that the spectra and essential spectra
of Toeplitz operators on the unit disc D need not be connected. Their result shows a
sharp difference with the spectra of Toeplitz operators on the Hardy space. As is well-
known, Widom [Wid64] showed that for any L∞ symbol ψ on the unit circle, the
spectrum of the Toeplitz operator Tψ is a connected subset of C. Similarly Douglas
[Dou98, Theorem 7.45] proved that the essential spectrum of Tψ is also connected. In
this context, we also mention papers [ZZ16, GZZ23] which study spectra of certain
classes of the Bergman Toeplitz operators on the unit disk. On the other hand, we are
not aware of much work done about the spectral properties of Hankel operators.

Since the Hankel operator Hψ does not map the Bergman space into itself, we will
consider the Hermitian square H∗ψ Hψ and we will obtain some initial results about the
spectrum. In this paper, we will only be concerned with symbols that are continuous
up to the boundary of the domain. In the case of the unit disc, Hψ is compact for
ψ ∈ C(D) (see, for instance, [ACM82, Proposition 8]); hence the spectrum of H∗ψ Hψ
is discrete. Like the situation on the unit disc, on bounded strongly pseudoconvex
domains in C

n , Hψ is compact [ČŞ09]. Then on such domains the spectrum of
H∗ψ Hψ is discrete as well. In this paper, we focus on the polydisc and find some
sufficient conditions in terms of behavior ψ on the boundary so that the spectrum
of H∗ψ Hψ contains intervals. One of the reasons for this departure from the one-
dimensional and strongly pseudoconvex case is the fact that Hankel operators with
symbols continuous on D2 may not be compact (see [CŞ18a, Le10 ]). We note that, in
case the symbol is smooth on the closure the same result was proven in [ČŞ09]. With
regard to Sundberg–Zheng result, from the same papers mentioned in this paragraph,
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we know that if the symbol ψ is holomorphic along any disc in the boundary of a
convex domain, then Hψ is compact [ČŞ09, ÇŞS23, Zim23]; hence the spectrum of
H∗ψ Hψ is disconnected.

At this point we would like to mention the well known formula connecting Hankel
and Toeplitz operators

H∗ψ Hψ = T∣ψ∣2 − Tψ Tψ .

Thus our results could shed a new light on the spectra of semicommutators of
Toeplitz operators. For more information about Hankel and Toeplitz operators on
the unit disc, we refer the reader to a standard reference [Zhu07].

In the rest of the paper, we prove two sufficient conditions for the spectrum of
H∗ψ Hψ to contain intervals. We also compute the spectrum of H∗ψ Hψ in the case ψ is
monomial.

1 Main results

Let Ω be a bounded domain in C
n and A2(Ω) denote the Bergman space, the set of

square integrable holomorphic functions on Ω. We denote the Bergman projection by
PΩ . Then for a bounded measurable function ψ on Ω, Hankel operator HΩ

ψ on A2(Ω)
with symbol ψ is defined as

HΩ
ψ f = (I − PΩ)(ψ f ),

for f ∈ A2(Ω). Here I denotes the identity operator. For simplicity, we will simply
write Hψ when there is no confusion about the domain. We note that the Toeplitz
operator Tψ is defined as

Tψ f = P(ψ f ),

for f ∈ A2(Ω).
The spectrum for H∗ψ Hψ , for symbols continuous up to the boundary, is a discrete

set for a large class of domains on which the operator is compact [ČŞ09]. So it would
be interesting to know the sufficient conditions for the spectrum to contain intervals.

Let σ(T) denote the spectrum of a linear map T. The set of eigenvalues is called
the point spectrum σp(T) [Con90, VII Definition 6.2]. The discrete spectrum, σd(T)
is composed of eigenvalues with finite (algebraic) multiplicity that are isolated points
of σ(T). Finally, the essential spectrum σe(T) is defined as σe(T) = σ(T) ∖ σd(T).
A characterization of the essential spectrum in our set-up, called Weyl’s Criterion, is
presented in Theorem A below. We note that for self-adjoint operators T1 and T2 we
have σe(T1) = σe(T2) if T1 − T2 is compact (see, for instance, [HS96, Theorems 5.10
and 7.2] or [Con90, XI Proposition 4.2]).

Our first result is about the essential spectrum of H∗ψ Hψ on A2(Dn) when ψ is a
product of two functions that depend on different variables. We note that, HD

n−1∗

φ in
the theorem below denotes the adjoint of the operator HD

n−1

φ .
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On spectra of Hankel operators on the polydisc 3

Theorem 1.1 Let φ ∈ C(Dn−1), χ ∈ C(D) and ψ(z′ , zn) = φ(z′)χ(zn) for z′ ∈ Dn−1 ,
and zn ∈ D. Then the essential spectrum of H∗ψ Hψ contains the set

{∣χ(q)∣2 μ ∶ q ∈ bD, μ ∈ σ(HD
n−1∗

φ HD
n−1

φ )} .

In case the symbol is separable we have the following corollary, proof of which will
be presented in Section 2.

Corollary 1.2 Let χ j ∈ C(D) for j = 1, . . . , n and ψ(z1 , . . . , zn) = χ1(z1)χ2(z2)⋯
χn(zn). Then the essential spectrum of H∗ψ Hψ contains the set

n
⋃
j=1

⎧⎪⎪⎨⎪⎪⎩
μ ∏

k≠ j
∣χk(qk)∣2 ∶ qk ∈ bD, μ ∈ σ(HD

∗

χ j
HD

χ j
)
⎫⎪⎪⎬⎪⎪⎭

.

In the next theorem, we give a sufficient condition for the spectrum to contain an
interval for more general symbols than the ones in Theorem 1.1.

Theorem 1.3 Let ψ ∈ C(Dn), 1 ≤ k ≤ n − 1, and ψq(z′) = ψ(z′ , q) for z′ ∈ Dn−1 and
q ∈ bD. Assume that q → ∥HD

n−1

ψq
∥ is non-constant. Then the essential spectrum of H∗ψ Hψ

contains an open interval.

The following corollary can be proved using Theorems 1.1 or 1.3. We will mention
both in Section 2.

Corollary 1.4 Let φ ∈ C(Dn−1) and χ ∈ C(D) such that ∣χ∣ is not constant on the unit
circle and φ is not holomorphic. Then the essential spectrum of H∗ψ Hψ contains an open
interval where ψ(z′ , zn) = φ(z′)χ(zn) for z′ ∈ Dn−1 and zn ∈ D.

Example 1.5 Let ψ(z1 , z2) = z1(z2 + 1). Since z1 is not holomorphic and ∣z2 + 1∣ is
not constant on the unit circle, Corollary 1.4 implies that σe(H∗ψ Hψ) contains an
interval. It is worth noting that (see Theorem 1.6 below) the spectrum of the Hermitian
square of a Hankel operator with a monomial symbol is a discrete set; yet for the a
quadratic polynomial z1(z2 + 1) the spectrum contains an interval.

In Theorem 1.6 below, we give a complete characterization of the spectrum on the
polydisc for monomial symbols.

We note thatN0 denotes the set of non-negative integers, {0, 1, 2, . . .}. For m, n, α ∈
N

n
0 and ∅ ≠ B ⊂ Bn = {1, 2, 3, . . . , n} we define

λn,m,α ,B = ∏
k∈B

αk + 1
αk + nk + mk + 1

,

whenever αk < mk − nk for some k ∈ B and

λn,m,α ,B = ∏
k∈B

αk + 1
αk + nk + mk + 1

− ∏
k∈B

(αk + 1)(αk + nk − mk + 1)
(αk + nk + 1)2 ,

whenever αk ≥ mk − nk for all k ∈ B.
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Theorem 1.6 Let ψ(z) = znzm for some m, n ∈ Nn
0 . Then H∗ψ Hψ on A2(Dn) has the

following spectrum

σ(H∗ψ Hψ) = {0} ∪ {λn,m,α ,B ∶ α ∈ Nn
0 , ∅ ≠ B ⊂ Bn}.

Furthermore, if nk + mk ≥ 1 for all k ∈ Bn and mk ≥ 1 for some k ∈ Bn then all of the
eigenvalues have finite multiplicities. On the other hand, if nk + mk = 0 for some k ∈ Bn
then all of the eigenvalues have infinite multiplicities.

Since the spectrum of H∗ψ Hψ on A2(Dn) for ψ(z) = znzm contains countably many
points it has empty interior.

Corollary 1.7 Let ψ(z) = znzm for some m, n ∈ Nn
0 . Then the spectrum of H∗ψ Hψ on

A2(Dn) has empty interior.

In case the symbol is a pure conjugate holomorphic monomial in C
2, we have the

following corollary.

Corollary 1.8 Let ψ(z1 , z2) = zn
1 zm

2 on D
2 for some positive integers n, m. Then

σ(H∗ψ Hψ) = {0}∪
n−1
⋃

α1=0

m−1
⋃

α2=0
{ α1 + 1

α1 + n + 1
, α2 + 1

α2 + m + 1
}

∞

⋃
α1=n

∞

⋃
α2=m

{ n2

(α1 + n + 1)(α1 + 1) , m2

(α2 + m + 1)(α2 + 1)}

∞

⋃
α1=n

∞

⋃
α2=m

{ n2(α2 + 1)2 + m2(α1 + 1)2 − n2m2

(α1 + n + 1)(α2 + m + 1)(α1 + 1)(α2 + 1)}

n−1
⋃

α1=0

∞

⋃
α2=0

{ (α1 + 1)(α2 + 1)
(α1 + n + 1)(α2 + m + 1)}

∞

⋃
α1=0

m−1
⋃

α2=0
{ (α1 + 1)(α2 + 1)
(α1 + n + 1)(α2 + m + 1)} .

Furthermore, all of the eigenvalues are of finite multiplicity.

A precursor to the next corollary has appeared in [ČŞ18b, Remark 4.2].

Corollary 1.9 Let ψ(z1 , z2) = zn
1 on D

2 for some positive integer n. Then

σ(H∗ψ Hψ) = {0} ∪
n−1
⋃

α1=0
{ α1 + 1

α1 + n + 1
}
∞

⋃
α1=n

{ n2

(α1 + n + 1)(α1 + 1)} .

Furthermore, all of the eigenvalues are of infinite multiplicity.

2 Proof of Theorems 1.1 and 1.3

In the proofs, below KΩ and kΩ
z = KΩ

z /∥KΩ
z ∥ denote the Bergman kernel and the

normalized Bergman kernel of Ω, respectively. We will drop the superscript Ω when
the domain is clear.
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To prove Theorems 1.1 and 1.3, we will need the following result. We refer the reader
to [HS96] for a proof.

Theorem A (Weyl’s Criterion) Let A be a bounded self-adjoint linear operator on a
Hilbert space H. Then
i. λ is in the spectrum of A if and only if there exists a sequence {un} ⊂ H such that

∥un∥ = 1 for all n and ∥(A − λ)un∥ → 0 as n → ∞.
ii. λ is in the essential spectrum of A if and only if there exists a sequence {un} ⊂ H

such that ∥un∥ = 1 for all n, un → 0 weakly, and ∥(A − λ)un∥ → 0 as n → ∞.

The following lemma is probably well known. We include it here for completeness.
We would like to thank Tomas Miguel P. Rodriguez for the proof.

Lemma 2.1 Let Ω be a domain in C
n and { f j} be a sequence in A2(Ω). Then

f j → 0 weakly as j → ∞ if and only if { f j} is bounded in A2(Ω) and f j → 0 as j → ∞
uniformly on compact subsets in Ω.

Proof. Let us assume that { f j} is bounded in A2(Ω) and f j → 0 as j → ∞uniformly
on compact subsets in Ω. Let f ∈ A2(Ω) and ε > 0. Then there exists a compact set
K ⊂ Ω such that ∥ f ∥L2(Ω∖K) < ε. Then for large j, we have sup{∣ f j(z)∣ ∶ z ∈ K} < ε and

∣⟨ f , f j⟩∣ ≤ ∥ f ∥L2(K)∥ f j∥L2(K) + ∥ f ∥L2(Ω∖K)∥ f j∥L2(Ω)

≤ ε (∥ f ∥L2(K)
√

V(K) + sup{∥ f j∥L2(Ω) ∶ j ∈ N}) ,

where V(K) denotes the Lebesgue volume of K. Hence ⟨ f , f j⟩ → 0. That is, f j → 0
weakly as j → ∞.

For the converse, we assume that f j → 0 weakly as j → ∞. We define S f j( f ) =
⟨ f , f j⟩ for f ∈ A2(Ω). Then S f j( f ) → 0 as j → ∞. That is sup{∣S f j( f )∣ ∶ j ∈ N} < ∞
for all f ∈ A2(Ω). Then by the uniform boundedness principle sup{∥S f j∥ ∶ j ∈ N} =
sup{∥ f j∥ ∶ j ∈ N} < ∞. That is { f j} is bounded in A2(Ω). Furthermore, f j(z) =
⟨ f j , Kz⟩ → 0 as j → ∞ for all z ∈ Ω. We will use this fact to conclude that f j → 0
uniformly on compact subsets as follows. Let K be a compact subset of Ω and { f jk }
be a subsequence of { f j}. Then Montel’s theorem implies that there is a further
subsequence { f jkl

} that is convergent to a holomorphic function f uniformly on K.
However, f j(z) = ⟨ f j , Kz⟩ → 0 as j → ∞. Then f = 0. Therefore, every subsequence
{ f jk } has a further subsequence { f jkl

} converging to zero uniformly on K. Then f j →
0 uniformly on K as j → ∞. Since K is arbitrary we conclude that f j → 0 uniformly
on compact subsets. ∎

Proof of Theorem 1.1 Let q ∈ bD. For p ∈ D and j ∈ N we define

f j, p(z′ , zn) = g j(z′)kD

p (zn),

where z′ = (z1 , . . . , zn−1), kD

p is the normalized kernel for A2(D) centered at p and
{g j} ⊂ A2(Dn−1), to be determined later, such that ∥g j∥L2(Dn−1) = 1. We note that
{g j} is uniformly bounded on compact subsets ofDn−1. Then sup{∣ f j, p(z)∣ ∶ j ∈ N, z ∈

https://doi.org/10.4153/S0008439524000845 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439524000845
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K} → 0 as p → q for any compact set K ⊂ D
n . Hence, by Lemma 2.1, for any p j → q

we conclude that f j, p j → 0 weakly j → ∞.
Let us fix j and denote ψq(z′ , zn) = ψ(z′ , q) = χ(q)φ(z′). Since ψq is independent

of zn and

P( f g)(z) = (PD
n−1

f )(z′) ⋅ (PDg)(zn),

whenever f is a function of z′ and g is a function of zn , we have

Hψq f j, p =ψq g j kD

p − P(ψq g j kD

p )

= χ(q)φg j kD

p − χ(q) (PD
n−1

(φg j)) kD

p(2.1)

= χ(q)(HD
n−1

φ g j)kD

p .

Then ∥Hψq f j, p∥ = ∣χ(q)∣∥HD
n−1

φ g j∥L2(Dn−1) . Now we write ψ = ψ − ψq + ψq and

H∗ψ Hψ f j, p = H∗ψq
Hψq f j, p + H∗ψ Hψ−ψq f j, p + H∗ψ−ψq

Hψq f j, p .

Hence for λ ∈ R we have

∥H∗ψq
Hψq f j, p − λ f j, p∥−∥H∗ψ Hψ−ψq f j, p + H∗ψ−ψq

Hψq f j, p∥

≤ ∥H∗ψ Hψ f j, p − λ f j, p∥(2.2)

≤ ∥H∗ψq
Hψq f j, p − λ f j, p∥

+ ∥H∗ψ Hψ−ψq f j, p + H∗ψ−ψq
Hψq f j, p∥ .

Let {h j} be a bounded sequence in L2(Dn−1). Then ∥(ψ − ψq)h j kD

p ∥ → 0 as p → q
for any fixed j. This can be seen as follows. By continuity of ψ, for ε > 0 there exists
δ > 0 such that

∣ψ(z′ , zn) − ψq(z′ , zn)∣ < ε for ∣zn − q∣ < δ.

Then we have

∥(ψ − ψq)h j kD

p ∥
2

= ∥(ψ − ψq)h j kD

p ∥
2
L2({(z′ ,zn)∈Dn ∶∣zn−q∣<δ}) + ∥(ψ − ψq)h j kD

p ∥
2
L2({(z′ ,zn)∈Dn ∶∣zn−q∣≥δ})

≤ ε2∥h j∥2
L2(Dn−1)∥kD

p ∥2
L2(D)

+ π∥h j∥2
L2(Dn−1) sup{∣(ψ(z′ , zn) − ψq(z′ , zn))kD

p (zn)∣ 2 ∶ z′ ∈ Dn−1 , ∣zn − q∣ ≥ δ} .

However,

sup{∣kD

p (zn)∣ ∶ ∣zn − q∣ ≥ δ} → 0 as p → q.

Then, for any j we have lim supp→q ∥(ψ − ψq)h j kD

p ∥ ≤ ε∥h j∥ for all ε > 0. Therefore,

lim
p→q

∥(ψ − ψq)h j kD

p ∥ = 0 for any j.(2.3)
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On spectra of Hankel operators on the polydisc 7

This fact together with h j = 1 imply that for any j we have

∥H∗ψ Hψ−ψq f j, p∥ = ∥H∗ψ(I − P)((ψ − ψq) f j, p)∥ → 0 as p → q.

Next we will use the following fact (see [ČŞ14, Lemma 1])

H∗u Hv = PMu(I − P)Mv for u, v ∈ L∞(Ω),(2.4)

where Mv denotes the multiplication operator by v.
Since Dn is a product domain and ψq is independent of zn , the fact above, (2.1) and

(2.3) with h j = HD
n−1

φ g j imply that for any j we have

∥H∗ψ−ψq
Hψq f j, p∥ = ∣χ(q)∣ ∥P ((HD

n−1

φ g j)(ψ − ψq)kD

p )∥ → 0 as p → q

and

H∗ψq
Hψq f j, p = ∣χ(q)∣2(HD

n−1∗

φ HD
n−1

φ g j)kD

p .

Then using (2.2) for any j we have

∥H∗ψ Hψ f j, p − λ f j, p∥ → ∥∣χ(q)∣2HD
n−1∗

φ HD
n−1

φ g j − λg j∥L2(Dn−1)
as p → q.(2.5)

Let μ ∈ σ(HD
n−1∗

φ HD
n−1

φ ). Then, by i. in Theorem A, we choose a sequence {g j} ⊂
A2(Dn−1) such that ∥g j∥ = 1 for all j and

∥HD
n−1∗

φ HD
n−1

φ g j − μg j∥L2(Dn−1)
→ 0 as j → ∞.

Then for λ = ∣χ(q)∣2 μ, we have

∥∣χ(q)∣2HD
n−1∗

φ HD
n−1

φ g j − λg j∥L2(Dn−1)
→ 0 as j → ∞.

Then using (2.5) and the limit above we choose p j ∈ D such that p j → q as j → ∞ and

∥H∗ψ Hψ f j, p j − λ f j, p j∥ < ∥∣χ(q)∣2HD
n−1∗

φ HD
n−1

φ g j − λg j∥L2(Dn−1)
+ 1

j

for all j. Hence

∥H∗ψ Hψ f j, p j − λ f j, p j∥ → 0 as j → ∞.

Finally, we use ii. in Theorem A to conclude that λ = ∣χ(q)∣2 μ ∈ σe(H∗ψ Hψ) for any
q ∈ bD and μ ∈ σ(HD

n−1∗

φ HD
n−1

φ ). ∎

Proof of Corollary 1.2 Without loss of generality let μ ∈ σ(HD
∗

χ1
HD

χ1
). Then, by

Theorem 1.1 for n = 2, we have μ∣χ2(q2)∣2 ∈ σ(HD
2∗

χ1 χ2
HD

2

χ1 χ2
). Hence, inductively,

we get

μ∣χ2(q2)⋯χn(qn)∣2 ∈ σe(H∗ψ Hψ)

completing the proof of the corollary. ∎

https://doi.org/10.4153/S0008439524000845 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439524000845
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The proof of Theorem 1.3 is similar to the proof of Theorem 1.1. So we will not
provide all the details but will highlight the differences and similarities below.

Proof of Theorem 1.3 Let q ∈ bD and

λq = ∥HD
n−1∗

ψq
HD

n−1

ψq
∥

L2(Dn−1)
= ∥HD

n−1

ψq
∥

2

L2(Dn−1)
.

Then λq ∈ σ(HD
n−1∗

ψq
HD

n−1

ψq
) (see, for instance, [HS96, Theorem 5.14]). By i. in

Theorem A there exists {g j,q} ⊂ A2(Dn−1) such that ∥g j,q∥ = 1 and

∥HD
n−1∗

ψq
HD

n−1

ψq
g j,q − λq g j,q∥L2(Dn−1)

→ 0 as j → ∞.(2.6)

Let

f j,q , p(z′ , zn) = g j,q(z′)kD

p (zn)

(again here kD

p is the normalized kernel for D centered at p). As in the proof of
Theorem 1.1 we have f j,q , p j → 0 weakly as j → ∞ for any p j → q. Similar to (2.1), one
can show that

Hψq f j,q , p = (HD
n−1

ψq
g j,q)kD

p .

Then ∥Hψq f j,q , p∥ = ∥HD
n−1

ψq
g j,q∥L2(Dn−1) and as in (2.2) we have

∥H∗ψq
Hψq f j,q , p − λq f j,q , p∥−∥H∗ψ Hψ−ψq f j,q , p + H∗ψ−ψq

Hψq f j,q , p∥

≤ ∥H∗ψ Hψ f j,q , p − λq f j,q , p∥

≤ ∥H∗ψq
Hψq f j,q , p − λq f j,q , p∥

+ ∥H∗ψ Hψ−ψq f j,q , p + H∗ψ−ψq
Hψq f j,q , p∥ .

As in the proof of Theorem 1.1 one can show that ∥(ψ − ψq) f j,q , p∥ → 0 as p → q. This
fact implies that

∥H∗ψ Hψ−ψq f j,q , p∥ = ∥H∗ψ(I − P)((ψ − ψq) f j,q , p)∥ → 0 as p → q.

Furthermore, since D
n is a product domain and ψq is independent of zn using (2.3)

with

h j,q = HD
n−1

ψq
g j,q ,

we have

∥H∗ψ−ψq
Hψq f j,q , p∥ = ∥P ((HD

n−1

ψq
g j,q)(ψ − ψq)kD

p )∥ → 0 as p → q.

Furthermore, by (2.1) we have

H∗ψq
Hψq f j,q , p = (HD

n−1∗

ψq
HD

n−1

ψq
g j,q)kD

p .
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Then for any fixed j, we have

∥H∗ψ Hψ f j,q , p − λq f j,q , p∥ → ∥HD
n−1∗

ψq
HD

n−1

ψq
g j,q − λq g j,q∥L2(Dn−1)

as p → q.

However, by (2.6) we can pass to subsequence of {g j,q}, if necessary, and get

∥HD
n−1∗

ψq
HD

n−1

ψq
g j,q − λq g j,q∥L2(Dn−1)

< 1
j

for all j. Next we choose {p j} ⊂ D such that p j → q as j → ∞ and

∥H∗ψ Hψ f j,q , p j − λq f j,q , p j∥ < 2
j

for all j. Therefore, we have
∥H∗ψ Hψ f j,q , p j − λq f j,q , p j∥ → 0 as j → ∞.

Then ii. in Theorem A implies that λq ∈ σe(H∗ψ Hψ).
Next we note that ∥HD

n−1∗

ψq
HD

n−1

ψq
∥ depends on q continuously because ψq depends

on q continuously and

∥HD
n−1∗

ψq1
HD

n−1

ψq1
− HD

n−1∗

ψq2
HD

n−1

ψq2
∥ =∥HD

n−1∗

ψq1−ψq2
HD

n−1

ψq1
+ HD

n−1∗

ψq2
HD

n−1

ψq1−ψq2
∥

≤ ∥HD
n−1

ψq1−ψq2
∥ (∥HD

n−1

ψq1
∥ + ∥HD

n−1

ψq2
∥)

≤ ∥ψq1 − ψq2∥L∞ (∥HD
n−1

ψq1
∥ + ∥HD

n−1

ψq2
∥) .

Then we conclude that {λq ∶ q ∈ bD} is connected. Therefore, since we assume that
the mapping q → ∥HD

n−1

ψq
∥ is non-constant, we conclude that {λq ∶ q ∈ bD} con-

tains an open interval in (0, ∞). That is, σe(H∗ψ Hψ) contains an open interval
in (0, ∞). ∎

The proof of Theorem 1.3 above implies the following corollary.

Corollary 2.2 Let ψ ∈ C(D2) and ψ1,θ(ξ) = ψ(e iθ , ξ), ψ2,θ(ξ) = ψ(ξ, e iθ) for ξ ∈ D.
Then

{∥HD

ψ1,θ
∥2

L2(D)
∶ θ ∈ [0, 2π]} ∪ {∥HD

ψ2,θ
∥2

L2(D)
∶ θ ∈ [0, 2π]} ⊂ σe(H∗ψ Hψ).

Remark 2.3 We note that Theorem 1.6 shows that the inclusion in Corollary 2.2
is not an equality in general. Indeed, for ψ(z1 , z2) = zn

1 zm
2 the quantities ∥HD

ψ1,θ
∥ and

∥HD

ψ2,θ
∥ are constant as functions of θ. Therefore, the left-hand side of the inclusion

in Corollary 2.2 contains at most two numbers whereas the right hand side, by
Theorem 1.6, contains infinitely many numbers.

Proof of Corollary 1.4 If φ is not holomorphic then HD
n−1

φ is non-zero operator
as HD

n−1

φ 1 ≠ 0. Hence ∥HD
n−1

φ ∥ > 0. Furthermore, since ∣χ∣ is non-constant on the unit
circle, the image of the mapping

q → ∥HD
n−1

ψq
∥

L2(Dn−1)
= ∣χ(q)∣ ∥HD

n−1

φ ∥
L2(Dn−1)
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10 Ž. Čučković, Z. Huo, and S. Şahutoğlu

contains an open interval. Therefore, by Theorem 1.3, the essential spectrum of H∗ψ Hψ
contains an open interval. ∎

Remark 2.4 One can also prove of Corollary 1.4 using Theorem 1.1 as follows.
Since HD

n−1

φ is non-zero operator, there exists a positive number μ ∈ σ(HD
n−1∗

φ HD
n−1

φ ).
Then the image of the mapping q → ∣χ(q)∣2 μ contains an open interval as ∣χ∣ is non-
constant on the unit circle. Therefore, by Theorem 1.1, the essential spectrum of H∗ψ Hψ
contains an open interval.

3 Proof of Theorem 1.6

Before we present the proof of Theorem 1.6, we make some elementary computations.
Let Ω be a complete Reinhardt domain in C

n and again N0 = {0, 1, 2, 3, . . .}. The
Bergman kernel function K has the expression

K(z, w) = ∑
α∈Nn

0

cα zαwα ,

where cα = 0 when ∥zα∥L2(Ω) = ∞ and cα = ∥zα∥−2
L2(Ω) otherwise.

A function ψ is called quasi-homogeneous if there exists f ∶ [0, ∞)n → C,
(k1 , . . . , kn) ∈ Zn such that

ψ(r1e iθ 1 , . . . , rn e iθ n) = f (r1 , . . . , rn)e i(k1 θ 1+⋯+kn θ n) .(3.1)

For z = (z1 , . . . , zn) ∈ Cn and α = (α1 , . . . , αn) ∈ Zn , we will use the notation ∣z∣
for (∣z1∣, . . . , ∣zn ∣) and write ∣z∣α for the product ∏n

j=1 ∣z j ∣α j . Then (3.1) can also be
expressed as:

ψ(z) = f (∣z∣)e ik⋅θ ,

where k = (k1 , . . . , kn), θ = (θ1 , . . . , θn), and z j = ∣z j ∣e iθ j . Now we consider the spec-
trum of H∗ψ Hψ when ψ is bounded and quasi-homogeneous on the complete Rein-
hardt domain Ω.

By (2.4) we have

H∗ψ Hψzα = PMψ(I − P)Mψ(zα)
= PMψ(I − P) f (∣z∣)∣z∣α e i(k+α)⋅θ

= PMψ(zαψ − P(∣z∣α e i(k+α)⋅θ f (∣z∣))),

for α ∈ Nn
0 . If the multi-index k + α ∉ Nn

0 , then P(∣z∣α e i(k+α)⋅θ f (∣z∣)) = 0 which yields
that

H∗ψ Hψzα = P(zα ∣ψ∣2) = ∥zαψ∥2
L2

∥zα∥2
L2

zα .(3.2)

Otherwise,

P(∣z∣α e i(k+α)⋅θ f (∣z∣)) = ∫
Ω

K(z, w)∣w∣α e i(k+α)⋅θ f (∣w∣)dV(w)
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= ∑
β∈Nn

0

cβzβ ∫
Ω

wβ ∣w∣α e i(k+α)⋅θ f (∣w∣)dV(w)

= cα+kzα+k ∫
Ω

wα+k∣w∣α e i(k+α)⋅θ f (∣w∣)dV(w)

= ∫Ω ∣w∣2α+k f (∣w∣)dV(w)
∥zα+k∥2

L2

zk+α ,

which implies that

H∗ψ Hψzα = PMψ(zαψ − P(∣z∣α e i(k+α)⋅θ f (∣z∣)))

= PMψ (zαψ − ∫Ω ∣w∣2α+k f (∣w∣)dV(w)
∥zα+k∥2

L2

zk+α)

= P (zα ∣ψ∣2 − ∫Ω ∣w∣2α+k f (∣w∣)dV(w)
∥zα+k∥2

L2

∣z∣kzα f (∣z∣))

= zα ⎛
⎝
∥zαψ∥2

L2

∥zα∥2
L2

−
∣∫Ω ∣w∣2α+k f (∣w∣)dV(w)∣ 2

∥zα∥2
L2∥zα+k∥2

L2

⎞
⎠

.(3.3)

Hence the spectrum σ(H∗ψ Hψ) contains the eigenvalues

∥zαψ∥2
L2

∥zα∥2
L2

−
∣∫Ω ∣w∣2α+k f (∣w∣)dV(w)∣ 2

∥zα∥2
L2∥zα+k∥2

L2

corresponding to the eigenfunction zα for k + α ∈ Nn
0 and

∥zαψ∥2
L2

∥zα∥2
L2

for k + α /∈ Nn
0 . Furthermore, since the eigenfunctions form an orthogonal basis for

A2(Ω), the closure of this set is the whole spectrum σ(H∗ψ Hψ) (see by Lemma 3.4
below).

Example 3.1 When f (∣z∣) = ∣z∣k for k ∈ Nn
0 , Equation (3.3) becomes

H∗ψ Hψzα = zα (∥zα+k∥2
L2

∥zα∥2
L2

− ∥z2α+2k∥2
L1

∥zα∥2
L2∥zα+k∥2

L2

) = 0.

This is not surprising since in this case the symbol ψ(z) = zk is holomorphic.

Example 3.2 When ψ(z) = e ik⋅θ for k ∈ Nn
0 , Equation (3.3) becomes

H∗ψ Hψzα = zα (1 − ∥z2α+k∥2
L1

∥zα∥2
L2∥zα+k∥2

L2

) .

Example 3.3 When k = 0, ψ(z) is radial and (3.3) becomes

H∗ψ Hψzα = zα (∥zαψ∥2
L2

∥zα∥2
L2

− ∥z2αψ∥2
L1

∥zα∥4
L2

) .
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12 Ž. Čučković, Z. Huo, and S. Şahutoğlu

Lemma 3.4 Let T ∶ H → H be a bounded linear map on a separable Hilbert space H.
Assume that λ j is an eigenvalue with a corresponding eigenvector u j for j ∈ N and {u j ∶
j ∈ N} forms an orthogonal basis for H. Then σ(T) = {λ j ∶ j ∈ N}. Furthermore, λ ∈
σe(T) if and only if it is the limit of a subsequence of {λ j}.

Proof. Since σ(T) is a compact set containing {λ j ∶ j ∈ N}, we have {λ j ∶ j ∈ N} ⊂
σ(T). To prove the converse, assume that λ /∈ {λ j ∶ j ∈ N}. Then we define Su j =

1
λ j−λ u j for all j. Then S is a bounded operator, as {(λ j − λ)−1} is a bounded sequence,
and it is the inverse of T − λI, as

(T − λI)Su j = S(T − λI)u j = u j ,

for all j. Then, λ /∈ σ(T). That is, σ(T) ⊂ {λ j ∶ j ∈ N}.
We recall that σe(T) = σ(T) ∖ σd(T) where σd(T) is composed of isolated eigen-

values with finite multiplicity. To prove the last statement, let λ ∈ σe(T). Then λ ∈
σ(T) is not an isolated eigenvalue with finite multiplicity. That is, either λ is not
isolated in σ(T) or it is an eigenvalue with infinite multiplicity. Either way, there
exists a subsequence of {λ j} converging to λ. Conversely, if λ ∈ σ(T) is the limit of a
subsequence {λ jk } of {λ j}, then either λ = λ jk for infinitely many ks (hence, it is an
eigenvalue with infinite multiplicity) or λ is not isolated in σ(T). Again, either way
λ ∈ σe(T). ∎

Finally, we present the proof of Theorem 1.6.

Proof of Theorem 1.6 Note that ψ(z) = znzm = ∣z∣n+me i(n−m)⋅θ . By (3.2) and (3.3),
it follows that

H∗ψ Hψzα =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

zα ∥z
α+n zm∥2

L2
∥zα∥2

L2
α + n − m ∉ Nn

0

zα ( ∥z
α+n zm∥2

L2
∥zα∥2

L2
− ∥z2α+2n−m zm∥2

L1
∥zα∥2

L2 ∥zα+n−m∥2
L2
) α + n − m ∈ Nn

0 .
(3.4)

We note that for multi-index β ∈ Nn
0 we have,

∥zβ∥2
L2 = ∥z2β∥L1 = πn

∏n
k=1(βk + 1) .

Substituting this into (3.4) yields that

H∗ψ Hψzα =
⎧⎪⎪⎨⎪⎪⎩

zα ∏n
k=1

αk+1
αk+nk+mk+1 α + n − m ∉ Nn

0

zα (∏n
k=1

αk+1
αk+nk+mk+1 − ∏n

k=1
(αk+1)(αk+nk−mk+1)

(αk+nk+1)2 ) α + n − m ∈ Nn
0 .

Hence

H∗ψ Hψzα = λn,m,α ,Bn zα ,

for α ∈ Nn
0 where λn,m,α ,Bn is defined before Theorem 1.6 and Bn = {1, 2, 3, . . . , n}.

That is, zα is an eigenvector corresponding to the eigenvalue λn,m,α ,Bn . Furthermore,
since {zα ∶ α ∈ Nn

0} forms an orthogonal basis for A2(Dn), Lemma 3.4 implies that

σ(H∗ψ Hψ) = {λn,m,α ,Bn ∶ α ∈ Nn
0}.
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We note that in case m = 0 the operator H∗ψ Hψzα is the zero operator and hence 0 is
the only eigenvalue with infinite multiplicity. For the rest of the proof, we will assume
that m ≠ 0.

Lemma 3.4 implies that each element in the spectrum is either an eigenvalue or
a limit of a sequence of eigenvalues. To describe the spectrum outside of the point
spectrum, we assume that λ ∈ σ(H∗ψ Hψ) such that

λ = lim
j→∞

λn,m,α( j),Bn ,

for a sequence {α( j)} ⊂ N
n
0 . Next we will show that either λ = 0 or λ = λn,m,α ,B for

some ∅ ≠ B ⊂ Bn and α ∈ Nn
0 . We assume that λ ≠ 0.

We note that zα( j) is an eigenvector corresponding to the eigenvalue λn,m,α( j),Bn .
Let us assume that

λn,m,α( j),Bn =
n
∏
k=1

αk( j) + 1
αk( j) + nk + mk + 1

.

For each j there exists k ∈ Bn such that αk( j) < mk − nk . Then there exists k such
that αk( j) < mk − nk for infinitely many js. That is, the kth sequence {αk( j)}∞j=1 has
a subsequence bounded by mk − nk . We pass to that subsequence of {α( j)} and still
call it {α( j)}.

Next we construct B as follows. Let k1 ∈ Bn be the smallest integer so that
{αk1( j)}∞j=1 has a bounded subsequence. Then we pass onto a subsequence, still
calling it {α( j)}, so that {αk1( j)}∞j=1 is a constant sequence. If αk( j) → ∞ as j → ∞
for all k ≥ k1 + 1 then we stop here and B = {k1}. Otherwise, we choose k2 ≥ k1 + 1
to be the smallest integer so that {αk2( j)}∞j=1 has a bounded subsequence. Now we
pass onto a subsequence, again calling it {α( j)}, so that {αk2( j)}∞j=1 is a constant
sequence. After finitely many steps we obtain B = {k1 , . . . , kp} and a subsequence
{α( j)} so that {αk( j)} is a constant sequence for every k ∈ B and αk( j) → ∞ as
j → ∞ for k /∈ B.

Hence for this subsequence of {α( j)}, taking limit as j → ∞, we have

λ = lim
j→∞

λn,m,α( j),Bn = lim
j→∞

n
∏
k=1

αk( j) + 1
αk( j) + nk + mk + 1

= ∏
k∈B

αk + 1
αk + nk + mk + 1

= λn,m,α ,B ,

where α ∈ Nn
0 such that αk is arbitrary for k /∈ B and αk = αk( j) for k ∈ B. We note

that αk < mk − nk for some k ∈ B.
Similarly, if lim j→∞ λn,m,α( j),Bn = λ where

λn,m,α( j),Bn = (
n
∏
k=1

αk( j) + 1
αk( j) + nk + mk + 1

−
n
∏
k=1

(αk( j) + 1)(αk( j) + nk − mk + 1)
(αk( j) + nk + 1)2 )

then

λ = lim
j→∞

λn,m,α( j),Bn = λn,m,α ,B ,
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and αk ≥ mk − nk for all k ∈ B. Hence we have shown that

σ(H∗ψ Hψ) ⊂ {0} ∪ {λn,m,α ,B ∶ α ∈ Nn
0 , ∅ ≠ B ⊂ Bn}.

Next we prove the converse of the inclusion above. First, we choose αk( j) = j
for all k. Then it is easy to see that λn,m,α( j),Bn → 0 as j → ∞. Hence 0 ∈ σ(H∗ψ Hψ).
Secondly, let us assume that ∅ ≠ B ⊂ Bn and αk < mk − nk for some k ∈ B. We choose
αk( j) = j for k /∈ B and αk( j) = αk for k ∈ B. Then

λn,m,α( j),Bn → λn,m,α ,B ∈ σ(H∗ψ Hψ) as j → ∞.

Similarly, if αk ≥ mk − nk for all k ∈ B we choose {α( j)} as above again and conclude
that λn,m,α ,B ∈ σ(H∗ψ Hψ). Therefore,

σ(H∗ψ Hψ) = {0} ∪ {λn,m,α ,B ∶ α ∈ Nn
0 , ∅ ≠ B ⊂ Bn}.

We finish the proof by proving the claims about multiplicities. Let us assume that
nk + mk ≥ 1 for all k ∈ Bn and λ is a non-zero eigenvalue of infinite multiplicity. Then
there exists a sequence of multi-indices {α( j)} such that λn,m,α( j),Bn = λ for all j. After
passing to a subsequence, we may assume that lim j→∞ αk( j) exists allowing infinity
as the limit for all k.

If B = θ then λ = 0. For the rest of the proof, we assume that B ≠ θ and, by passing
to a subsequence if necessary, αk( j) = αk for k ∈ B and αk( j) → ∞ for k /∈ B. In case
αk( j) < mk − nk for some k ∈ B, it follows that

λn,m,α( j),Bn < ∏
k∈B

αk( j) + 1
αk( j) + nk + mk + 1

= ∏
k∈B

αk + 1
αk + nk + mk + 1

= λ,

which is a contradiction with λn,m,α( j),Bn = λ for all j.
On the other hand, if αk( j) ≥ mk − nk for all k = 1, 2, . . . , n, the equality

λn,m,α( j),Bn = λ for all j implies that

λ =∏
k∈B

αk( j) + 1
αk( j) + nk + mk + 1

− ∏
k∈B

(αk( j) + 1)(αk( j) + nk − mk + 1)
(αk( j) + nk + 1)2

=
n
∏
k=1

αk( j) + 1
αk( j) + nk + mk + 1

−
n
∏
k=1

(αk( j) + 1)(αk( j) + nk − mk + 1)
(αk( j) + nk + 1)2 .(3.5)

Next we will prove that this is impossible for all j. Let us set

a = ∏
k∈B

αk( j) + 1
αk( j) + nk + mk + 1

,

b = ∏
k∈B

(αk( j) + 1)(αk( j) + nk − mk + 1)
(αk( j) + nk + 1)2 .

Then (3.5) becomes

a − b−a ∏
k/∈B

αk( j) + 1
αk( j) + nk + mk + 1

(3.6)

+ b ∏
k/∈B

(αk( j) + 1)(αk( j) + nk − mk + 1)
(αk( j) + nk + 1)2 = 0.
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Rearranging this equation, we obtain a polynomial equation

(a − b)∏
k/∈B

(αk( j) + nk + 1)2(αk( j) + nk + mk + 1)

− a ∏
k/∈B

(αk( j) + nk + 1)2(αk( j) + 1)

+ b ∏
k/∈B

(αk( j) + 1)(αk( j) + nk − mk + 1)(αk( j) + nk + mk + 1) = 0.

Rewriting the equality above, we get

(a − b)∏
k/∈B

(αk( j) + nk + 1)2 (∏
k/∈B

(αk( j) + nk + mk + 1) − ∏
k/∈B

(αk( j) + 1))

− b ∏
k/∈B

(αk( j) + 1)m2
k = 0.(3.7)

If mk ≥ 1 for some k ∈ B then a − b > 0 and

∏
k/∈B

(αk( j) + nk + mk + 1) − ∏
k/∈B

(αk( j) + 1) ≥ 1.

Furthermore, ∏k/∈B(αk( j) + nk + 1)2 dominates ∏k/∈B(αk( j) + 1)m2
k as j → ∞.

Hence, the left-hand side of (3.7) converges to ∞ as j → ∞, reaching a contradiction.
On the other hand, if mk = 0 for all k ∈ B and since m ≠ 0, we have mk ≥ 1 for some

k /∈ B. Then a − b = 0 and (3.6) implies

−∏
k/∈B

αk( j) + 1
αk( j) + nk + mk + 1

+ ∏
k/∈B

(αk( j) + 1)(αk( j) + nk − mk + 1)
(αk( j) + nk + 1)2 = 0.

However, the left-hand side of the equation above is equal to a positive multiple of the
following expression

−∏
k/∈B

(αk( j) + nk + 1)2 + ∏
k/∈B

((αk( j) + nk + 1)2 − m2
k)

which is negative, reaching a contradiction again. Therefore, we showed that, if mk +
nk ≥ 1 for all k ∈ Bn then each eigenvalue is of finite multiplicity.

Finally, let us define B0 = {k ∈ Bn ∶ mk = nk = 0}. Now we will show that all of
the eigenvalues have infinite multiplicities when B0 ≠ θ. We note that since m ≠ 0
we know that B0 ⫋ Bn .

Assume that λn,m,α ,Bn is an eigenvalue. Then either αk < mk − nk for some k or
αk ≥ mk − nk for all k. In the first case, we have αk < mk − nk for some k /∈ B0. Then

λn,m,α( j),Bn =
n
∏
k=1

αk( j) + 1
αk( j) + nk + mk + 1

= ∏
k/∈B0

αk + 1
αk + nk + mk + 1

= λn,m,α ,Bn ,

for αk( j) = j for k ∈ B0 and αk( j) = αk for k /∈ B0. Similarly, if αk ≥ mk − nk for all k
we make the same choice αk( j) = j for k ∈ B0 and αk( j) = αk for k /∈ B0 and one can
see that

λn,m,α( j),Bn =
n
∏
k=1

αk( j) + 1
αk( j) + nk + mk + 1

−
n
∏
k=1

(αk( j) + 1)(αk( j) + nk − mk + 1)
(αk( j) + nk + 1)2
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= ∏
k/∈B0

αk + 1
αk + nk + mk + 1

− ∏
k/∈B0

(αk + 1)(αk + nk − mk + 1)
(αk + nk + 1)2

= λn,m,α ,Bn .

Therefore, in either case the eigenvalues have infinite multiplicities. ∎

By the proof of Theorem 1.6, we can also characterize the essential spectrum of
Hankel operators with monomial symbols.

Corollary 3.5 Let ψ(z) = znzm for some m, n ∈ Nn
0 . If mk + nk = 0 for some k ∈ Bn ,

then the essential spectrum of H∗ψ Hψ on A2(Dn)

σe(H∗ψ Hψ) = σ(H∗ψ Hψ) = {0} ∪ {λn,m,α ,B ∶ α ∈ Nn
0 , θ ≠ B ⊂ Bn} .

On the other hand, if nk + mk ≥ 1 for all k ∈ Bn and mk ≥ 1 for some k ∈ Bn , then the
essential spectrum of H∗ψ Hψ on A2(Dn)

σe(H∗ψ Hψ) = {0} ∪ {λn,m,α ,B ∶ α ∈ Nn
0 , θ ≠ B ⊂ Bn and B ≠ Bn} .

Proof. First let us assume that B0 = {k ∈ Bn ∶ mk + nk = 0} ≠ θ. Then all of the
eigenvalues have infinite multiplicity. So the discrete spectrum is empty and the
essential spectrum is identical to the spectrum.

Next we assume that B0 = θ and mk ≥ 1 for some k ∈ Bn . Then 0 is in the essential
spectrum because 0 = lim j→∞ λn,m,α( j),Bn for αk( j) = j for all k ∈ Bn . Next one can
see that for any α ∈ Nn

0 , the value λn,m,α ,B is in the essential spectrum for θ ≠ B ⊂
Bn and B ≠ Bn as follows. Let {α( j)} be a sequence in N

n
0 with αk( j) = αk for k ∈

B and αk( j) = j for k ∉ B. Then as shown in the proof of Theorem 1.6, the constant
λn,m,α( j),Bn is an eigenvalue and λn,m,α ,B = lim j→∞ λn,m,α( j),Bn .

On the other hand, Lemma 3.4 implies that every λ in the essential spectrum is
the limit of a sequence of eigenvalues. By passing to subsequences argument as in
Theorem 1.6 and the fact that B0 is empty, we can see that such a λ will be of form
λn,m,α ,B for some α ∈ Nn

0 and some proper subset B of Bn . ∎
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