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Abstract We introduce a ‘double’ version of Γ -convergence, which we have named ‘double Γ -con-
vergence’, and apply it to obtain the Γ -limit of double-perturbed energy functionals as p → 1 and
p → +∞, respectively. The limit of (p, q)-type capacity as p → 1 and p → +∞, respectively, is also
obtained in this manner.
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1. Introduction

The theory of Γ -convergence [3, 6] was introduced by De Giorgi in the 1970s. One of
its essential aspects is that convergence for integral functionals occurs, which assures us
that minimizers converge to a minimizer of the Γ -limit functionals (see Proposition 1.1),
which are stable under continuous perturbations (see Proposition 1.2). It has become a
standard criterion for the study of variational problems.

We say that the functional E0 is the Γ (L1(Ω))-limit of {Eε}ε>0 if, for each u ∈ L1(Ω),
the following hold.

(i) If uε → u in L1(Ω), then E0(u) � lim infε→0+ Eε(uε).

(ii) There exists a family {vε}ε>0 in L1(Ω) such that vε → u in L1(Ω) and
lim supε→0+ Eε(vε) � E0(u).

The following proposition asserts that Γ -convergence implies convergence of minimizers
and minimum values.

Proposition 1.1. Suppose that F∞ and each Fn are functionals defined on the Banach
space L1(Ω) for n = 1, 2, 3, . . . . If

(i) {Fn}∞
n=1 Γ -converges in L1(Ω) to F∞,

(ii) for each n ∈ N, un is a minimizer of Fn on L1(Ω),

(iii) there exists a function u∞ ∈ L1(Ω) such that un → u∞ in L1(Ω) as n → ∞,
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then we have that

(a) limn→∞ Fn(un) = F∞(u∞),

(b) u∞ is a minimizer of F∞ on L1(Ω).

The next proposition states that Γ -convergence is stable under continuous perturba-
tions.

Proposition 1.2. Suppose that G, F∞ and each Fn are functionals defined on the
Banach space L1(Ω) for n = 1, 2, 3, . . . . If

(i) {Fn}∞
n=1 Γ -converges in L1(Ω) to F∞,

(ii) G is continuous on L1(Ω),

then we have that {Fn + G}∞
n=1 Γ -converges in L1(Ω) to F∞ + G.

For convenience, we refer the reader to the books [3, 6, 10] for the classical results
formulated in Propositions 1.1 and 1.2.

Starting from the pioneering work by Modica and Mortola in [12], Modica in [11] and
Sternberg in [15], many papers have been devoted to the study of the Γ -limit of the
family of functionals {Eε}ε>0 with the form

Eε(u) =
∫

Ω

1
ε
W (u) + ε|∇u|2 dx.

The nonlinear operator Δ1 is given by

Δ1u ≡ div
(

∇u

|∇u|

)
,

known as the 1-Laplacian. Since the vector

ν ≡ ∇u

|∇u|

is orthogonal to each level set of u, we see that the 1-Laplacian equation [7]

Δ1u = 0

describes ‘isotropic diffusion within each level surface, with no diffusion across different
level surfaces’ by applying the divergence theorem. The 1-Laplacian operator Δ1 is the
variational operator for

E(u) ≡
∫

Ω

|∇u| dx

and the formal limit of the p-Laplacian operator Δp as p → 1, where

Δpu ≡ div(|∇u|p−2∇u).
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This is related to mathematical topics including the minimal surface, the isoperimetric
inequality, the elasticity, the image processing and the relaxation of bounded-variation
(BV) functionals.

The infinity Laplacian operator Δ∞ is given by

Δ∞u ≡
n∑

i,j=1

uxi
uxj

uxixj
.

The infinity Laplacian equation
Δ∞u = 0

was first derived by Aronsson et al . [1] as the Euler–Lagrange equation for the so-called
absolute minimizer u of the L∞ variational minimizing problem

I∞(v) ≡ ess sup
Ω

|Dv|

among suitable boundary conditions. Furthermore, it was derived as the limit as p → ∞
of the p-Laplacian equation

Δpu = div(|∇u|p−2∇u) = |∇u|p−2Δu + (p − 2)|∇u|p−4Δ∞u = 0.

Dividing Δpu by (p − 2)|∇u|p−2 and letting p → ∞ leads to the partial differential
equation

1
|∇u|2 Δ∞u = 0.

For more relevant background and more properties, we refer the reader to [2,5,9,13,14].
Motivated by in-depth studies on the singular operators Δ1 and Δ∞, we introduced

a double version of Γ -convergence, which we have named ‘double Γ -convergence’ and
applied it to obtain the Γ -limit of double-perturbed energy

Eε,p(u) =
∫

Ω

1
ε

W (u)
q

+ εp−1 |∇u|p
p

dx

as (ε, p) → (0, 1) and (ε, p) → (0, +∞), respectively, where p > 1, 1/p + 1/q = 1 and
W (u) = 1

4u2(1 − u)2.
For convenience, we define

Eε1,ε2(u) ≡

⎧⎪⎨
⎪⎩

∫
Ω

[
1
ε2

W (u)
P ′

ε1

+ ε
Pε1−1
2

|∇u|Pε1

Pε1

]
dx if u ∈ W 1,Pε1 (Ω),

+∞ otherwise,

and

E′
ε1,ε2

(u) ≡

⎧⎪⎨
⎪⎩

∫
Ω

[
1
ε2

W (u)
Pε1

+ ε
P ′

ε1
−1

2
|∇u|P

′
ε1

P ′
ε1

]
dx if u ∈ W 1,P ′

ε1 (Ω),

+∞ otherwise,

where Pε1 and P ′
ε1

are two real-valued functions of variable ε1 satisfying the following:
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(1◦) Pε1 > 1 and P ′
ε1

> 1 for all ε1 > 0,

(2◦) 1/Pε1 + 1/P ′
ε1

= 1 for each ε1 > 0,

(3◦) Pε1 → 1 and P ′
ε1

→ +∞ as ε1 → 0.

The function P ′
ε1

is said to be the Lebesgue conjugate function of Pε1 . For example, if
Pε1 = 1 + ε1, then P ′

ε1
= 1 + 1/ε1; if Pε1 = eε1 , then P ′

ε1
= eε1/(eε1 − 1). Here, ε1 and

ε2 are positive parameters. Our main results are the following.

(i) {Eε1,ε2}ε1>0, ε2>0 double Γ -converges to E in L1(Ω) provided that ε2 · P ′
ε1

→ 0 as
(ε1, ε2) → (0, 0).

(ii) {E′
ε1,ε2

}ε1>0, ε2>0 double Γ -converges to σ · E in L1(Ω) provided that ε2 · Pε1 → 0
as (ε1, ε2) → (0, 0).

Here, σ ≡
∫ 1
0 W (t) dt and

E(u) ≡

⎧⎨
⎩

∫
Ω

|∇u| dx if W (u) = 0 almost everywhere (a.e.) and u ∈ BV(Ω),

+∞ otherwise.

This paper is aimed at continuing the work of [4] and studying the Γ -limit of double-
perturbed energy functionals through the method of ‘double Γ -convergence’. ‘Double
Γ -convergence’ is a natural generalization of the notion of Γ -convergence. To the best
of our knowledge, this is the first generalization of Γ -convergence theory in this field.
We anticipate that the ‘double’ version of Γ -convergence can be applied to solve more
important problems.

The paper has the following structure. In § 2, we introduce a ‘double’ version
of Γ -convergence, which we have named ‘double Γ -convergence’. In § 3, we prove
that {Eε1,ε2}ε1>0, ε2>0 double Γ -converges to E in L1(Ω). In § 4, we prove that
{E′

ε1,ε2
}ε1>0, ε2>0 double Γ -converges to σE in L1(Ω). Finally, we present the asymptotic

behaviour of (p, q)-type capacities in § 5.

2. Double Γ -convergence

Definition 2.1. Let (X, d) be a metric space endowed with a metric d. The sequence
{xm,n}∞

m=1,
∞
n=1 is said to converge to x in X if

lim
m→∞

(
lim

n→∞
xm,n

)
= x

in this order only. We denote it by xm,n → x as m → ∞ and n → ∞, or by xm,n → x.

Definition 2.2. Let X be a metric space and let Eε1,ε2 : X �→ [0,∞] be a fam-
ily of functionals. Assume that E : X �→ [0,∞]. We say that {Eε1,ε2}ε1>0, ε2>0 double
Γ -converges to E in X if the following statements hold for each u ∈ X.
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(i) (The lim inf inequality.) If uε1,ε2 → u in X, then

E(u) � lim inf
ε1→0

(
lim inf
ε2→0

Eε1,ε2(uε1,ε2)
)
.

(ii) (The lim sup inequality.) There exists a double sequence {vε1,ε2}ε1>0, ε2>0 in X

such that vε1,ε2 → u in X and

lim sup
ε1→0

(
lim sup

ε2→0
Eε1,ε2(vε1,ε2)

)
� E(u).

In this case we define E as the double Γ (X)-limit of {Eε1,ε2}ε1>0,ε2>0.

Remark 2.3. For each x ∈ X, define

Sx ≡
{

lim inf
n→∞

lim inf
m→∞

fn,m(xn,m)
∣∣∣ xn,m → x in X

}
,

Tx ≡
{

lim sup
n→∞

lim sup
m→∞

fn,m(xn,m)
∣∣∣ xn,m → x in X

}
.

The following statements are then equivalent:

(i) {fn,m}∞
n,m=1 double Γ -converges to f in X,

(ii) inf Sx = inf Tx = f(x) for each x ∈ X.

Remark 2.4. If the double Γ -limit of {fn,m}∞
n,m=1 exists, then it is unique.

Definition 2.5. Let {xε1,ε2}ε1>0, ε2>0 be a family of elements in X and let x ∈ X.
We say that xε1,ε2 → x in X as ε1 → 0 and ε2 → 0 if, for the entire sequence
{(ε1m

, ε2n
)}∞

m=1,n=1 converging to (0, 0) (i.e. both ε1m
→ 0 as m → ∞ and ε2n

→ 0
as n → ∞), we have that xε1m ,ε2n

→ x as m → ∞ and n → ∞.

Theorem 2.6. Suppose that E and each Eε1,ε2 are functionals defined on a metric
space X for each ε1 > 0, ε2 > 0. If

(1) {Eε1,ε2}ε1>0, ε2>0 double Γ -converges to E in X,

(2) uε1,ε2 is a minimizer of Eε1,ε2 on X for each ε1 > 0, ε2 > 0,

(3) there exists a function u ∈ X such that

uε1,ε2 → u in X as ε1 → 0+ and ε2 → 0+,

then we have that

(a) limε1→0(lim infε2→0 Eε1,ε2(uε1,ε2)) = limε1→0(lim supε2→0 Eε1,ε2(uε1,ε2)) = E(u),

(b) u is a minimizer of E on X.
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Proof. This follows from the fact that {Eε1,ε2}ε1>0, ε2>0 double Γ -converges to E at u.
Following the assumption (3) and the lim inf inequality, Definition 2.2 (i), this yields that

E(u) � lim inf
ε1→0

(
lim inf
ε2→0

Eε1,ε2(uε1,ε2)
)
. (2.1)

By the lim sup inequality, Definition 2.2 (ii), there exists a sequence {vε1,ε2}ε1>0, ε2>0

in X such that
vε1,ε2 → u in X as ε1 → 0, ε2 → 0,

and
lim sup

ε1→0

(
lim sup

ε2→0
Eε1,ε2(vε1,ε2)

)
� E(u). (2.2)

Let αε1 ≡ lim infε2→0Eε1,ε2(vε1,ε2) and βε1 ≡ lim supε2→0Eε1,ε2(vε1,ε2) for each ε1 > 0.
Then, αε1 � βε1 for all ε1 > 0, and

lim sup
ε1→0

αε1 � lim sup
ε1→0

βε1 � E(u). (2.3)

By assumption (2), Eε1,ε2(uε1,ε2) � Eε1,ε2(vε1,ε2) for all ε1 > 0, ε2 > 0.
Let α0

ε1
≡ lim infε2→0Eε1,ε2(uε1,ε2) and β0

ε1
≡ lim supε2→0Eε1,ε2(uε1,ε2) for all ε1 > 0.

We then have that α0
ε1

� αε1 , β0
ε1

� βε1 and α0
ε1

� β0
ε1

for all ε1 > 0. Following (2.1),
this yields that

E(u) � lim inf
ε1→0

α0
ε1

� lim sup
ε1→0

α0
ε1

� lim sup
ε1→0

αε1 � lim sup
ε1→0

βε1 � E(u),

E(u) � lim inf
ε1→0

α0
ε1

� lim inf
ε1→0

β0
ε1

� lim sup
ε1→0

β0
ε1

� lim sup
ε1→0

βε1 � E(u).

Therefore, we obtain that
lim

ε1→0
α0

ε1
= E(u),

lim
ε1→0

β0
ε1

= E(u).

⎫⎬
⎭ (2.4)

Next, we claim that u is a minimizer of E on X, given any v ∈ X. Since {Eε1,ε2}ε1>0, ε2>0

double Γ -converges to E at v, there exists a sequence {ωε1,ε2}ε1>0, ε2>0 in X such that

ωε1,ε2 → v in X as ε1 → 0, ε2 → 0,

and
lim sup

ε1→0

(
lim sup

ε2→0
Eε1,ε2(ωε1,ε2)

)
� E(v). (2.5)

By assumption (2),

Eε1,ε2(uε1,ε2) � Eε1,ε2(ωε1,ε2) for all ε1 > 0 and ε2 > 0.

Thus, we have that

lim sup
ε1→0

(
lim sup

ε2→0
Eε1,ε2(uε1,ε2)

)
� lim sup

ε1→0

(
lim sup

ε2→0
Eε1,ε2(ωε1,ε2)

)
. (2.6)

Combining (2.4), (2.5) and (2.6) yields that E(u) � E(v). �
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Theorem 2.7. Suppose that {Eε1,ε2}ε1>0, ε2>0 double Γ -converges to E in X, and
that F : X → R̄ is continuous on X. Then, {Eε1,ε2 + F}ε1>0, ε2>0 double Γ -converges to
(E + F ) in X.

Proof. Let u ∈ X. Following the assumption that {Eε1,ε2}ε1>0, ε2>0 double Γ -con-
verges to E at u and the lim inf inequality (i), given any {uε1,ε2}ε1>0, ε2>0 in X with
uε1,ε2 → u in X, we have that

E(u) � lim inf
ε1→0

(
lim inf
ε2→0

Eε1,ε2(uε1,ε2)
)
. (2.7)

By the double continuity of F at u,

lim
ε1→0

lim
ε2→0

F (uε1,ε2) = F (u). (2.8)

Let γε1 ≡ limε2→0F (uε1,ε2) for all ε1 > 0. Then (2.8) means that limε1→0γε1 = F (u).
Moreover,

lim inf
ε1→0

γε1 = lim sup
ε1→0

γε1 = F (u). (2.9)

Note that
lim inf
ε2→0

F (uε1,ε2) = lim sup
ε2→0

F (uε1,ε2) = γε1 . (2.10)

Combining (2.8) with (2.9), we have that

lim inf
ε1→0

(
lim inf
ε2→0

F (uε1,ε2)
)

= F (u) (2.11)

and

lim sup
ε1→0

(
lim sup

ε2→0
F (uε1,ε2)

)
= F (u). (2.12)

Thus,

(E + F )(u) = E(u) + F (u)

� lim inf
ε1→0

(
lim inf
ε2→0

Eε1,ε2(uε1,ε2)
)

+ lim inf
ε1→0

(
lim inf
ε2→0

F (uε1,ε2)
)

(by (2.7) and (2.11))

� lim inf
ε1→0

(
lim inf
ε2→0

Eε1,ε2(uε1,ε2) + lim inf
ε2→0

F (uε1,ε2)
)

� lim inf
ε1→0

(
lim inf
ε2→0

(Eε1,ε2(uε1,ε2) + F (uε1,ε2))
)

= lim inf
ε1→0

(
lim inf
ε2→0

(Eε1,ε2 + F )(uε1,ε2)
)
. (2.13)

By the lim sup inequality, Definition 2.2 (ii), there exists {ωε1,ε2}ε1>0, ε2>0 in X such that
ωε1,ε2 → u in X as ε1 → 0, ε2 → 0, and

lim sup
ε1→0

(
lim sup

ε2→0
Eε1,ε2(ωε1,ε2)

)
� E(u). (2.14)
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By (2.14) and (2.12), we have that

lim sup
ε1→0

(
lim sup

ε2→0
(Eε1,ε2 + F )(ωε1,ε2)

)
= lim sup

ε1→0

(
lim sup

ε2→0
(Eε1,ε2(ωε1,ε2) + F (ωε1,ε2))

)
� lim sup

ε1→0

(
lim sup

ε2→0
Eε1,ε2(ωε1,ε2) + lim sup

ε2→0
F (ωε1,ε2)

)
� lim sup

ε1→0

(
lim sup

ε2→0
Eε1,ε2(ωε1,ε2)

)
+ lim sup

ε1→0

(
lim sup

ε2→0
F (ωε1,ε2)

)
� E(u) + F (u)

= (E + F )(u).

�

Remark 2.8. Supposing that the family of functionals {Eε1,ε2}ε1>0, ε2>0 is indepen-
dent of the parameter ε2, Proposition 1.1 is regarded as a special case of Theorem 2.6,
and Proposition 1.2 is regarded as a special case of Theorem 2.7.

Remark 2.9. Multiple Γ -convergence structures can be easily established by our
method.

3. The limit Pε1 → 1

We consider energy functionals of the form

Eε1,ε2(u) ≡

⎧⎪⎨
⎪⎩

∫
Ω

[
1
ε2

W (u(x))
P ′

ε1

+ ε
Pε1−1
2

|∇u(x)|Pε1

Pε1

]
dx if u ∈ W 1,pε1 (Ω),

+∞ otherwise,

where W (t) = 1
4 t2(1 − t)2, and define the functional E as

E(u) ≡

⎧⎨
⎩

∫
Ω

|∇u| dx if W (u) = 0 a.e. and u ∈ BV(Ω),

+∞ otherwise,

where
∫

Ω
|∇u| dx denotes the total variation of u on Ω.

Theorem 3.1. Assume that ε2 · P ′
ε1

→ 0 as (ε1, ε2) → (0, 0). Then, {Eε1,ε2}ε1>0, ε2>0

double Γ -converges to E in L1(Ω).

Proof. The Euler–Lagrange equation of Eε1,ε2 is

W ′(u)
P ′

ε1

− ε
Pε1
2 div(|∇u|Pε1−2∇u) = 0. (3.1)
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For n = 1, (3.1) becomes

W ′(u(t))
P ′

ε1

− ε
Pε1
2 (Pε1 − 1)|u′(t)|Pε1−2u′′(t) = 0. (3.2)

Intending to find a solution u of (3.2) with u′ > 0 on some interval I, we define fε1 and
Fε1 on [0,∞) by

fε1(t) ≡ tPε1−1 and Fε1(t) ≡
∫ t

0
fε1(s) ds =

tPε1

Pε1

. (3.3)

Multiplying (3.2) by u′, we get that

d
dt

(
(W ◦ u)(t)

P ′
ε1

− ε
Pε1
2 (Pε1 − 1)(Fε1 ◦ u′)(t)

)
= 0.

This implies the existence of a positive constant Cε1,ε2 that depends on ε1 and ε2 and
will be determined later, such that

W ◦ u

P ′
ε1

− ε
Pε1
2 (Pε1 − 1)Fε1 ◦ u′ = −Cε1,ε2 . (3.4)

Since F−1
ε1

(t) = (Pε1t)
1/Pε1 , (3.4) can be expressed as

u′(t) =
1
ε2

(W (u(t)) + P ′
ε1

Cε1,ε2)
1/Pε1 . (3.5)

We define Ψε1,ε2 : [0, 1] → R by

Ψε1,ε2(t) ≡
∫ t

0

ε2

(W (s) + P ′
ε1

Cε1,ε2)1/Pε1
ds,

and let ηε1,ε2 ≡ Ψε1,ε2(1). Then, Ψε1,ε2(0) = 0,

Ψ ′
ε1,ε2

(t) = ε2 · 1
(W (t) + P ′

ε1
Cε1,ε2)1/Pε1

> 0 for all t ∈ (0, 1)

and

0 < ηε1,ε2 � ε2

(P ′
ε1

Cε1,ε2)1/Pε1
. (3.6)

Clearly, the inverse function Ψ−1
ε1,ε2

: [0, ηε1,ε2 ] → [0, 1] exists and (Ψ−1
ε1,ε2

)′ satisfies

(Ψ−1
ε1,ε2

)′(t) =
1
ε2

(W (Ψ−1
ε1,ε2

(t)) + P ′
ε1

Cε1,ε2)
1/Pε1 (3.7)

for all t ∈ (0, ηε1,ε2). Thus, the function Ψ−1
ε1,ε2

is one solution of (3.2) with u′ > 0 on
(0, ηε1,ε2). Let Ψ̃−1

ε1,ε2
denote the extension function of Ψ−1

ε1,ε2
, as

Ψ̃−1
ε1,ε2

(t) ≡

⎧⎪⎨
⎪⎩

0, t < 0,

Ψ−1
ε1,ε2

(t), t ∈ [0, ηε1,ε2 ],

1, t > ηε1,ε2 .

(3.8)
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Obviously,

Ψ̃−1
ε1,ε2

(t) � χ0(t) � Ψ̃−1
ε1,ε2

(t + ηε1,ε2) (3.9)

for all t ∈ R, where χ0 is the Heaviside function.
Suppose that uε1,ε2 → u in L1(Ω), with

lim inf
ε1→0

(
lim inf
ε2→0

Eε1,ε2(uε1,ε2)
)

< +∞. (3.10)

By the continuity of W at u and by applying Fatou’s lemma twice, we have that

0 �
∫

Ω

W (u) dx

=
∫

Ω

lim inf
ε1→0

(
lim inf
ε2→0

W (uε1,ε2)
)

dx

� lim inf
ε1→0

∫
Ω

lim inf
ε2→0

W (uε1,ε2) dx

� lim inf
ε1→0

(
lim inf
ε2→0

∫
Ω

W (uε1,ε2) dx

)
� lim inf

ε1→0
lim inf
ε2→0

(ε2P
′
ε1

Eε1,ε2(uε1,ε2))

= 0 (by (3.10) and ε2P
′
ε1

→ 0 as ε1 → 0 and ε2 → 0).

Thus, we obtain that

W (u) = 0 a.e. in Ω.

So, we have u ∈ {0, 1} a.e. in Ω. Let A ≡ {x ∈ Ω | u(x) = 1}. Then, u = χA a.e. in Ω.
Define

h(x) ≡
{

− dist(x, ∂A) if x /∈ A,

dist(x, ∂A) if x ∈ A.

Thus, u(x) = χA(x) = χ0(h(x)) for all x ∈ Ω. Following (3.9) we get that

∫
Ω

Ψ̃−1
ε1,ε2

(h(x)) dx �
∫

Ω

u(x) dx �
∫

Ω

Ψ̃−1
ε1,ε2

(h(x) + ηε1,ε2) dx. (3.11)

Define Hε1,ε2(t) ≡
∫

Ω
Ψ̃−1

ε1,ε2
(h(x) + t) dx for all t ∈ [0, ηε1,ε2 ]. By the intermediate value

theorem, with ε1 > 0, ε2 > 0, there exists δε1,ε2 ∈ [0, ηε1,ε2 ] such that

Hε1,ε2(δε1,ε2) =
∫

Ω

u(x) dx. (3.12)

Define uε1,ε2 : Ω → R by

uε1,ε2(x) ≡ Ψ̃−1
ε1,ε2

(h(x) + δε1,ε2) (3.13)
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for each ε1 > 0 and ε2 > 0. We then have (by (3.12)) that

∫
Ω

uε1,ε2(x) dx =
∫

Ω

u(x) dx. (3.14)

We define a function χε1,ε2(t) ≡ Ψ̃−1
ε1,ε2

(t + δε1,ε2) for all t ∈ R. Then,

uε1,ε2 = χε1,ε2 ◦ h on Ω. (3.15)

Define

Ωδε1,ε2
≡ {x ∈ Ω | −δε1,ε2 � h(x) � ηε1,ε2 − δε1,ε2}.

Then, by the Coarea formula, we have that∫
Ω

|uε1,ε2 − u| dx =
∫

Ω

|χε1,ε2 ◦ h − χ0 ◦ h| dx

=
∫

Ωδε1,ε2

|χε1,ε2 ◦ h − χ0 ◦ h| dx

=
∫

Ωδε1,ε2

|χε1,ε2 ◦ h − χ0 ◦ h| |∇h| dx

(|∇h| = 1 a.e. on Ωδε1,ε2
provided that δε1,ε2 is small enough)

=
∫ ηε1,ε2−δε1,ε2

−δε1,ε2

|χε1,ε2 − χ0|(t) · Hn−1({x ∈ Ω | h(x) = t}) dt

� ηε1,ε2 · sup
|t|�ηε1,ε2

Hn−1({x ∈ Ω | h(x) = t}) dt

� ε2

(P ′
ε1

Cε1,ε2)1/Pε1
· γε1,ε2 (by (3.6)), (3.16)

where γε1,ε2 ≡ sup|t|�ηε1,ε2
Hn−1({x ∈ Ω | h(x) = t}).

Next, we evaluate

Eε1,ε2(uε1,ε2) =
∫

Ωδε1,ε2

[
1
ε2

W ◦ χε1,ε2 ◦ h

P ′
ε1

+ ε
Pε1−1
2

(χ′
ε1,ε2

)Pε1 ◦ h|∇h|Pε1

Pε1

]
dx

=
∫

Ωδε1,ε2

[
1
ε2

W ◦ χε1,ε2 ◦ h

P ′
ε1

+ ε
Pε1−1
2

(χ′
ε1,ε2

)Pε1 ◦ h

Pε1

]
|∇h| dx

(|∇h| = 1 a.e. on Ωδε1,ε2
provided that δε1,ε2 is small enough)

=
∫ ηε1,ε2−δε1,ε2

−δε1,ε2

[
1
ε2

W ◦ χε1,ε2(t)
P ′

ε1

+ ε
Pε1−1
2

(χ′
ε1,ε2

)Pε1 (t)
Pε1

]

× Hn−1({x ∈ Ωδε1,ε2
| h(x) = t}) dt

� γε1,ε2

∫ ηε1,ε2

0

[
1
ε2

(
W ◦ Ψ−1

ε1,ε2
+ P ′

ε1
· Cε1,ε2

P ′
ε1

)
+ ε

Pε1−1
2

((Ψ−1
ε1,ε2

)′)Pε1

Pε1

]
dt

https://doi.org/10.1017/S0013091514000030 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091514000030


118 M. S. Chang

= γε1,ε2

∫ ηε1,ε2

0

[
([(1/ε2)(W ◦ Ψ−1

ε1,ε2
+ P ′

ε1
· Cε1,ε2)]

1/P ′
ε1 )P ′

ε1

P ′
ε1

+
[ε(Pε1−1)/Pε1

2 (Ψ−1
ε1,ε2

)′]Pε1

Pε1

]
dt

= γε1,ε2

∫ ηε1,ε2

0

[
1
ε2

(W ◦ Ψ−1
ε1,ε2

+ P ′
ε1

· Cε1,ε2)
]1/P ′

ε1

· ε
1/P ′

ε1
2 · (Ψ−1

ε1,ε2
)′ dt.

The last equality follows from (3.7), and the sign of the equality holds in Young’s
inequality. Therefore, we have that

Eε1,ε2(uε1,ε2) � γε1,ε2

∫ 1

0
(W (t) + P ′

ε1
· Cε1,ε2)

1/P ′
ε1 dt (3.17)

by the change of variables formula. Moreover,

lim sup
ε1→0

(
lim sup

ε2→0
Eε1,ε2(uε1,ε2)

)

� lim sup
ε1→0

(
lim sup

ε2→0
γε1,ε2

∫ 1

0
(W (t) + P ′

ε1
· Cε1,ε2)

1/P ′
ε1 dt

)
. (3.18)

It is crucial for our proof to find the positive constant Cε1,ε2 related to ε1 and ε2, such
that

lim
ε1→0

lim
ε2→0

ε2

(P ′
ε1

· Cε1,ε2)1/Pε1
= 0 (3.19)

and

lim sup
ε1→0

lim sup
ε2→0

∫ 1

0
(W (t) + P ′

ε1
· Cε1,ε2)

1/P ′
ε1 dt = 1. (3.20)

Combining (3.19) and (3.6), we obtain that

lim
ε1→0

lim
ε2→0

γε1,ε2 = Hn−1(∂A ∩ Ω) = PerΩ(A). (3.21)

Following from (3.16), (3.19) and (3.21),

uε1,ε2 → u in L1(Ω) as ε1 → 0 and ε2 → 0. (3.22)

By (3.18), (3.20) and (3.21), we obtain that

lim sup
ε1→0

(
lim sup

ε2→0
Eε1,ε2(uε1,ε2)

)
� PerΩ(A) =

∫
Ω

|∇u| dx = E(u). (3.23)

We choose Cε1,ε2 = 1/P ′
ε1

. Then, (3.19) holds and

∫ 1

0
(W (t) + P ′

ε1
· Cε1,ε2)

1/P ′
ε1 dt =

∫ 1

0
(W (t) + 1)1/P ′

ε1 dt.
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This is since

lim
ε1→0+

(W (t) + 1)1/P ′
ε1 = 1 for each t ∈ [0, 1],

and

0 � (W (t) + 1)1/P ′
ε1 � 2

for all t ∈ [0, 1] provided that ε1 is small enough. Using Lebesgue’s dominated convergence
theorem, it follows that (3.20) holds. Hence, the lim sup inequality, Definition 2.2 (ii), is
achieved.

Suppose that uε1,ε2 → u in L1(Ω). By Young’s inequality, we have that

Eε1,ε2(uε1,ε2) =
∫

Ω

[
(((1/ε2)W ◦ uε1,ε2)

1/P ′
ε1 )P ′

ε1

P ′
ε1

+
((εPε1−1

2 )1/Pε1 |∇uε1,ε2 |)Pε1

Pε1

]
dx

�
∫

Ω

(
1
ε2

W ◦ uε1,ε2

)1/P ′
ε1

· (εPε1−1
2 )1/Pε1 · |∇uε1,ε2 | dx

=
∫

Ω

W 1/P ′
ε1 ◦ uε1,ε2 · |∇uε1,ε2 | dx. (3.24)

Define Φε1 : R → R by

Φε1(t) ≡

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if t < 0,∫ t

0
W 1/P ′

ε1 (s) ds if 0 � t � 1,

∫ 1

0
W 1/P ′

ε1 (s) ds if t > 1.

Then,

Φε1 ◦ uε1,ε2 ∈ W 1,Pε1 (Ω) for each uε1,ε2 ,

|∇(Φε1 ◦ uε1,ε2)| = |Φ′
ε1

◦ uε1,ε2 | |∇uε1,ε2 | = χ{0�uε1,ε2�1} · W 1/P ′
ε1 ◦ uε1,ε2 |∇uε1,ε2 |,

(3.25)

Φε1 ◦ uε1,ε2 ∈ BV(Ω) (since W 1,1(Ω) ⊂ BV(Ω)),

and, for each ε1 > 0,

Φε1 ◦ uε1,ε2 → Φε1 ◦ u in L1(Ω) as ε2 → 0+.

By lower semicontinuity of the variation measure, we have that

∫
Ω

|∇(Φε1 ◦ u)| dx � lim inf
ε2→0+

∫
Ω

|∇(Φε1 ◦ uε1,ε2)| dx. (3.26)
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By (3.10), we have u = χA a.e. in Ω and

+∞ > lim inf
ε1→0

lim inf
ε2→0

Eε1,ε2(uε1,ε2)

� lim inf
ε1→0

lim inf
ε2→0

∫
Ω

W 1/P ′
ε1 ◦ uε1,ε2 |∇uε1,ε2 | dx (by (3.24))

� lim inf
ε1→0

lim inf
ε2→0

∫
Ω

|∇(Φε1 ◦ uε1,ε2)| dx (by (3.25))

� lim inf
ε1→0

∫
Ω

|∇(Φε1 ◦ u)| dx (by (3.26)). (3.27)

We may suppose without loss of generality that u ∈ BV(Ω) (otherwise, E(u) = +∞).
We have that∫ +∞

−∞
PerΩ({x ∈ Ω | Φε1(χA(x)) � t}) dt =

[ ∫ 1

0
W 1/P ′

ε1 (t) dt

]
· PerΩ(A) (3.28)

is finite for each ε1 > 0. Thus, by the coarea formula for BV-functions, Φε1 ◦ u ∈ BV(Ω)
and ∫

Ω

|∇(Φε1 ◦ u)| dx =
( ∫ 1

0
W 1/P ′

ε1 (t) dt

)
· PerΩ(A). (3.29)

Applying Lebesgue’s dominated convergence theorem again, we have that

lim
ε1→0

∫ 1

0
W 1/P ′

ε1 (t) dt = 1. (3.30)

Therefore,

lim inf
ε1→0

∫
Ω

|∇(Φε1 ◦ u)| dx = PerΩ(A) =
∫

Ω

|∇u| dx = E(u). (3.31)

Hence, the lim inf inequality, Definition 2.2 (i), is obtained by (3.27) and (3.31). �

4. The limit P ′
ε1

→ ∞

In this section we consider the asymptotic behaviour of the functionals

E′
ε1,ε2

(u) ≡

⎧⎪⎨
⎪⎩

∫
Ω

[
1
ε2

W (u)
Pε1

+ ε
P ′

ε1
−1

2 · |∇u|P
′
ε1

P ′
ε1

]
dx if u ∈ W 1,P ′

ε1 (Ω),

+∞ otherwise,

where P ′
ε1

is the Lebesgue conjugate function of Pε1 . Define the functional E′ by

E′(u) ≡

⎧⎪⎨
⎪⎩

( ∫ 1

0
W (t) dt

)
·
∫

Ω

|∇u| dx if W (u) = 0 a.e. and u ∈ BV(Ω),

+∞ otherwise.
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Theorem 4.1. Assume that ε2 · Pε1 → 0 as (ε1, ε2) → (0, 0). Then, {E′
ε1,ε2

}ε1>0, ε2>0

double Γ -converges to E′ in L1(Ω).

Proof. To prove Theorem 4.1, it suffices to exchange Pε1 and P ′
ε1

in the explanation
of Theorem 3.1 and to choose Cε1,ε2 such that

lim
ε1→0

lim
ε2→0

ε2

(Pε1 · Cε1,ε2)
1/P ′

ε1

= 0 (4.1)

and

lim sup
ε1→0

lim sup
ε2→0

∫ 1

0
(W (t) + Pε1 · Cε1,ε2)

1/Pε1 dt =
∫ 1

0
W (t) dt. (4.2)

We choose Cε1,ε2 ≡ ε2 and let dε1,ε2 ≡ Pε1 · ε2. By assumption, we have that

dε1,ε2 → 0 as ε1 → 0 and ε2 → 0, (4.3)
ε2

dε1,ε2

=
1

Pε1

→ 1 as ε1 → 0 and ε2 → 0 (4.4)

and

lim
ε1→0

lim
ε2→0

ε2

(Pε1 · Cε1,ε2)
1/P ′

ε1

= lim
ε1→0

lim
ε2→0

(dε1,ε2)
1/Pε1 · 1

Pε1

. (4.5)

It follows from (4.3) and (4.4) that we have

lim
ε1→0

lim
ε2→0

(dε1,ε2)
1/Pε1 · 1

Pε1

= 0. (4.6)

Since

(W (t) + Pε1 · Cε1,ε2)
1/Pε1 = e(1/Pε1 ) ln(W (t)+dε1,ε2 ) → W (t) for a.e. t in [0, 1]

and
0 � (W (t) + Pε1 · Cε1,ε2)

1/Pε1 � (W (t) + 1)2

provided that ε1 and ε2 are small enough, by Lebesgue’s dominated convergence theo-
rem, (4.2) holds. �

5. The (p, q)-type capacity

Capacity is an effective way to study certain ‘small’ subsets of R
n. Moreover, capacity is

particularly suited to characterizing the fine properties of Sobolev functions. Let D be a
convex bounded open set in R

n with smooth boundary and 1 < p < n. The p-capacity
of D in R

n can be defined as follows (see [8]):

Capp(D) ≡ inf
{ ∫

Rn

|∇u|p dx

∣∣∣∣ u ∈ C∞
c (Rn), u � 1 in D

}
.
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A function u is said to be the p-capacitary function of D if u satisfies the following
problem:

div(|∇u|p−2∇u) = 0 in R
n − D,

u = 1 on ∂D,

lim
|x|→+∞

u(x) = 0.

In this section, we consider the (p, q)-type generalized capacity of D in Ω with the
finite perimeter of D in Ω. Let D be compactly contained in Ω, i.e. D̄ is compact and
D̄ ⊂ Ω. Define the (p, q)-type capacity of D in Ω by

Capε1,ε2
(D, Ω)

≡ inf
{ ∫

Ω

[
1
ε2

W (u)
P ′

ε1

+ ε
Pε1−1
2

|∇u|Pε1

Pε1

]
dx

∣∣∣∣ u ∈ W
1,Pε1
0 (Ω) and u � 1 in D

}
,

where W (t) = 1
4 t2(1 − t)2. Evidently, Capε1,ε2

(D, Ω) can be expressed as

Capε1,ε2
(D, Ω)

≡ inf
{ ∫

Ω

[
1
ε2

W (u)
P ′

ε1

+ ε
Pε1−1
2

|∇u|Pε1

Pε1

]
dx

∣∣∣∣ u ∈ W
1,Pε1
0 (Ω) and u = 1 in D

}
.

The existence of minimizers of Eε1,ε2 and E′
ε1,ε2

can be proved by the direct method
of calculus of variations. Suppose that uε1,ε2 is a minimizer of Eε1,ε2 on W

1,Pε1
0 (Ω − D̄)

for each ε1 > 0 and ε2 > 0. Let ũε1,ε2 be the extension function of uε1,ε2 on Ω,

ũε1,ε2(x) :=

{
uε1,ε2 if x ∈ Ω − D̄,

1 if x ∈ D̄.

Then ũε1,ε2 ∈ W
1,Pε1
0 (Ω), ũε1,ε2 = 1 on D and

Capε1,ε2
(D, Ω) =

∫
Ω

[
1
ε2

W (ũε1,ε2)
P ′

ε1

+ ε
Pε1−1
2 · |∇ũε1,ε2 |Pε1

Pε1

]
dx

= min{Eε1,ε2(u) | u ∈ W
1,Pε1
0 (Ω − D̄)}

= Eε1,ε2(uε1,ε2)

= min{Eε1,ε2(u) | u ∈ W
1,Pε1
0 (Ω − D̄) and u = 1 on D}. (5.1)

Assume that uε1,ε2 → u0 in L1(Ω). Then, ũε1,ε2 → ũ0 in L1(Ω). Following Theorems 2.6
and 3.1, this yields that

Capε1,ε2
(D, Ω) →

∫
Ω

|∇u0| dx as ε1 → 0 and ε2 → 0, (5.2)

where u0 ∈ BV(Ω), u0 = 1 in D and W (u0) = 0 a.e. in Ω − D̄.
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Moreover,∫
Ω

|∇u0| dx = min
{ ∫

Ω

|∇u| dx

∣∣∣∣ u ∈ BV(Ω), u = 1 in D and W (u) = 0 a.e. in Ω−D̄

}
.

Hence, u0 = χD in Ω and ∫
Ω

|∇u0| dx = PerΩ(D). (5.3)

Next, we define

Cap′
ε1,ε2

(D, Ω)

≡ inf
{ ∫

Ω

[
1
ε2

W (u)
Pε1

+ ε
P ′

ε1
−1

2
|∇u|P

′
ε1

P ′
ε1

]
dx

∣∣∣∣ u ∈ W
1,P ′

ε1
0 (Ω) and u � 1 in D

}
;

we can prove, in the same way, that

Cap′
ε1,ε2

(D, Ω) →
( ∫ 1

0
W (t) dt

)
· PerΩ(D) as ε1 → 0 and ε2 → 0. (5.4)

Hence, the following theorem is obtained.

Theorem 5.1. Supposing that the assumptions considered in § 3 and § 4 hold, let D

be compactly contained in Ω.

(i) Suppose that

(a) ε2 · P ′
ε1

→ 0 as (ε1, ε2) → (0, 0),

(b) uε1,ε2 is a minimizer of Eε1,ε2 on W
1,Pε1
0 (Ω − D̄) for each ε1 > 0 and ε2 > 0,

(c) uε1,ε2 → u0 in L1(Ω) as ε1 → 0 and ε2 → 0, for some u0 ∈ L1(Ω).

Then, Capε1,ε2
(D, Ω) → PerΩ(D) as ε1 → 0 and ε2 → 0.

(ii) Suppose that

(a) ε2 · Pε1 → 0 as (ε1, ε2) → (0, 0),

(b) u′
ε1,ε2

is a minimizer of E′
ε1,ε2

on W
1,P ′

ε1
0 (Ω − D̄) for each ε1 > 0 and ε2 > 0,

(c) u′
ε1,ε2

→ u′
0 in L1(Ω) as ε1 → 0 and ε2 → 0, for some u′

0 ∈ L1(Ω).

Then, Cap′
ε1,ε2

(D, Ω) → (
∫ 1
0 W (t) dt) · PerΩ(D) as ε1 → 0 and ε2 → 0.
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