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Abstract  We introduce a ‘double’ version of I'-convergence, which we have named ‘double I'-con-
vergence’, and apply it to obtain the I'-limit of double-perturbed energy functionals as p — 1 and
p — 400, respectively. The limit of (p, q)-type capacity as p — 1 and p — 400, respectively, is also
obtained in this manner.
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1. Introduction

The theory of I'-convergence [3,6] was introduced by De Giorgi in the 1970s. One of
its essential aspects is that convergence for integral functionals occurs, which assures us
that minimizers converge to a minimizer of the I'-limit functionals (see Proposition 1.1),
which are stable under continuous perturbations (see Proposition 1.2). It has become a
standard criterion for the study of variational problems.

We say that the functional Fy is the I'(L'(§2))-limit of { .}~ if, for each u € L(£2),
the following hold.

(i) If ue — win LY(£2), then Eg(u) < liminf._o+ Ec(uc).
(ii) There exists a family {v.}cso in L'(§2) such that v. — wu in L'(£2) and
limsup,_, g+ Ee(ve) < Eo(u).

The following proposition asserts that I'-convergence implies convergence of minimizers
and minimum values.

Proposition 1.1. Suppose that F, and each F,, are functionals defined on the Banach
space L1($2) forn =1,2,3,.... If

(i) {F.}22, I'-converges in L*(2) to Fx,
(ii) for each n € N, w,, is a minimizer of F,, on L'({2),

(iii) there exists a function u., € L*(£2) such that u, — us in L*(£2) as n — oo,
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then we have that

(a) limy 00 Fr(tn) = Foo(too),

(b) o is a minimizer of F., on L'(2).

The next proposition states that I'-convergence is stable under continuous perturba-
tions.

Proposition 1.2. Suppose that G, F, and each F, are functionals defined on the
Banach space L'(2) forn =1,2,3,.... If

(i) {F.}2, I'-converges in L*(£2) to Fx,
(ii) G is continuous on L(£2),
then we have that {F, + G}, I'-converges in L'(§2) to Fy, + G.

For convenience, we refer the reader to the books [3,6,10] for the classical results
formulated in Propositions 1.1 and 1.2.

Starting from the pioneering work by Modica and Mortola in [12], Modica in [11] and
Sternberg in [15], many papers have been devoted to the study of the I'-limit of the
family of functionals {E.}.~o with the form

1
Eg(u)z/QgW(u)—Fs\Vu\zdx.

The nonlinear operator A is given by

. Vu
Aju = div <Vu>’

known as the 1-Laplacian. Since the vector

y= YU
[Vl

is orthogonal to each level set of u, we see that the 1-Laplacian equation [7]
Alu =0

describes ‘isotropic diffusion within each level surface, with no diffusion across different
level surfaces’ by applying the divergence theorem. The 1-Laplacian operator A, is the
variational operator for

E(u) = / |Vu|dx
0
and the formal limit of the p-Laplacian operator A, as p — 1, where

Ayu = div(|VulP =2 V).
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This is related to mathematical topics including the minimal surface, the isoperimetric
inequality, the elasticity, the image processing and the relaxation of bounded-variation
(BV) functionals.

The infinity Laplacian operator A, is given by

n
Asou = E Uz U ; Uz -

i,j=1
The infinity Laplacian equation
Asu =0

was first derived by Aronsson et al. [1] as the Euler-Lagrange equation for the so-called
absolute minimizer u of the L°° variational minimizing problem

I (v) = ess sup |Dv|
Q

among suitable boundary conditions. Furthermore, it was derived as the limit as p — oo
of the p-Laplacian equation

Apu = div(|Vul[P~2Vu) = [VulP"2Au + (p — 2)|Vu[P"*Asu = 0.

Dividing Apu by (p — 2)|Vu[P~2 and letting p — oo leads to the partial differential

equation
1

——A
[Vul?
For more relevant background and more properties, we refer the reader to [2,5,9,13,14].
Motivated by in-depth studies on the singular operators A; and A, we introduced
a double version of I'-convergence, which we have named ‘double I'-convergence’ and
applied it to obtain the I'-limit of double-perturbed energy

1 p
E&p(u):/ 1W(w) | pa[VUl”
€ 4 p

st = 0.

as (e,p) — (0,1) and (g,p) — (0,+00), respectively, where p > 1, 1/p+ 1/q = 1 and
W(u) = iu2(1 —u)2.

For convenience, we define

1 -1Vl
/ {W(u)%gl 1|W|1] dr ifue WP (2),
0

E., o,(u) = g2 F P,
400 otherwise,
and
1 W ' 1|Vl :
, / [ (w) +€§€1 lmll] dz  if ue WhT (),
E61,82 (u) = 0 5p)] Pal Pgl

400 otherwise,

where P, and P! are two real-valued functions of variable ; satisfying the following:
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(1°) P., > 1 and P/ >1forall e; >0,
(2°) 1/P., +1/P. =1 for each £; > 0,
(3°) P, = 1and P/ — +ocoase; — 0.

The function P/ is said to be the Lebesgue conjugate function of P;,. For example, if
P., = 1+¢y, then P/ =1+ 1/ey;if P, = ¢, then P/ = e®'/(e®* —1). Here, €; and
€9 are positive parameters. Our main results are the following.

(1) {E:, 5 }e150,e550 double I'-converges to E in L'(§2) provided that 5 - P/ — 0 as
(61,82) — (0,0).
(i) {E., .. }e1>0,co>0 double I'-converges to o - E in L'({2) provided that g5 - P., — 0

€1,€2

as (e1,e2) — (0,0).

Here, 0 = fol W (t)dt and

/ [Vu|dz if W(u) =0 almost everywhere (a.e.) and u € BV({2),
E(u) = )

400 otherwise.

This paper is aimed at continuing the work of [4] and studying the I'-limit of double-
perturbed energy functionals through the method of ‘double I'-convergence’. ‘Double
I'-convergence’ is a natural generalization of the notion of I'-convergence. To the best
of our knowledge, this is the first generalization of I'-convergence theory in this field.
We anticipate that the ‘double’ version of I'-convergence can be applied to solve more
important problems.

The paper has the following structure. In §2, we introduce a ‘double’ version
of I'-convergence, which we have named ‘double I'-convergence’. In §3, we prove
that {E:, c,}e1>0,e,>0 double I'-converges to E in L'(§2). In §4, we prove that
{EL, ., }e1>0,e,>0 double I'-converges to o £ in LY(£2). Finally, we present the asymptotic

behaviour of (p, ¢)-type capacities in §5.

2. Double I'-convergence

Definition 2.1. Let (X, d) be a metric space endowed with a metric d. The sequence

o oo i . .
{Zmn}=1 ne1 is said to converge to x in X if

lim ( lim xmn) =z
m—r 00 n— oo

in this order only. We denote it by z,, , = x as m — oo and n — oo, or by =, , — .

Definition 2.2. Let X be a metric space and let E,, .,: X — [0,00] be a fam-
ily of functionals. Assume that E: X — [0, 00]. We say that {E., c,}e;>0,2,>0 double
I'-converges to FE in X if the following statements hold for each u € X.
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(i) (The liminf inequality.) If ue, ., — w in X, then

E(u) < liminf (lim inf B, ., (uEhEz)).

61*)0 EQ*}O

(ii) (The limsup inequality.) There exists a double sequence {ve, e, }e;>0,e0>0 i X
such that v, ., — u in X and

lim sup (lim sup Fe, ., (val,gz)) < E(u).

g1—0 g20—0

In this case we define E as the double I'(X)-limit of {E¢, ¢, }e, 50,6550
Remark 2.3. For each = € X, define

So = {lminf iminf fum(@nm) | 2nm > @ in X},

n—oo Mm—oo

T, = {limsuplimsup Frm(Zn,m) ’ Tpm — T in X},

n— oo m—o0

The following statements are then equivalent:
(i) {fnm}rom=1 double I'-converges to f in X,
(ii) inf S, = inf T, = f(x) for each z € X.
Remark 2.4. If the double I'-limit of {f, m }5°,—1 exists, then it is unique.

Definition 2.5. Let {2, ¢, }e,50 6,50 be a family of elements in X and let z € X.
We say that 2., ., > 2 in X as e1 — 0 and e; — 0 if, for the entire sequence
{(e1,.,€2,) fre=1,n=1 converging to (0,0) (i.e. both £1,, — 0 as m — oo and &3, — 0
as n — 00), we have that x., ., — 2 asm — oo and n — oc.

Theorem 2.6. Suppose that E and each E. are functionals defined on a metric

space X for each e1 > 0, 9 > 0. If

1,2

(1) {E- e5 }e1>0,e,>0 double I'-converges to E in X,
(2) ue, e, is a minimizer of E;, ., on X for each 1 > 0, g2 > 0,
(3) there exists a function u € X such that

Ue, 0o > uin X ase; — 0" and ey — 07T,

then we have that
(a) limalﬁo (hm inf€2%0 E€1,62 (u€1,€2)) = limilﬁo(lim SUP., 0 E51,82 (U‘El,Ez )) = E(u)7

(b) w is a minimizer of E on X.
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Proof. This follows from the fact that { E., ., }<; >0, =, >0 double I'-converges to E at u.
Following the assumption (3) and the lim inf inequality, Definition 2.2 (i), this yields that

B(u) < limint (liminf B, ., (ue, ). (2.1)
By the limsup inequality, Definition 2.2 (ii), there exists a sequence {ve, e, }e1>0,2,>0
in X such that

Ve, oo > uiIn X ase; — 0, €0 =0,

and
lim sup <lim sup Fe, ., (051,52)> < E(u). (2.2)

e1—0 g2—0

Let a., = liminf., ,0E., ,(ve, ¢,) and 3., = limsup,, ,oE:, c,(ve, c,) for each e > 0.
Then, o, < f¢, forall e; >0, and

limsup e, < limsup 3., < E(u). (2.3)
e1—0 g1—0
By assumption (2), Eq, o, (Uey,e5) < Eey ey (Vey,e,) for all g1 > 0, g2 > 0.

Let o = liminf., 0Fx, o, (e, e,) and 2, = limsup,, ,Fx, o, (ue, -,) for all e > 0.
We then have that af < ac,, 82, <., and of < B2 for all &1 > 0. Following (2.1),
this yields that

E(u) < liminf agl < lim sup agl < limsup e, < limsup B, < E(u),
g1— e1—0 e1—0 e1—0
E(u) < liminf agl < lim i%f ﬁgl < lim sup Bgl < limsup 3., < E(u).
€1—>

e1—0 e1—0 e1—0

Therefore, we obtain that

. 0 _
elllgo Qe = E(u)’ (2 4)
lim 3° = E(u). '
e1—0 €1

Next, we claim that v is a minimizer of E on X, given any v € X. Since {E¢, ¢, }e1>0, 6550
double I'-converges to E at v, there exists a sequence {we, ¢, }e,>0,e,>0 i X such that

We e, 70N X asep =0, g0 =0,
and

lim sup (lim sup E¢, ., (wehgz)) < E(v). (2.5)

61*)0 824)0

By assumption (2),
E. c,(Uey e,) < Egy oy(we,e,) foralleg >0 and e > 0.

Thus, we have that

lim sup ( limsup E, e, (u61’€2)) < lim sup ( limsup B, e, (w€1’€2)> . (2.6)
e1—0 g2—0 e1—0 g2—0
Combining (2.4), (2.5) and (2.6) yields that F(u) < E(v). O
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Theorem 2.7. Suppose that {E¢, ., }e,>0,¢,>0 double I'-converges to E in X, and
that F: X — R is continuous on X. Then, {E., o, + F}c,>0, c,>0 double I'-converges to
(E+F) in X.

Proof. Let u € X. Following the assumption that {E, ¢, }e,>0,e,>0 double I'-con-
verges to E at u and the liminf inequality (i), given any {ue, e, fe;>0,e,>0 in X with
Ue, e, — W in X, we have that

E(u) < liminf (lim inf E., ., (uehgz)). (2.7)

61*>O 824}0

By the double continuity of F' at u,

lim lim F(ue, e,) = F(u). (2.8)

e1—0e2—0

Let v, = lim., ,oF (ue, ¢,) for all e1 > 0. Then (2.8) means that lim,, o7, = F(u).

Moreover,
liminf v., = limsupvy., = F(u). (2.9)
e1—0 g1—0
Note that
liminf F(ue, ¢,) = imsup F(ue, e5) = Yey - (2.10)
e2—0 £0—0

Combining (2.8) with (2.9), we have that

lim inf <lim mfF(uEl,gz)) = F(u) (2.11)
81‘)0 62*)0
and
lim sup <lim sup F(u51,82)> = F(u). (2.12)
e1—0 eo—0
Thus,

(E+ F)(u) = E(u) + F(u)

< liminf (lim inf B, , (ugl,gz))

e1—0 g0—0

+ liminf (hm ian(usm)) (by (2.7) and (2.11))

e1—0 eo—0

< lim inf (lim inf E,| ¢, (e, e,) + liminf F(Usl,@))

61%0 62*}0 EQ*}O

< liminf (lim inf(Fr, ey (Uey,ep) + F(ugl)az)))

e1—0 g0—0
= liminf ( liminf(E., , + F)(uq@)). (2.13)

By the lim sup inequality, Definition 2.2 (ii), there exists {we, ¢, }e, >0, e,>0 in X such that
Wey e, ~»uin X as e — 0, e2 — 0, and

lim sup (lim sup Fe, ., (Wsl,sz)) < E(u). (2.14)

51%0 62*}0
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By (2.14) and (2.12), we have that

lim sup (lim sup(Fe, e, + F)(w51,€2)>

g1—0 go—0

= limsup (lim SUP(Fe, e (Wey e5) + F(“@,@)))

614)0 62*}0

< limsup (lim sup Ee, ¢, (We, ¢,) + limsup F(w51’52)>

e1—0 e2—0 e2—0

< lim sup (lim sup Fe, ., (wsl,@)) + limsup (lim sup F(wslm))

e1—0 eo—0 g1—0 go—0
< E(u) + F(u)
= (E+ F)(u).

O

Remark 2.8. Supposing that the family of functionals {E, ¢, }e,>0,,>0 is indepen-
dent of the parameter €5, Proposition 1.1 is regarded as a special case of Theorem 2.6,
and Proposition 1.2 is regarded as a special case of Theorem 2.7.

Remark 2.9. Multiple I'-convergence structures can be easily established by our
method.
3. The limit P., — 1

We consider energy functionals of the form

ey P! 2 P.,

€1

P,
P B L P ]
2

Eey e (u) =
+00 otherwise,

where W (t) = $t*(1 — ¢)2, and define the functional E as

/ [Vu|dz if W(u) =0 a.e. and u € BV(£2),
Eu)=<Jo

400 otherwise,

where [, [Vu|dz denotes the total variation of u on f2.

Theorem 3.1. Assume that e3- P! — 0 as (e1,e2) = (0,0). Then, {E;, ¢, }c;50,2,50
double I'-converges to E in L'($2).

Proof. The Euler-Lagrange equation of E,, ., is

W' (u)
P

— &2 div(| VP ~2Vu) = 0. (3.1)
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For n =1, (3.1) becomes

W (u(t

w — ey (P = D/ ()] 72 (1) = 0. (3.2)
€1

Intending to find a solution w of (3.2) with v’ > 0 on some interval I, we define f., and

F., on [0,00) by

t tPE
fo ()=t~ and F. (t) = / fe,(s)ds = - (3.3)
0 PEl
Multiplying (3.2) by u’, we get that
d((Wou)(t) n ,
(WO Fap, 1), o)) =0,
dt P 2 Ve °

This implies the existence of a positive constant C;
will be determined later, such that

1, that depends on ¢; and e and

Wou P.
—€
/ 2
P

! (P61 - ]‘)F81 ou = _061,52~ (34)
Since F;(t) = (P-,t)Y/P=1, (3.4) can be expressed as

u'(t) = é(W(u(t)) + Pélc€1,62)1/P51- (3.5)

We define ¥, ,: [0,1] — R by

t
€2
- [
51752() 0 (W(S)+P€/1051,€2)1/P51

and let ne, -, = glehsz(l)' Then, V., ., (0) =0,

ds,

1
(W(t) + P, Ce, e0) /P

Ul e, (t) =e2- >0 forallte(0,1)

and
0<n P (3.6)
€1,€2 (Pellcel,sg)l/Psl
Clearly, the inverse function W' : [0,7¢, c,] = [0,1] exists and (¥_,",,)" satisfies
_ 1 _
(!pil}Eg)/(t) = g(W(SPEI,lEQ (t)) + PE/IC€1’E2)1/P51 (3'7)

for all ¢ € (0,7, ¢,). Thus, the function w1 is one solution of (3.2) with v’ > 0 on

€1,€2

(0,7, e, ). Let !P;}EQ denote the extension function of W;}Ez, as
0, t <0,
VoL, =0, (1), tE [0, (3:8)
17 t> 7761762'
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Obviously,
U2, (8) < xo(t) SUC, (E+ e, e,) (3.9)

for all t € R, where x( is the Heaviside function.
Suppose that u, o, — u in L'(£2), with

lim inf <lim inf B, , (usl,gz)) < 4o0. (3.10)

e1—0 g0—0

By the continuity of W at u and by applying Fatou’s lemma twice, we have that

0< /QW(u)dac

= / liminf(limian(ugl,sg)) dx
(9]

e1—0 62—)0

<liminf [ liminf W (u dx
= e1=0 Jo e2—0 ( 61’52)

< liminf (lim inf [ W(ue e,) dx)

£1—0 62%0 0

< liminf liminf(es P! E, U
X c150  £p30 ( 24¢ 81,52( 61752))

=0 (by (3.10) and 2P/, — 0 as e; — 0 and £3 — 0).

Thus, we obtain that
W(u) =0 a.e.in §2.

So, we have u € {0,1} a.e. in 2. Let A= {z € 2| u(x) = 1}. Then, u = x4 a.e. in £2.
Define

" —dist(z,04) ifxz¢ A,
T) =
dist(x,0A) ifx e A

Thus, u(z) = xa(z) = xo(h(z)) for all z € 2. Following (3.9) we get that
/ @;}52 (h(z))dx < / u(z)de < / @;182(h(:r) + Ney o) d. (3.11)
2] 7 o)

Define H., .,(t) = [, 5%, (h(z) +t)da for all t € [0, 7., o,]. By the intermediate value
theorem, with g1 > 0, g2 > 0, there exists d., c, € [0,7e, ¢,] such that

H., .)(0c ;) = / u(z) dz. (3.12)
Q
Define ug, ¢, : 2 = R by
u817€2 (.13) = @5_1,152 (I’L(l‘) + 651,82) (313)
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for each £; > 0 and g2 > 0. We then have (by (3.12)) that

/Q e, o, () dar = /Q u(z) dz. (3.14)

We define a function x., ¢, (t) = WL (t+ 4., ,) for all t € R. Then,

€1,€2
Uegy,e0 = Xep,e2 © h on {2. (315)
Define
25 = {:L' €N ‘ _681,62 < h(lL‘) < Neyea — 581,62}'

€1,€2

Then, by the Coarea formula, we have that

/ |u€1,€2 - u|dx :/ |X€1,€2 oh— X0 Ohld(E
(%} 2

:/ |X51’520h—)(00h|d{13
02

Seq,e9
=/ Xeves 01— X0 0 | [Vh| dz
Dse) ey

(IVh| =1 a.e. on 2s_ . provided that J, ., is small enough)

7751,527651,52 1
=/ Neves — xol(8) - H"'({z € 2 | h(z) = £})
)

01,82

< Neyep © SUD H" '({z € 2| h(z) =t})dt

‘tlg"]sl,aQ

£
< 2
(

(PO )P e (by (3.6)), (3.16)
€1 “€1,€2

Where 761762 = Sup|t|<n51,62 anl({x E 'Q | h(fE) = t})
Next, we evaluate

Ee, e, (u61,€2) = /
(9]

y

(IVh[ =1 a.e. on £25_ _ provided that dc, ¢, is small enough)

/7751752551752 |: 1 Wo Xe1,e0 (t) P, -1 (X{51752)P51 (t):l
= — 0, T ¢&2 e ——
8 €2 Pel P€1

—Y1.e2
x H'" '({x € 25, ., | h(z) =t})dt

< ez i Wo We:,leg + Pall : CE1,62 + €P51_1 ((47;1,152)/)]351 dt
X 751752 0 €9 ‘PE/1 2 P[-:l

1 Woxe e 0h ekt (Xlﬁlxt?z)PEl o h|Vh|™ dx
€9 P 2 P.,

Seq,e0

1 £1,6 h — /e € Pey oh
{WOX 22 00 | P 10ey )1 0B ]|Vh|dx
Seqen €2 P81 PE1
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B / {([(1/52)(‘/‘/ oW, + Pl - Cey )M )5
= Yei1,e2 )

P’
€1
(Pey —1)/Pe _
[52 ! ! (g/sl,lsg)/]Psl
+ P dt
€1
Neq,eq 1 _ 1/P5ll 1/P5, B
= Yei1,e0 / L_z(w © Wel,lez + Pell ! 061,62) =) te (y?51,152)/ dt.
0

The last equality follows from (3.7), and the sign of the equality holds in Young’s
inequality. Therefore, we have that

1
Eq c,(Uey e5) € Veroen / (W(t)+ P, .051,62)1/1351 dt (3.17)
0

by the change of variables formula. Moreover,

lim sup ( limsup E, ¢, (Ue, e, ))

61%0 62*}0

1
< lim sup <lim SUD Ve, o0 / (W(t)+ P - C’Emz)l/PEl dt). (3.18)
0

e1—0 £0—0

It is crucial for our proof to find the positive constant C¢, ., related to ; and &3, such

that
. . €2 _
6111§0 81211—130 (PE/1 . 051752)1/1351 =0 (319)
and )
lim sup limsup/ (W(t)+ P, .051762)1/13;1 dt = 1. (3.20)
e1—0 g2—0 0
Combining (3.19) and (3.6), we obtain that
lim lim 4., ., = H" 1(0A N N) = Perg(A). (3.21)
81—>0 52—)0
Following from (3.16), (3.19) and (3.21),
Ue, ey — uin LN(2) ase; — 0and gy — 0. (3.22)
By (3.18), (3.20) and (3.21), we obtain that
lim sup <lim sup Ee, «, (Usl,m)) < Perp(A) = / |Vu|dz = E(u). (3.23)
61*}0 82*)0 2

We choose C., ., = 1/P. . Then, (3.19) holds and

1 1
/ (W(t)+ Pl - Ce, o)/ For dt = / (W(t) + 1) dt.
0 0
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This is since

lim (W (t) + 1)1/PE/1 =1 foreacht € [0,1],

814)0+

and

0< (W) + 1)V <2

for all ¢ € [0, 1] provided that £; is small enough. Using Lebesgue’s dominated convergence
theorem, it follows that (3.20) holds. Hence, the lim sup inequality, Definition 2.2 (ii), is
achieved.

Suppose that u., ., — u in L'(§2). By Young’s inequality, we have that

(1/e2)W o ue, )P0 (37 )YP | Vete, )
E€1752 (u51y82) = P’ + P dz
2 £1 €1
1 1/P., Po_1
= / (W o u€1,62> ’ (52 ! )I/PEI ’ |vu€1,82|dx
2 \¢€2
= / Wi/ O Uey en * | Ve, e,] da. (3.24)
[0
Define @.,: R — R by
0 ift <0,
! 1/P!
@s1(t)5 /0 w El(s)ds 1f0<t<17
l /
/ WP (s)ds if t > 1.
0
Then,
P, 0Ue, o, € WHPEL () for each ug, .,
[V (Dey 0 Uey e5)| = |¢/€1 O Uey e | [Vitey en| = X{0<ue, e <1} WPy o Uey ey | Ve, e,
(3.25)
&, ou., ., € BV(R2) (since Wh(2) c BV(R2)),
and, for each ¢; > 0,
D, Uy ey — Doy 0ouin LH(N2) asey — 0T
By lower semicontinuity of the variation measure, we have that
IV(®., 0 )| dz < liminf / V(@ ou., )| dz. (3.26)
Q 20t Jp
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By (3.10), we have u = x4 a.e. in {2 and

~+oo > liminf lim mf E., -, (te s,)
814)0 824) ’

> lim inf lim inf / WY P oug, |V, o, dz (by (3.24))
2

61*)0 62*)0

> lim 1nf lim mf/ |V (Pe, © U, ep)| da (by (3.25))
814) 824)

> liminf/ |[V(D., ou)|dx (by (3.26)). (3.27)
514)0 0

We may suppose without loss of generality that v € BV(£2) (otherwise, F(u) = +00).
We have that

—+o00 B 1 1/PE'
/ Pergo({x € 2] Pc, (xa(z)) <t})dt = [/0 W e(t) dt] - Perp(A) (3.28)

— 00

is finite for each £ > 0. Thus, by the coarea formula for BV-functions, @., ou € BV({2)
and

/Q IV(&., ou)|dz = ( /0 1 W/ P (t) dt) - Perp(A). (3.29)

Applying Lebesgue’s dominated convergence theorem again, we have that

1
lim [ WYPa(t)dt = 1. (3.30)
514)0 0
Therefore,
liminf | |V(®., ou)|dx =Perp(A) = [ |Vuldz = E(u). (3.31)
120 Jp Q
Hence, the lim inf inequality, Definition 2.2 (i), is obtained by (3.27) and (3.31). O

4. The limit P/ — oo

In this section we consider the asymptotic behaviour of the functionals

1 W) pP.-1 \Vu|PE/1 . 1,P!
/Q|:€2P51+€21 Pisll de ifueW El(Q),

400 otherwise,

E. _ (u)=

€1,€2

where P! is the Lebesgue conjugate function of P.,. Define the functional E’' by

€1

(/01 W(t) dt) ‘ /Q |[Vu|dz if W(u) =0 a.e. and u € BV(£2),

+o00 otherwise.

E'(u) =
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Theorem 4.1. Assume that €3 - P, — 0 as (e1,62) — (0,0). Then, {EL, ., }c,>0,¢,50
double I'-converges to E' in L'(2).

Proof. To prove Theorem 4.1, it suffices to exchange P., and P/ in the explanation
of Theorem 3.1 and to choose C%, ., such that

€2

61111_1)10 5121§0 (P51 . OEl 752)1/135,1 - O (4.1)
and
1 1
lim sup lim sup/ (W(t)+ P, - Ce, o) For dt = / W (t) dt. (4.2)
e1—0 e2—0 0 0

We choose Cy, ., =¢2 and let d., ., = P, - 2. By assumption, we have that

dey ey >0 ase; = 0and ey =0, (4.3)
djj@ = Plgl —1 ase; —»0andey =0 (4.4)

and .
Elliglo slzigo (P., .06812’52)1/&’1 - slligo slrjgo(dgl’”)l/&l P (45)

It follows from (4.3) and (4.4) that we have

1
lim lim (d, .,)"/P1 - =— =0. (4.6)

£1—0 220 P.,
Since
(W(t) + P., - Co, o)V Per = W/ Pe) W) Hderco) W (1)  for ae. t in [0, 1]
and
0 < (W(t)+ Pry - Cay )P S (W(H) +1)°

provided that €7 and 5 are small enough, by Lebesgue’s dominated convergence theo-
rem, (4.2) holds. O

5. The (p, q)-type capacity

Capacity is an effective way to study certain ‘small’ subsets of R"™. Moreover, capacity is
particularly suited to characterizing the fine properties of Sobolev functions. Let D be a
convex bounded open set in R™ with smooth boundary and 1 < p < n. The p-capacity
of D in R™ can be defined as follows (see [8]):

Cap, (D) = inf {/ |[VulPdz | we CP(R™), u>1in D}.

https://doi.org/10.1017/50013091514000030 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091514000030

122 M. S. Chang

A function v is said to be the p-capacitary function of D if u satisfies the following
problem:

div(|VuP"2Vu) =0 in R" — D,
u=1 ondD,

lim wu(z)=0.
|z]—~o00

In this section, we consider the (p, g)-type generalized capacity of D in {2 with the
finite perimeter of D in §2. Let D be compactly contained in 2, i.e. D is compact and
D C 0. Define the (p, q)-type capacity of D in {2 by

Cap,, ., (D, 2)

1w - P
= inf{/ [ (u) —1—5551 ! ‘VIZ' 1} dx ’ u € Wol’PE1 (2) and u > 1 in D},
0 €

1

where W (t) = $t>(1 — t)?. Evidently, Cap,, ., (D, £2) can be expressed as

Capé‘l,éjz (D7 ‘Q)

. 1 W) P —1Vu|P51}
= inf — +e5t T — | dx
AES R s

The existence of minimizers of E., ., and E. _, can be proved by the dir}e)ct method
of calculus of variations. Suppose that u., ., is a minimizer of E,, ., on Wol’ (R -D)

for each £; > 0 and 2 > 0. Let @, ., be the extension function of u., ., on {2,

u € Wol’PEl(Q) and u =1 in D}.

- Uy e, fz€NR—D,
erea(¥) 3= | if z €D

Then e, ¢, € WOI’PE1 (£2), tie, e, =1 on D and

1 Wte, ¢,) -1 |Viig, o, |
C D ._(2 — 7 1,€2 €1 . 1,82 d
apal,EQ( 5 ) /Q |:52 P,Ell — + &4 Psli x

= min{E., o, (u) | u € Wy (2 — D)}

=FE; ., (u61’€2)

=min{E;, o, (u) |u € I/VOI’PE1 (22— D) and u =1 on D}. (5.1)

Assume that u., -, — ug in L*(£2). Then, 1., -, — o in L'(£2). Following Theorems 2.6
and 3.1, this yields that

Cap,, ., (D, $2) — / [Vup|dz ase; — 0 and e — 0, (5.2)
Q

where ug € BV(£2), up = 1in D and W (ug) =0 a.e. in 2 — D.
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Moreover,

/|Vu0|dx:min{/ |Vu|dz
7 e}

Hence, ug = xp in {2 and

uw€BV(2), u=1in D and W(u) =0 a.e. in Q—D}.

/ |Vug| dz = Perg (D). (5.3)
0
Next, we define

Cap’el,ez <D7 “Q)

1 W 1|Vl P!
Einf{/ng P:L)—Fsiel 1%!11] dx‘uEWOIPEl(Q) and u > IIHD}

we can prove, in the same way, that
Capl, ., (D, 2) (/ W(t dt) Pern(D) ase; — 0 and e; — 0. (5.4)

Hence, the following theorem is obtained.

Theorem 5.1. Supposing that the assumptions considered in § 3 and § 4 hold, let D
be compactly contained in f2.

(i) Suppose that
(a) e2- P, =0 as (e1,62) — (0,0),
(b) Ue, e, Is a minimizer of E., ., on W e (£2 — D) for each 1 > 0 and €5 > 0,
(€) Uey ey = up in L' (2) as e; — 0 and g3 — 0, for some ug € L' (2).
Then, Cap,, .,(D, 2) — Perg(D) ase; — 0 and g3 — 0.
(ii) Suppose that
(a) €2+ P., — 0 as (e1,e2) — (0,0),
(b) ! is a minimizer of E, _, on VV()LP;1 (2 — D) for each &1 > 0 and 5 > 0,

€1,€2

(c) ul _ —ufin L*(2) ase; — 0 and e — 0, for some uf, € L*($2).

€1,€2

Then, Cap61 (D, 02) fo )-Perp(D) ase; — 0 and €3 — 0.
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