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ABSTRACT 
An accurate knowledge of the thermal properties 

of flrn and 1ce within a glacier Is essential for any 
reliable mathematical model of heat transfer. This 
paper considers the problem of determining the 
thermal properties of flrn at Dome C, Antarctica, for 
use In such a model. 

First, the difficulties in accurately determining 
thermal properties are discussed. Then a physical 
experiment which can be performed under field condit­
ions, but which will yield a well-posed mathematical 
problem for determining the unknown properties, is 
presented. Next, two different numerical techniques 
for solving the mathematical problem are discussed. 
Finally, some numerical approximations and error 
estimates are presented for the results of applying 
our numerical procedure to data from Dome C. Although 
insufficient data were obtained to test our methods 
fully, we have established a measurement procedure 
and a method of analysis which appear to be promising. 

1. INTRODUCTION 
We shall consider the problem of determining the 

thermal properties of firn at Dome C, Antarctica, for 
use in mathematical models for heat transfer in the 
glacier. Such models are very valuable for understand­
ing the dynamics and stability of glaciers (Robin 
1955, Bogoslovskiy 1958, Jenssen and Radok 1961, 1963, 
Jenssen 1977, weller and Schwerdtfeger 1977, Whillans 
in press), the effects of climate changes at the sur­
face of the 1ce sheet, and the general process of 
heat transfer into the ice sheet. Accurate models 
could also be used to make reverse calculations from 
measured temperature profiles to derive past, decade-
scale, climatic changes (Budd and others 1971, 1976, 
Johnsen 1975, Ewing in press [b], Ewing and Falk in 
press) and to guide the choice of locations, techni­

ques and needed accuracies for future field measure­
ments. 

The basic model equation that we will consider 
will be 

pee. Kve + v • ve + q, (1.1) 

for the temperature 0 where p 1s the density, c is 
the specific heat, and K Is the thermal conductivity 
of the flrn or ice, and the subscript t denotes 
partial differentiation with respect to time. The 
v . VQ term models heat flow due to the physical 
transport of the flrn. The term q 1s a measure of the 
heat generated internally. We shall concentrate on 
determining c and K, assuming that the other proper­
ties are fairly well understood. 

As a first step in our modeling process, we shall 
consider a one-dimensional model equation to describe 
the temperature distribution as a function of depth z 
into the glacier. Then, for 0<z<D, we consider 

pcet = (K9z)z + vez + q, (1.2) 

where D is the thickness of the glacier. We make the 
physically motivated assumption that c and K change 
fairly slowly with depth, and we take small samples 
from firn cores in the field and determine the 
coefficients within each sample as a constant. We 
finally extrapolate the constants determined in this 
way to obtain spatially varying coefficients K and c. 

The thermal conductivity obtained through our 
measurement process Includes heat conduction through 
the ice matrix, vapor transfer, sensible heat trans­
fer by convection, and possibly radiative processes. 
The relative importance of these mechanisms is not 
now known and our work must be considered as obtain­
ing an "effective" thermal conductivity for the firn. 

Since our objective is to obtain error estimates 
for the coefficients determined, we developed a 

•Present address: Mobil Research and Development Corporation, PO Box 900, Dallas, Texas 75221, U.S.A. 
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physical measurement apparatus which can produce the 
type of data necessary for a mathematical analysis of 
the problem. We shall describe the measurement appara­
tus, the techniques for obtaining the data, and some 
problems encountered with the "laboratory conditions" 
at Dome C. Next, we shall set up the mathematical 
model which requires the data we collect. We present 
results which show that the mathematical problem is 
well-posed, give estimates for the error Incurred 
when the problem 1s solved using Inexact data, and 
then describe two different numerical solution techni­
ques. The first method assumes that c is known and 
determines K, while the second determines estimates 
for both the specific heat and dlffusivlty simultan­
eously. We shall then discuss some data obtained by 
one of us (JFB) at Dome C, Antarctica, and present 
the numerical approximations and error estimates 
obtained through our procedure using this data. 

2. DESCRIPTION OF THE PROBLEM 
In this section we shall describe the diffi­

culties 1n obtaining accurate field measurements and 
how these difficulties motivated the techniques we 
have developed. We then describe the mathematical 
problem to be solved to obtain the desired thermal 
properties. 

For most materials, 1n order to measure the 
thermal conductivity, one sets up an apparatus in a 
highly controlled laboratory setting which passes a 
large thermal gradient through a precisely measured 
sample of the material, allows the material to 
achieve thermal equilibrium, and then uses a steady-
state temperature model to obtain the thermal proper­
ties. The process 1s usually repeated several times 
in order to obtain very precise values of the unknown 
properties. 

The circumstances surrounding our measurement 
procedures are very different from those described 
above. First, exposure to the air and transport 
involving large temperature variations could dry out 
or melt the sample or radically change the thermal 
properties. Therefore the measurements must be made 
in the field instead of in a controlled laboratory 
environment. The "laboratory conditions" encountered 
at Dome C, Antarctica, were far from optimal. Temp­
eratures of the "laboratory" were not within our 
control and varied diurnally, making it very diffi­
cult to obtain a static thermal equilibrium. Maintain­
ing a constant voltage from the field batteries 
necessary for the heating and measuring process was 
also very difficult. 

Next, a large temperature gradient placed across 
a thin flrn sample would melt the sample and no 
further measurements could be made. Thus, a fairly 
low temperature gradient and a fairly thick sample 
are needed. Low thermal gradients are also required 
for conductivity measurements on saturated rocks at 
permafrost temperatures, as described in King (1979). 
The measurement apparatus used by King (1979) is 
similar to ours, but controlled laboratory conditions 
allowed thermal equilibrium to be attained and steady 
state models to be used. Since we could not allow 
thermal equilibrium to be reached at Dome C, we 
required a transient model in our measurement process. 

In our experiments with flrn samples, there are 
no transport terms or Internal heat generation; thus, 
under the assumption that K is a constant within the 
sample, (1.2) can be written in the form 

Ae Ze(O.D'), te(O.T), (2.1) 

where D' 1s the thickness of the sample, and 
A = K(pc)"1 is the local diffusivity of the medium. 
The density and specific heat are assumed to be known 
constants in our first method. Therefore, the deter­
mination of a constant K is equivalent to the deter­
mination of the constant A. We can determine an ini­
tial temperature through the sample and can measure 
the boundary temperatures in time. This naturally 
leads to the mathematical problem: find a constant 

(2.2) 

A>0 and G = G(z,t) satisfying 

a) 8t = A9zz > ze(0,D'), te(O.Tj, 

b) 6(0,t) = g i (t), te(0.T], 

c) e(D\t) = g2(t), te(0,T], 

d) e(z,0) = f0(z), ze(0,D'). 

I f A were known, the Initial-boundary-value prob­
lem in (2.2) would determine a unique 0 = e(z , t ) . 
Since A is unknown, we shall overspecify the boundary 
data by measuring the heat f lux H at z = 0 and some 
time t = t * . We then add to (2.2) the condition that, 
for some t*e(0,T), 

K6z(0,t*) pcAe (0,t*) = H. (2.3) 

The determination of a unique A from (2.2) and 
(2.3) for arbitrary data gj, g2, fo, and H Is not 
possible. For example, If gi, g2 and fg are 0, then 
H = 0 and there is no heat flow. Clearly any A>0 
would then satisfy (2.2) and (2.3) with zero data. 
Thus our mathematical problem Is not well-posed in 
the mathematical sense (Douglas and Jones 1962, 
Cannon 1964, Cannon and du Chateau 1973, Falk 1978, 
Ewing and Falk 1979, 1n press, Ewing and others 1981, 
Falk in press). We are thus faced with three major 
problems: (1) to find types of data fo, gi, gz> Hi 
and assumptions on A which allow us to prove that a 
solution to (2.2) and (2.3) exists, Is unique, and 
depends continuously upon the data, (2) to set up an 
experiment which can be performed in the field which 
will yield the data needed In (1), and (3) to do a 
complete error analysis and Interpretation of the 
resulting model problem. 

3. DESCRIPTION OF THE MEASUREMENT APPARATUS AND 
PROCEDURE 

We shall next describe the experimental apparatus 
and the experiment which was performed at Dome C, 
Antarctica, to yield our field data. The physical 
apparatus consists of a stack of control cylinders of 
lucite, the sample cylinder, and plates of copper con­
taining thermistors. The stack Is shown 1n Figure 1. 

The apparatus was first tested in Antarctica dur­
ing the 1978-79 field season. By allowing the stack 
to remain in operation for up to 12 h to approach 

• •WIRES •• 
.-.•.•.TO.-.:^ 
•.SURFACE 'r-' 

'•SAMPLE';' jjilltlplj /'•"•"''•'"•'.'•'•"•.*•'! 
•.'••'•'•'•.'•'•'•••: ^ ^ • ' • ' • ' • v : . , ' v ' • " • • . ' 

'CARDBOARD'•" 

B'.v':-V 
° • '•'.'.' <'°'.e" ° ° °*' '" ° 1°.' "-•"". ••"•".".'••*.*."•'* "„V -' ".''••. * •* * 

F ig . l . Cross-section of apparatus used to measure 
thermal conductivity of f i r n samples. Apparatus 
is shown buried in a shallow p i t . 
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steady-state conditions, we determined that there was 
excessive heat loss from the sides of the stack and 
the data were then useless for the designed analysis. 
The stack was redesigned before the 1979-80 f ie ld 
season by including a thick styrofoam sleeve for 
better insulation around the stack. This reduced the 
heat loss from the sides of the stack to a very low 
level. Unfortunately, we were not able to run the 
experiment to steady-state during the 1979-80 f ie ld 
season to quantify this level closely. 

The redesigned stack is well-insulated around the 
top and sides, and was set onto the ice floor of the 
measuring p i t . The ice f loor served as a heat sink, 
the heater served as a heat source, and the therm­
istors allowed the measurement of the time rate of 
change of the temperature through the stack. The 
thermistors allowed us to obtain temperature measure­
ments as a function of time on both sides of the 
sample and on both sides of each lucite cylinder. 
Since the thermal properties of the lucite were 
known, we were able to solve i n i t i a l boundary-value 
problems in the lucite and thus determine the heat 
flux at the ends of the sample and measure the total 
heat flow through the stack, which indicated any 
appreciable heat loss from the sides through the 
insulation. The stack was allowed to reach an essent­
ia l l y steady-state temperature distribution before 
the heater was turned on. The i n i t i a l temperature 
was assumed to be linear through the sample and thus 
determined by the i n i t i a l temperature measurements 
taken at the ends of the sample just prior to act i ­
vating the heater. This thermal equilibrium also 
yields the following compatibility conditions on the 
data which are necessary for the numerical error 
estimates: 

0 < A+ < A « A* . (4.1) 

a) 9^0) = fQ(0), g2(0) = f0(D'), 

b) g{(0) = g»(o) = g£(0) = g£(0) = 0. 
(3.1) 

In order to obtain as strong a gradient as poss­
ible through the ice, and thus better error estimates 
as described in Section 4, we wanted gi(t) to rise 
rapidly and g2(t) to stay nearly constant or rise 
slowly. This was the motivation for using the ice-pit 
floor as a heat sink during the experiment. 

The resistances of the thermistors (and thus the 
temperatures via calibrations of the thermistors) 
were measured together with an estimated error toler­
ance at uniform intervals of 1 min for the first hour 
and uniform intervals of 5 min for the duration of 
the experiment. The duration of the experiments 
ranged from 1 h 30 min to 2 h. The distance of the 
samples from the top of the core and their densities 
were also carefully measured in the field. For a more 
complete description of the measurement procedure and 
equipment, see Ewing and others (1981). 

4. THE MATHEMATICAL PROBLEM 
In this section we shall present conditions which, 

if satisfied, allow us to show that a solution to our 
mathematical problem (2.2)-(2.3) exists, is unique, 
and depends continuously upon the data. We shall then 
give error estimates for the mathematical problem 
based on these assumptions. 

We normalize our problem. Let z = 0 and z = 1 be 
the top and bottom of the sample, let gi = gi(t) and 
92 = 92't) be the measured temperatures at the top 
and bottom of the sample, respectively, let H be the 
measured heat flux at the top at some time t*e(0,T), 
and let f(j = fo(z) be the initial linear temperature 
distribution through the sample. We then obtain 
(2.2, 2.3) with D' replaced by 1 and 

f0(z) = (1 - z)9l(0) + Zg 2(0). 

We shall seek A satisfying (2.2) and (2.3) and the 
additional physical bounds 

From the field experiment, we see that gift) in­
creases much faster than g2(t). In particular, we 
have from our experimental data that for t* from 
(2.3) 

a) g{(t) > 4g2'(t), 0 < t < t*. 

and 

b) gx(0) > g2(0). 

(4.2) 

Using Fourier series techniques, and techniques from 
Carslaw and Jaeger (1959) and Cannon (1964), we can 
obtain a solution, depending upon A, for (2.2) and 
(2.3) of the form for 0<z<l and 0<t<T, 

3(z,t;A) = (l-z)gi(0) + zg2(0) 

t 3M(z,A(t-i) 

- / 

- / 

0 3z 

t 8M(z-l,A(t-x)) 

0 3z 

[g^O-g^o)] Adi 

[g2(T)-g2(0)] Adi 

where 

M(5,a) = -=. I exp 
vi\o n=-°° 

U-2n)2 

4a 
o > 0. 

(4.3) 

(4.4) 

Next, for CXEIR we define the continuous function 

Q(a) pea 6 (0,t*;a) (4.5) 

We must then find A such that 

Q(A) = H. (4.6) 

In Ewing and others (1981), it was shown 
that for a E[A*, A*], and Q and e defined above, 
we have 

dQ,-. rr .„. .„,. 1 * * 9i(T)-4g'(T) 
^ J M >pc{[g1(0)-g2(0)] + i /

 l 2 H,} = c 
0 /irA*(t*-r) 

(4.7) 

Thus for a£[A*,A*] and data satisfying (4.2), 
Q is monotonically increasing and continuous. These 
facts allow us to obtain an existence and uniqueness 
theorem for our problem as in Ewing and others (1981) 
for He[Q(A*), Q(A*)] and data satisfying (4.2). 

We next consider how this solution depends upon 
measurement errors in the problem. Let 

||f|| s max |f(t)|. (4.8) 
te(0.T] 

Then assume H, g., and g„ are obtained as H*. g* 
and gi subject to measurement errors of the form 

a) |H - H*| < eQ , e 0 > 0 , 

b) II g1 - gf II + II g2 - g|ll < ^ , E l > o, 

c) || g{ - g f ' l l + II g2 - g j ' l l < 4 . ej > 0. 

(4.9) 
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Also define Q*(a) as the analogue of Q from (4.5) 
for the problem with g., g„, and H replaced by g*, 
g* and H*. x ' l 

Using the above notation, we obtain the follow­
ing theorem which yields the continuous dependence 
of the solution of our problem upon the data. 
Theorem 4.1 If a e[\,A*], A satisfies (2.2) and 
(2.3), and H* satisfies 

|Q*(a) - H*| < e2 , (4.10) 

then, for G from (4.7) and en, e and E,' from 
(4.9), ° 1 1 

| a - A| < G'^eg + K ^ + K 2 ^ + e 2], (4.11) 

where K, = 2pcA* and K, = pc{3 J— + t*}. 

Proof: For details of the proof see Ewing and others 
TT581). 

5. DESCRIPTION OF NUMERICAL METHODS 
Before we discuss the method for numerically 

obtaining an approximate solution for (2.2) and 
(2.3), we describe how the numerical data were 
obtained. First the recorded resistance data from 
the thermistors were numerically converted to temp­
erature data and smoothed very slightly, staying well 
within the error bars for the data (see Table I). 
This gave us gf and gj at 1 min intervals for the 
first hour with ei from (4.9.b) approximately 0.03°C. 
Then, in order to obtain H* for (4.9.a), a separate 
boundary-value problem was solved numerically within 
the top lucite region where the thermal properties 
of lucite were known. 

A piecewise linear Galerkin spatial discreti­
zation was used with a fourth order in time backward 
differentiation multistep method (Ewing in press [a], 
Bramble and Ewing in preparation*). A special start­
up procedure (Bramble and Ewing in preparation-) was 
required. The flux at the bottom of the lucite was 
then computed and used as H*, the flux at the top of 
the sample, in Equation (4.9a). The numerical results 
are presented in Table I. Computer programs are 
available at reasonable expense. 

From Theorem 4.1, if we can find a diffusivity 
a'e[A*,A*] such that Q*(a') is close to our calcul­
ated flux H*, then a' will be a good approximation to 
the unknown A. To determine such an a' computation­
ally, first find aj and a2 e[A*,A*] for which 

Then pick sufficiently small error tolerance E3 and 
perform an interval-halving routine using ai and a2 
to start. At each step of the interval-halving rout­
ine, pick the mid-point o of the active interval as 
a guess for A, numerically solve an initial-boundary-
value problem using a, gf, and gj, and then compare 
the calculated flux using a with H*. The numerical 
procedures used in each step of this interval-halving 
routine are the fourth order multistep Galerkin 
procedures used for the lucite problem. The routine 
is terminated when an is determined, satisfying 

I- pcan *z(0,t*;an) - H*| s ̂  (5.2) 

where <(> (0,t*;a ) is the computed approximation of 
the derivative 9t z = 0 and t = t* of the problem 
of determining e(z,t;a) satisfying: 

a) .et = an ezz, Z E ( 0 , 1 ) , te(0,T], 

b) e(0,t) = g*(t), tE(0,T], 

c) e(l,t) = g*(t), te(0,T], 

d) 6(z,0) = (1 - z) g*(0) + zg*(0), ze[0,l]. 

(5.3) 

The numerical scheme used satisfies the estimate 

Pcan |ez(0,t*;an) - •2(0,t*;an)| « e4 , (5.4) 

where (Ewing in press [a], Bramble and Ewing in 
preparation*) 

e4 = 0((At)'» + Az). (5.5) 

Q*(a1) < H* < Q*(a2) (5.1) 

E 4 can be made very small with the proper choice of 
the spatial mesh size Az and temporal step size At. 
Then, combining (5.2) and (5.4), we see that (4.10) 
is satisfied with a' = a and e? = ET + EA. Using 
(4.11), we obtain n 

|an - A| < G
-1[s0 + K ^ + K2E.[ + E 3 + E 4 ] , (5.6) 

an error bound for the accuracy in our coefficient 
determination problem. (5.6) is not a "sharp" 
estimate, but merely an upper bound for the error. 

Run 
number 

Depth 
(m) 

TABLE I. NUMERICAL COMPUTATION OF g^ g2, AND H* 

Data smoothing error 
maximum norm 

Data smoothing error 
mean square norm 

H* 
(W m " 2 ) 

1 
2 
3 

3 
4.8 
8 

91 (t) 

0.087 07 
0.001 86 
0.010 30 

92 (t) 

0.006 48 
0.001 17 
0.005 55 

91 (t) 

0.009 83 
0.000 06 
0.000 15 

92 (t) 

0.000 44 
0.000 02 
0.000 09 

t=60 min 

-36.1 
-37.7 
-39.2 

t=90 min 

-46.8 
-48.0 
-50.5 

• in preparation: J H Bramble and R E Ewing, "Efficient starting procedures for high order 
time-stepping methods for differential equations". 
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6. INTERSECTING GRAPH TECHNIQUES 
So far, we have based our method for determining 

A (and thus K) upon the premise that we have a priori 
knowledge of the specific heat c. In many cases, we 
may not have accurate estimates of either the speci­
fic heat or the thermal conductivity. We next describe 
an Intersecting graph technique used for similar prob­
lems, by Cannon and du Chateau (1973). We will obtain 
approximate pairs (K,c) for this more difficult 
problem. 

Since we do not have a priori knowledge of c as 
before, we shall perform the same method with the 
flux measured at a fixed t = t* for a systematic 
sequence of values of c In the anticipated range. 
Each value of c will then determine a pair (c,K) 
through this procedure. If sufficiently many values 
of c are chosen at close Intervals, we will 1n effect 
determine the "graph" of the "function" K = K(c) for 
the fixed time, t*. For another choice of t = X 
at some distance from t*, we can repeat the process 
with the same set of values for c to obtain a new 
"graph" of K • (c) for the same material. We hope that 
by taking radically different values of t we can 
obtain two curves with different properties. The true 
parameters (c,K) should H e on the intersection of 
the curves determined 1n this way. 

We emphasize that the determination of each 
"point" (c,K) 1n this method entails the full numer­
ical method of section 5. Therefore, since several 
"points" are necessary to determine two curves and 
their Intersection by graphical techniques, this 
procedure requires considerably more computer time 
than the previous method. However, 1f one 1s uncer­
tain of the values of c, one should always use this 
method of "check" the proposed values. 

7. NUMERICAL RESULTS FROM DOME C DATA 
In this section we shall present the numerical 

results obtained by applying our various methods to 
the data collected at Dome C, Antarctica. We then 
discuss data accuracies and corresponding error 
bounds. After presenting the results we shall compare 
them to previously known or assumed values of the 
various thermal properties under consideration and 
give our Interpretation of the similarities and 
differences. 

Only four samples were tested 1n our measurement 
apparatus at Dome C during the 1979-80 field season. 
On one of these test runs, the printer ran out of 
paper after twenty minutes and the run was aborted. 
The sample was later retested, but the data obtained 
were sufficiently anomalous that the results will not 
be presented. Thus the results of only three runs 
will be presented. The general data are given 1n 
Table II. The error In smoothing the data and the 
values of H* determined numerically are given In 
Table I. 

As we have noted earlier, the basic numerical 
model described In section 5 required the specifi­
cation of the specific heat of the sample. The temp­
erature variations within all of the samples over 
the runs fell between the values of -29.9*C and 
-37.3*C. The first numerical results were obtained 
using an estimate for the specific heat of 1ce In 
this temperature range of 1.88 x 103 J kg-1 K-1. 
The numerical results obtained using this value for 
specific heat and t* = 60 m1n are given 1n Table III. 
To start the numerical procedures, we used 
A* = 1.7 x 10- 7 and A* = 1.7 x 10"6 1n units of 
m2 s"1. As the procedures ran, better choices 
of A* and A* were obtained. 

TABLE II. DOME C CONDUCTIVITY RUNS, 1979 

Sample 
number 

1 
2 
3 

Depth 
(m) 

3 
4.8 
8 

Thickness 
(m) 

0.748 
0.748 
0.748 

Density 
(kg nr*) 

395±14 
370±13 
428±16 

Date 
obtained 

Dec 17 
Dec 21 
Dec 28 

Date 
measured 

Dec 21 
Dec 23 
Dec 31 

Duration of run 
(m1n) 

110 
120 
120 

TABLE III. CONDUCTIVITY RESULTS USING c = 1.88 x 103 J kg"1 K"1 AND t* = 60 m1n 

Sample 
number 

Depth 
(m) 

Density 
(kg nr3) 

D1ffus1v1ty 
(m2 s"1) 

Dlffuslvlty 
(m2 a'1) 

Conductivity 
(W nr1 K-1) 

3 
4.8 
8 

395 
370 
428 

1.05xl0-6 

1.16xl0-6 

l.OOxlO"6 

32.3 
35.7 
31.0 

0.762 
0.790 
0.794 

TABLE IV. CONDUCTIVITY AND SPECIFIC HEAT RESULTS USING THE INTERSECTING GRAPH TECHNIQUE 

Depth 
(m) 

Density 
(kg nr3) 

Specific heat 
(J kg-1 K"1) 

Dlffuslvi ty 
(m2 s-1) 

Diffus1v1ty 
(m a-i) 

Conductivity 
(W nr1 K-M 

3 
4.8 
8 

395 
370 
428 

2 280 
2 340 
2 050 

7.74xl0-7 

7.75xl0'7 

8.53xl0-7 

23.9 
24.0 
26.4 

0.683 
0.665 
0.734 
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Since we realized that the value of 1.88 x 103 

for c used in the numerical procedure was only an 
approximation based on the value for 1ce and since 
the specific heat depends to some extent upon density, 
we decided to use the Intersecting graph technique 
described 1n section 6 on the same data to estimate 
both the specific heat and the thermal conductivity 
simultaneously. This procedure was carried out for 
each sample using t* = 60 min and t = 90 mln. The 
numerical results obtained by using the Intersecting 
graph technique are presented 1n Table IV. 

We note that the specific heats determined 
numerically from the field data were all somewhat 
higher than the specific heat of ice at the given 
temperature. The higher values of specific heat give 
lower values of diffuslvlty and conductivity. The 
values of thermal conductivity obtained here agree 
fairly well with the values obtained by Dalrymple and 
others (1966), which are Interpreted by Weller and 
Schwerdtfeger (1977). We also note that the values of 
diffuslvlty In units of m2 a"1 presented 1n Table IV 
are very close to the value of 24.6 m2 a"1 obtained 
using a slight linearization of the model presented 
by Lax(1979). The dlffuslvltles obtained by using 
c = 1.88 x 103 and presented 1n Table III, however, 
are much higher than the 24.6 m2 a-1 estimate. We 
also note that conductivities correlate fairly well 
with density for this very narrow range of samples. 
If this correlation were understood better and were 
shown to hold 1n more widely varying circumstances, 
1t might be used to help model diffuslvlty more 
accurately over wide variations of densities. 

We point out that although the dlffuslvltles 
obtained from Table IV are close to the expected 
values, the specific heats, and thus the thermal 
conductivities, are somewhat higher than expected. We 
also note that the thermal conductivity of 1ce Is 1n 
the range 2.1 to 0.92 W irr1 K-1, and we would 
expect the conductivity of flrn to be somewhat lower. 

Next, we briefly discuss error bounds for our 
methods. We emphasize again that the estimates 
obtained In (5.6) are not sharp, but are merely 
upper bounds. The mesh spaclngs Az and At were 
taken such that 54 » .01. Since determination of EQ 
Involves a numerical solution of an Initial boundary-
value problem we can argue as Ewing and others (1981) 
that 

EQ < e5 + K ^ + H g0-gjjin + K2[4+|| 90-g$'ll], 

where, like e., 

e, = OfUt)1* + Az) •» 0.01, 

(7.1) 

(7.2) 

and gn(t) and g*6(t) are the true and the measured 
temperatures at the thermistor at the top of the top 
ludte control cylinder. It Is very difficult to 
obtain the theoretical estimates for the size of the 
error between go, gi, g2, and the measured (smoothed) 
data g{|, gf, and g£. Estimates based on the size of 
the difference quotients and the smoothness of go, 
gi, and g2 are, with our scallngs, 

«! + II 90 " 9511 " °-
03 

(7.3) 
and e[ + || gQ - g*' || - 0.005. 

Rough estimates of K. and K„ from Equation 4.1 are 

Kj « 0.17 and K? = 20. (7.4) 

Thus, combining (7.1)-(7.4), we obtain 

e0 - 0.1. (7.5) 

The error tolerance in the interval-halving routine 
was e3 = 10"

7. Thus (5.6) yields the estimate 

|an - A| < G
_1(0.22). (7.6) 

We can then obtain an approximate error tolerance 
from an estimate on the size of G. 

We shall present an estimate of G for the 4.8 m 
sample. Estimates for the other samples are obtained 
in an analogous fashion. For this sample 

9l(0) - g2(0) - 1. 18 

and 
60 g{(T)-4gi{T) 

/ l ' - dt * 0.553. 
0 /A*(90-T) 

Thus, from (4.7) we see that 

G"1 •» 6.0 x 10"6. 

(7.7) 

(7.8) 

(7.9) 

Then, combining (7.6) and (7.9), we obtain the 
bound on the error tolerance in m2 s"1 of 

|an - A| < 1.3 x 10" (7.10) 

We emphasize that this is an upper bound for the' 
error since (7.9) is a gross upper bound on 

<s«»-1. 
Usually the Kjej term in (4.11) will dominate, as 

with our data. If we assume K2e{ « Kiej as an 
"estimate" of our error, we see that (7.5) can be 
replaced by 

e0 « 0.025, (7.11) 

and (7.7) can be replaced by 

|an - A| - ( f ^ ) ) "
1 (0.05). (7.12) 

For c = 2440 in the 4.8 m sample we use the results 
of the interval halving scheme to obtain the estimate 

•jj§{0.43) = 3.6 x 105. (7.13) 

Combining (7.12) and (7.13) we obtain the'estimate 
n2 e -1 in m* s" 

| a p - A| = 1.3 x 10' -7 (7 .14) 

Our accuracy 1s basically limited by the data 
measurement accuracy and not by the mathematical and 
computational tools used. We also found that, a l ­
though the numerical methods were somewhat complex, 
the results Indicated the stabi l i ty of the methods 
by producing very smooth "curves" in the intersecting 
graph technique. 
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