GENERALIZED SPECTRUM AND COMMUTING COMPACT PERTURBATIONS

by VLADIMIR RAKOČEVIĆ

(Received 23rd October 1990)

Let X be an infinite-dimensional complex Banach space and denote the set of bounded (compact) linear operators on X by B(X) (K(X)). Let N(A) and R(A) denote, respectively, the null space and the range space of an element A of B(X). Set $R(A^{\infty}) = \bigcap_n R(A^n)$ and $k(A) = \dim N(A)/(N(A) \cap R(A^{\infty}))$. Let $\sigma_g(A) = \mathbb{C} \setminus \{\lambda \in \mathbb{C} : R(A - \lambda) \text{ is closed and } k(A - \lambda) = 0\}$ denote the generalized (regular) spectrum of A. In this paper we study the subset $\sigma_{gb}(A)$ of $\sigma_g(A)$ defined by $\sigma_{gb}(A) = \mathbb{C} \setminus \{\lambda \in \mathbb{C} : R(A - \lambda) \text{ is closed and } k(A - \lambda) < \infty\}$. Among other things, we prove that if f is a function analytic in a neighborhood of $\sigma(A)$, then $\sigma_{gb}(f(A)) = f(\sigma_{gb}(A))$.

1991 Mathematics subject classification scheme: 47 A53, 47 A55.

1. Introduction and preliminaries

Let X be an infinite-dimensional complex Banach space and denote, respectively, the set of bounded, compact and finite dimensional operators on X by B(X), K(X) and F(X). For A in B(X) throughout this paper N(A) and R(A) will denote, respectively, the null space and the range space of A. Set $N(A^{\infty}) = \bigcup_n N(A^n)$, $R(A^{\infty}) = \bigcap_n R(A^n)$, $\alpha(A) = \dim N(A)$, $\beta(A) = \dim X/R(A)$ and $k(A) = \dim N(A)/(N(A) \cap R(A^{\infty}))$. Recall that an operator $A \in B(X)$ is semi-Fredholm if R(A) is closed and at least one if $\alpha(A)$ and $\beta(A)$ is finite. For such an operator we define an index i(A) by $i(A) = \alpha(A) - \beta(A)$. Let $\Phi_+(X)$ ($\Phi_-(X)$) denote the set of semi-Fredholm operators with $\alpha(A) < \infty(\beta(A) < \infty)$ and $\sigma_{ek}(A)$ Kato's essential spectrum of A, i.e., $\sigma_{ek}(A) = \{\lambda \in \mathbb{C}: A - \lambda \notin \Phi_+(X) \cup \Phi_-(X)\}$. Furthermore, let $\sigma(A)$, $\sigma_a(A)$ and $\sigma_{ab}(A) = \bigcap \{\sigma_a(A+K): K \in K(X) \text{ and } AK = KA\}$ denote, respectively, the spectrum, the approximate point spectrum and Browder's essential approximate point spectrum of A ([17]).

Set $V(X) = \{A \in B(X): R(A) \text{ is closed and } k(A) < \infty\}$ and $V_n(X) = \{A \in V(X): k(A) = n\}$, $n = 0, 1, 2, \ldots$ Let us remark that $k(A) = n < \infty$ precisely when A has Kaashoek's property P(I, n) ([6, pp. 452-453]), or when A has almost uniform descent ([5, Definition 1.3]). In particular k(A) = 0 if and only if Kato's number $v(A: I) = \infty$ ([9, pp. 289-290]), i.e., if and only if $N(A^{\infty}) \subset R(A^{\infty})$. Recall that $\Phi_+(X) \cup \Phi_-(X) \subset V(X)$ ([5, Theorem 3.7], [10, p. 197, Example 4]). Let $\sigma_g(A) = \{\lambda \in \mathbb{C}: A - \lambda \notin V_0(X)\}$ denote the generalized (regular) spectrum of A ([1, 10, 13]). $\sigma_g(A)$ is a non-empty compact subset of the set of complex numbers \mathbb{C} .

In this paper we study the subset $\sigma_{ab}(A)$ of $\sigma_a(A)$ defined by

$$\sigma_{ab}(A) = \{\lambda \in \mathbb{C} : A - \lambda \notin V(X)\}.$$

The relation between $\sigma_g(A)$ and $\sigma_{gb}(A)$ that is exhibited in this paper resembles the relation between the $\sigma_a(A)$ and the $\sigma_{ab}(A)$, and it is reasonable to call $\sigma_{gb}(A)$ Browder's essential generalized spectrum of A.

First in Section 2 we prove a Kato-type decomposition theorem for operators in V(X) which is related to Kato's theorem for semi-Fredholm operators ([9, Theorem 4], [19, Proposition 2.5]).

In Section 3 we characterize $\sigma_{ab}(A)$ (Theorem 3.1) and derive several corollaries.

In Section 4 we prove that if f is a function analytic in a neighborhood of $\sigma(A)$, then $\sigma_{gb}(f(A)) = f(\sigma_{gb}(A))$.

Finally, in Section 5 we investigate connected components of the set $\mathbb{C}\setminus\sigma_{ab}(A)$.

2. A Kato-type decomposition theorem

Theorem 2.1. Let $A \in B(X)$ be an operator with closed range. Then, k(A) is finite if and only if the space X decomposes into the direct sum of two closed subspaces X_0 and X_1 which are A-invariant and have the following properties:

- (i) if A₀ is the restriction of A to X₀ considered as an operator from X₀ to itself, then N(A₀)⊂R(A₀[∞]),
- (ii) the space X_1 is finite-dimensional and A is nilpotent on it.

Proof. Suppose that the operator A satisfies conditions (i) and (ii). If A_1 is the restriction of A to X_1 considered as an operator from X_1 to itself, then there is an integer n such that $A_1^n = 0$. Also, we have $N(A) = N(A_0) \oplus N(A_1)$ and $R(A^{\infty}) = R(A_0^{\infty}) \subset X_0$. By [5, Lemma 2.1(a)] $N(A) \cap R(A^{\infty}) = [N(A_0) \oplus N(A_1)] \cap R(A^{\infty}) = N(A_0) \oplus [N(A_1) \cap R(A^{\infty})] = N(A_0)$. Hence dim $[N(A)/(N(A) \cap R(A^{\infty}))] = \dim N(A_1)$ is finite, and $k(A) < \infty$.

Conversely, suppose that k(A) = p is finite. Then, by [5, Theorem 3.8] $R(A^n)$ is closed for each positive integer *n*, and there are *p* vectors $x_{k,1}, k = 1, ..., p$, in N(A) which are linearly independent modulo the subspace $N(A) \cap R(A^{\infty})$. Now, as in [8] and [12] there are *p* finite chains associated with $x_{k,1}, k = 1, ..., p$, i.e., there are vectors

$$x_{k,1}, \ldots, x_{k,r_k}, \quad (k=1,\ldots,p)$$
 (1)

such that $Ax_{k,m} = x_{k,m-1}$ $(m=2,...,r_k; k=1,...,p)$ and $Ax_{k,1} = 0$ (k=1,...,p). By [8] the adjoint operator A^* of A has exactly p elements in $N(A^*)$, say $x_{k,1}^*, k=1,...,p$, with finite chains. Moreover, the chain associated with $x_{k,1}^*$ has the same number of elements as the corresponding chain associated with $x_{k,1}$ for each k=1,...,p. Thus, there are elements

$$x_{k,1}^*, \dots, x_{k,r_k}^*, \quad (k=1,\dots,p)$$
 (2)

in the dual space X^* of X such that $A^*x_{k,m}^* = x_{k,m-1}^*$ $(m=2,\ldots,r_k;k=1,\ldots,p)$ and

https://doi.org/10.1017/S0013091500018332 Published online by Cambridge University Press

 $A^*x_{k,1}^*=0$ $(k=1,\ldots,p)$. Again, by [8] we can choose functionals in (2) such that the vectors in (2) and (1) are biorthogonal; i.e., $x_{k,r_k-j+1}^*(x_{m,i})=1$, if k=m and j=i, $x_{k,r_k-j+1}^*(x_{m,i})=0$ in the other cases. Let X_1 be the subspace in X spanned by vectors in (1) and $X_0 = \bigcap \{N(x_{k,m}^*): k=1,\ldots,p; m=1,\ldots,r_k\}$. X_0 and X_1 are closed subspaces in X, and by [14, pp. 150–151] we have $X = X_0 \oplus X_1$. It is easy to see that X_1 is a finite dimensional space which is A-invariant and that A is nilpotent on it. Further, by [12, Remark] the subspace X_0 is invariant. Next, $R(A^n)$ is closed for each positive integer n [5, Theorem 3.8], by the proof of [12, Theorem 5] we have $N(A_0) \subset R(A_0^\infty)$. This completes the proof.

Remark 2.2. Since R(A) is closed subspace in X, and $R(A) = R(A_0) \oplus R(A_1)$ by [9, Lemma 3.32] $R(A_0)$ is a closed subspace in X.

Remark 2.3. By [19, Lemma 1.3 and Corollary 1.4] we have $k(A_0)=0$. Thus, by Remark 2.2, $A_0 \in V_0(X_0)$.

3. Characterization of $\sigma_{gb}(A)$

Theorem 3.1. Let $A \in B(X)$. Then

$$\sigma_{ab}(A) = \bigcap \{ \sigma_a(A+K) : K \in K(X) \text{ and } AK = KA \}.$$

Proof. If $\lambda \notin \bigcap \{\sigma_g(A+K): K \in K(X) \text{ and } AK = KA\}$, there is a $K \in K(X)$ such that AK = KA and $\lambda \notin \sigma_g(A+K)$. Thus, $R(A+K-\lambda)$ is closed and $k(A+K-\lambda)=0$. Adding the operator -K to $A+K-\lambda$, we see that $R(A-\lambda)$ is closed and $k(A-\lambda) < \infty$ ([5, Theorem 5.9]). Hence $A - \lambda \in V(X)$. To prove the converse suppose that $A - \lambda \in V(X)$. If $k(A-\lambda)=0$, then $\lambda \notin \sigma_g(A)$ and the proof is complete. If $0 < k(A-\lambda)$, then by Theorem 2.1 we conclude that the space X decomposes into a direct sum of two closed subspaces X_0 and X_1 . These subspaces are $(A-\lambda)$ -invariant, hence A-invariant, and have the following properties: The space X_1 is finite dimensional (and $A-\lambda$ is nilpotent on it). If A_0 is the restriction of A to X_0 considered as an operator from X_0 into itself then $k(A_0-\lambda)=0$. Let F be the finite rank operator defined by F=I on X_1 , F=0 on X_0 . Hence, AF = FA and $R(A+F-\lambda)$ is closed. Since $A-\lambda$ is nilpotent on X_1 we have $N(A+F-\lambda)=N(A_0-\lambda)\subset R((A_0-\lambda)^{\infty})\subset R((A_0-\lambda)^{\infty}) \oplus X_1=R((A+F-\lambda)^{\infty})$. Thus, $k(A+F-\lambda)=0$, and $\lambda \notin \sigma_g(A+K)$. This completes the proof.

Corollary 3.2 $\bigcap \{\sigma_q(A+K): K \in F(X) \text{ and } AK = KA\} = \sigma_{ab}(A).$

Proof. Inclusion ' \supset ' is obvious. Suppose that $\lambda \notin \sigma_{gb}(A)$. From the proof of Theorem 3.1, there exists a finite rank operator F in B(X) such that AF = FA and $\lambda \notin \sigma_g(A+F)$, which proves the inclusion ' \subset '. This completes the proof.

Let us point out that Theorem 3.1 and its corollary can be proved without using Theorem 2.1, but instead by using Kaashoek's [6, Theorem 3.2].

Corollary 3.3. $\lambda \in \sigma_g(A) \setminus \sigma_{gb}(A)$ if and only if λ is an isolated point of $\sigma_g(A)$, $0 < k(A - \lambda) < \infty$ and $R(A - \lambda)$ is closed.

Proof. This follows from Theorem 3.1, [5, Theorem 4.7] and [6, Theorem 4.1].

The polynomial hull \hat{E} of a compact subset E of the complex plane \mathbb{C} is the complement of the unbounded component of $\mathbb{C}\setminus E$. Given a compact subset E of the plane, a hole of E is a component of $\hat{E}\setminus E$. If F is another compact set such that $\partial E \subset F \subset E$, it follows that $\partial E \subset \partial F$, $\hat{E} = \hat{F}$ and E can be obtained from F by filling in some holes of F. (Here and in what follows ∂E denotes the boundary of the set E.)

Corollary 3.4. Let $A \in B(X)$. Then

- (i) $\sigma_{qb}(A) \subset \sigma_{ek}(A)$,
- (ii) $\partial \sigma_{ek}(A) \subset \partial \sigma_{gb}(A)$ and $\sigma_{gb}(A)$ is nonempty,
- (iii) $\hat{\sigma}_{gb} = \hat{\sigma}_{ek}(A),$
- (iv) $\sigma_{ek}(A)$ can be obtained from $\sigma_{ab}(A)$ by filling in some holes of $\sigma_{ab}(A)$,
- (v) if $\sigma_{ab}(A)$ is connected, $\sigma_{ek}(A)$ is connected.

Proof. It is sufficient to prove (ii). It is well known that $\sigma_{ek}(A)$ is nonempty and compact. Suppose $\lambda_0 \in \partial \sigma_{ek}(A)$ and $\lambda_0 \notin \sigma_{gb}(A)$. Hence, $k(A - \lambda_0) < \infty$ and $R(A - \lambda_0)$ is closed. Now, we know that there exists an $\varepsilon > 0$ such that $0 < |\lambda_0 - \lambda| < \varepsilon$ implies that $R(A - \lambda)$ is closed and $\alpha(A - \lambda)$ and $\beta(A - \lambda)$ are constant, i.e., $\alpha(A - \lambda) = \alpha(A - \lambda_0) - k(A - \lambda_0)$ and $\beta(A - \lambda) = \beta(A - \lambda_0) - k(A - \lambda_0)$ ([6, Theorem 4.1]). Thus $A - \lambda_0 \in \Phi_+(X) \cup \Phi_-(X)$, which is a contradiction. This completes the proof.

Corollary 3.5. Let A^* be the adjoint operator of $A \in B(X)$. Then $\sigma_{ab}(A) = \sigma_{ab}(A^*)$.

Proof. This follows from Theorem 3.1, [15, Theorem 2] and [5, Theorem 3.7].

Recall that a(A), the ascent of A, is the smallest non-negative integer n such that $N(A^n) = N(A^{n+1})$. If no such n exists, then $a(A) = \infty$. Let $A_{|M}$ denotes the restriction of A to the subspace M of X.

Corollary 3.6. Let $A \in V(X)$. Then the following statements are equivalent:

(i) A = V + F, where $\alpha(V) = 0$, F is finite rank and VF = FV;

(ii) there exists a finite rank projection P commuting with A such that $\alpha(A_{|N(P)}) = 0$;

(iii) there exists $\varepsilon > 0$ such that $\alpha(A + \lambda) = 0$ for $0 < |\lambda| < \varepsilon$;

(iv) $a(V) < \infty$.

Proof. If A satisfies any condition among (i)-(iv), then $A \in \Phi_+(X)$ and $i(A) \leq 0$ ([11, Lemma 2.5], [6, Theorem 4.1]). Thus, the proof follows by [17, Corollary 2.7] or [19, Proposition 2.6].

Let $\mathscr{P}(X)$ denote the set of all bounded projections P in X such that codim P(X) is finite. The compression A_P is a bounded linear operator on the closed subspace PX defined by $A_P y = PAy$ for each y in PX. Consequently, $\sigma_g(A_P)$ is the generalized spectrum of this operator on the Banach space PX.

Theorem 3.7. For every bounded linear operator on a Banach space X we have

$$\sigma_{gb}(A) = \bigcap \{ \sigma_g(A_P) \colon P \in \mathscr{P}(X) \text{ and } PA = AP \}.$$

Proof. Suppose that λ is not in $\sigma_{gb}(A)$. Then $R(A-\lambda)$ is closed and $k(A-\lambda) < \infty$, i.e., $A - \lambda \in V(X)$. Consequently, by Theorem 2.1 the space X is the direct sum of two closed subspaces X_0 and X_1 which are A-invariant and have the following properties: The space X_1 is finite dimensional (possibly zero) and $A - \lambda$ is nilpotent on it. If A_0 denotes the restriction of A to X_0 considered as an operator from X_0 into itself (and P the projection of X onto X_0 along X_1), then $N((A_0 - \lambda)_P) \subset R((A_0 - \lambda)_P^{\infty})$. Let us remark that PA = AP, $P \in \mathcal{P}(X)$ and $R((A - \lambda)_P)$ is closed (Remark 2.2). Thus $\lambda \notin \sigma_g(A_P)$. This proves that $\sigma_{gb}(A) \supset \bigcap \{\sigma_g(A_P): P \in \mathcal{P}(X) \text{ and } AP = PA\}$.

To prove the converse inclusion, suppose that λ is not in $\sigma_g(A_P)$ for some $P \in \mathscr{P}(X)$ such that AP = PA. Thus $R((A - \lambda)P)$ is closed and $k((A - \lambda)P) = 0$. Since $A - \lambda = (A - \lambda)P + (A - \lambda)(I - P)$ and $(A - \lambda)(I - P)$ is a finite rank operator, we conclude that $\lambda \notin \sigma_{ab}(A)$ ([5, Theorem 5.9]). The proof is complete.

Let us remark that it has been observed by Zemánek that for Browder's essential approximate point spectrum of A we have $\sigma_{ab}(A) = \bigcap \{\sigma_a(A_P): P \in \mathscr{P}(X) \text{ and } AP = PA\}$ ([21, Theorem 3]).

4. Spectral mapping theorem for $\sigma_{eb}(A)$

Theorem 4.1. If A is any operator and p is any polynomial, then

$$\sigma_{ab}(p(A)) = p(\sigma_{ab}(A)).$$

Proof. Let $\lambda \notin p(\sigma_{gb}(A))$ and $p(t) - \lambda = c(t - \lambda_1)^{m_1} \dots (t - \lambda_k)^{m_k}$ with m_i integers, $c \neq 0$ and $\lambda_i \neq \lambda_j$ for $i \neq j$. Thus, $p(A) - \lambda = c(A - \lambda_1)^{m_1} \dots (A - \lambda_k)^{m_k}$ and $\lambda_i \notin \sigma_{gb}(A)$ for $i = 1, \dots, k$. Consequently, we have that $R(A - \lambda_i)$ is closed and $k(A - \lambda_i) < \infty$, for $i = 1, \dots, k$. From [5, Theorem 3.8], we know that $R((A - \lambda_i)^{m_i})$ is closed and by [5, Lemma 3.11] $k((A - \lambda_i)^{m_i}) < \infty$ for $i = 1, \dots, k$. Let us remark that by ([4, Corollary]) we have that

$$R(p(A) - \lambda) = R((A - \lambda_1)^{m_1}) \cap \ldots \cap R((A - \lambda_k)^{m_k})$$

and

$$N(p(A) - \lambda) = N((A - \lambda_1)^{m_1}) \oplus \ldots \oplus N((A - \lambda_k)^{m_k}).$$

Thus $R(p(A) - \lambda)$ is closed. Further, by ([5, Lemma 2.1(a)]) and the elementary fact that if $\lambda \neq 0$, then $N((A + \lambda)^{\infty}) \subset R(A^{\infty})$, for each integer *n* we have

$$\frac{N(p(A)-\lambda)}{N(p(A)-\lambda)\cap R((p(A)-\lambda)^n)}$$

$$=\frac{N((A-\lambda_1)^{m_1})\oplus\ldots\oplus N((A-\lambda_k)^{m_k})}{(N((A-\lambda_1)^{m_1})\oplus\ldots\oplus N((A-\lambda_k)^{m_k}))\cap R((A-\lambda_1)^{m_1n})\cap\ldots\cap R((A-\lambda_k)^{m_kn})}$$

$$=\frac{N((A-\lambda_1)^{m_1})\oplus\ldots\oplus N((A-\lambda_k)^{m_k})}{N((A-\lambda_1)^{m_1})\cap R((A-\lambda_1)^{m_1n})\oplus\ldots\oplus N((A-\lambda_k)^{m_kn})\cap R((A-\lambda_k)^{m_kn})}.$$

Thus,

$$\dim \frac{N(p(A)-\lambda)}{N(p(A)-\lambda) \cap R((p(A)-\lambda)^n)} \leq \sum_{i=1}^n \dim \frac{N((A-\lambda_i)^{m_i})}{N((A-\lambda_i)^{m_i}) \cap R((A-\lambda_i)^{m_in})}$$

and by [5, Theorem 3.7] it follows that $k(p(A) - \lambda) \leq \sum k((A - \lambda_i)^{m_i})$. Hence, $\lambda \notin \sigma_{gb}(p(A))$.

We now turn to the proof of the opposite inclusion. Suppose that $\lambda \in p(\sigma_{gb}(A))$ and $\lambda \notin \sigma_{gb}(p(A))$. By the definition of $\sigma_{gb}(A)$, we have that $R(p(A) - \lambda)$ is closed and $k(p(A) - \lambda) < \infty$. By ([4, Corollary (iii)]) we know that $R((A - \lambda_i)^{m_i})$ is closed for i = 1, ..., k. Since $N((A - \lambda_i)^{m_i}) \subset N(p(A) - \lambda)$, and for each positive integer *m* and $n, N((A - \lambda_i)^m) \subset R((A - \lambda_j)^n)$, $(i \neq j)$, then by [7, Lemma 2.3] we have

$$\dim \frac{N(A-\lambda_i)}{N(A-\lambda_i) \cap R((A-\lambda_i)^{min})} \leq \dim \frac{N(p(A)-\lambda)}{N(p(A)-\lambda) \cap R((p(A)-\lambda)^n)}.$$

This shows that $k(A - \lambda_i) < \infty$ ([5, Theorem 3.7]), and by [5, Theorem 3.8] $R(A - \lambda_i)$ is closed. According to this, we have that $\lambda_i \notin \sigma_{gb}(A)$, (i = 1, ..., k), which provides a contradiction. The proof is complete.

Theorem 4.2. Let $A \in B(X)$, and let D be an open neighbourhood of $\sigma(A)$. If f is a rational function on D with no poles in D, then

$$\sigma_{gb}(f(A)) = f(\sigma_{gb}(A)).$$

Proof. We can write f = p/q, where p and q are polynomials and q has no zeros in D. Hence, $0 \notin q(\sigma(A))$, q(A) is invertible and $f(A) = p(A)q(A)^{-1} = q(A)^{-1}p(A)$. For each $\lambda \in \mathbb{C}$ we now write, assuming that p/q is not constant,

$$\frac{p}{q} - \lambda = \frac{p - \lambda q}{q} = \frac{1}{q} c(z - \lambda_1)(z - \lambda_2) \dots (z - \lambda_n).$$

Hence

$$f(A) - \lambda = q(A)^{-1}c(A - \lambda_1)(A - \lambda_2) \dots (A - \lambda_n),$$

and the proof of Theorem 4.2 follows by Theorem 4.1.

Let (G_n) be a sequence of compact subsets of \mathbb{C} . The limit superior, $\limsup G_n$, is the set of all λ in \mathbb{C} such that every neighbourhood of λ intersects infinitely many G_n . To show that if f is an analytic function defined on a neighbourhood of $\sigma(A)$, then $f(\sigma_{ab}(A)) = \sigma_{ab}(f(A))$ we shall prove the following statement.

Theorem 4.3. Let A, $A_n \in B(X)$, $A_n \rightarrow A$ and $AA_n = A_nA$ for each positive integer n. Then

- (i) $\limsup \sigma_g(A_n) \subset \sigma_g(A)$,
- (ii) $\limsup \sigma_{gb}(A_n) \subset \sigma_{gb}(A)$.

Proof. (i) It is enough to show that if $0 \notin \sigma_g(A)$, then $0 \notin \limsup \sigma_g(A_n)$. Suppose that $0 \notin \sigma_g(A)$. Then R(A) is closed and k(A) = 0. Then, by [5, Lemma 4.2] we know that there exists an $\varepsilon > 0$ and an integer n_0 such that $R(A_n - \lambda)$ are closed for $n \ge n_0$ and $k(A_n - \lambda) = 0$ for $|\lambda| < \varepsilon$. Therefore, for $n \ge n_0$ we see that $\sigma_g(A_n) \cap \{\lambda \in \mathbb{C} : |\lambda| < \varepsilon\}$ is empty. Thus, we have that $0 \notin \limsup \sigma_g(A_n)$.

(ii) To prove (ii), it is enough to show that if $0 \notin \sigma_{gb}(A)$, then $0 \notin \limsup \sigma_{gb}(A_n)$. If $0 \notin \sigma_g(A)$, then by (i) we know that $0 \notin \limsup \sigma_g(A_n)$, and $0 \notin \limsup \sigma_{gb}(A_n)$. If $0 \in \sigma_g(A) \setminus \sigma_{gb}(A)$ then R(A) is closed and $0 < k(A) < \infty$. Consequently, by [5, Theorem 4.10(a)] there exists an $\varepsilon > 0$ and an integer n_0 such that $R(A_n - \lambda)$ are closed and $k(A_n - \lambda) < \infty$ for $|\lambda| < \varepsilon$ and $n \ge n_0$. Therefore, for $n \ge n_0$ we see that $\sigma_{gb}(A_n) \cap \{\lambda \in \mathbb{C}: |\lambda| < \varepsilon\}$ is empty. Thus we have $0 \notin \limsup \sigma_{ab}(A_n)$, and the proof is complete.

Remark 4.4. Let us remark that the commutativity conditions in Theorem 4.3 are necessary. Examples in which σ_g and σ_{gb} are not upper semi-continuous can be constructed using the result of Goldman [3, Theorem 1]. In fact, if $A \in V(X)$ $(V_0(X))$, $\alpha(A) = \infty$ and $\beta(A) = \infty$, by [3, Theorem 1] there exists a sequence A_n of linear bounded operators on X, with non-closed ranges, such that $A_n \rightarrow A$. Thus, we have that $0 \notin \sigma_{gb}(A)$ $(\sigma_g(A))$ and $0 \in \sigma_{gb}(A_n)$ for each n (which implies $0 \in \limsup \sigma_{gb}(A_n)$).

Theorem 4.5. Let $A \in B(X)$ and let f be an analytic function defined on a neighbourhood of $\sigma(A)$. Then

$$f(\sigma_{ab}(A)) = \sigma_{ab}(f(A)).$$

Proof. Let D be a neighbourhood of $\sigma(A)$, and let $(f_n(t))$ be a sequence of rational functions, with no poles in D, converging to f(t) on D. We have

$$f(\sigma_{ab}(A)) = \lim f_n(\sigma_{ab}(A))$$

= $\limsup \sigma_{ab}(f_n(A))$ (by Theorem 4.2)

$$\subset \sigma_{ab}(f(A))$$
 (by Theorem 4.3(ii)).

To prove the converse suppose that $\mu \notin f(\sigma_{gb}(A))$. Thus, for each $\lambda \in \sigma_{gb}(A)$ we have that $f(\lambda) - \mu \neq 0$. Set $g(\lambda) = f(\lambda) - \mu$. If $g(\lambda) \neq 0$ for each $\lambda \in \sigma(A)$, then g(A) is invertible, and $\mu \notin \sigma(f(A))$. Thus $\mu \notin \sigma_{gb}(f(A))$. Now suppose that $g(\lambda)$ has zeros of order n_i at $\lambda_i \in \sigma(A)$, i = 1, ..., k. Then

$$g(\lambda) = \prod_{i=1}^{k} (\lambda - \lambda_i)^{n_i} h(\lambda)$$
 and $h(\lambda) \neq 0$ for each $\lambda \in \sigma(A)$.

Set

$$p(\lambda) = \prod_{i=1}^{k} (\lambda - \lambda_i)^{n_i}.$$

By Theorem 4.1, we know that $0 \notin \sigma_{gb}(p(A))$. Then R(p(A)) is closed and $k(p(A)) < \infty$. Consequently, since h(A) is an invertible operator commuting with p(A), it is easy to see that g(A) = p(A)h(A) has closed range and $k(g(A)) < \infty$. Thus, we have that $\mu \notin \sigma_{gb}(f(A))$, i.e., $\sigma_{gb}(f(A)) \subset f(\sigma_{gb}(A))$. This completes the proof of the theorem.

5. Connected components of $\mathbb{C}\setminus \sigma_{gb}(A)$

If $A \in B(X)$, then $\mathbb{C} \setminus \sigma_{gb}(A)$ is an open set in the complex plane \mathbb{C} . Let U be a connected component of $\mathbb{C} \setminus \sigma_{gb}(A)$ and $G = \{\lambda \in \mathbb{C} \setminus \sigma_{gb}(A) : k(A - \lambda) \neq 0\}$. By [6, Theorem 4.1] we know that G has no accumulation point in $\mathbb{C} \setminus \sigma_{gb}(A)$. A complex number $\lambda \in G \cap U$ is called a jumping point in U.

Remark 5.1. If λ is a jumping point in U, then by Theorem 2.1(ii), there is an A-invariant finite dimensional subspace N_{λ} in X such that $A - \lambda$ is nilpotent on it. Consistent with the matrix case we define the (algebraic) multiplicity of the jumping point λ to be dim N_{λ} . If U is a connected component of the semi-Fredholm region of A, then our definition of the multiplicity of the jumping point λ in U is consistent with the definition in [18, p. 232] and [22, p. 449].

Theorem 5.2. Let $A \in B(X)$ and let U and G be as above. Then the functions

$$\lambda \rightarrow N((A-\lambda)^{\infty}) + R((A-\lambda)^{\infty})$$
 and $\lambda \rightarrow N((A-\lambda)^{\infty}) \cap R((A-\lambda)^{\infty})$

are constant on U, while the functions

$$\lambda \rightarrow R((A-\lambda)^{\infty})$$
 and $\lambda \rightarrow N((A-\lambda)^{\infty})$

are constant on $U \setminus G$.

Proof. The proof follows from [9, Theorem 3] and ([5, Theorem 4.7(d), (e); Lemma 4.2(d), (e); Lemma 3.6]).

Remark 5.3. Let us remark that by [5, Lemma 3.6(a)] and Theorem 5.2 we have that

$$R((A - \lambda)^{\infty}) + N(A - \lambda)^{\infty}) = R((A - \lambda)^{\infty}) + cl(N((A - \lambda)^{\infty}))$$
$$= R((A - \lambda)^{\infty}) \oplus N_{\lambda} = W$$

for each $\lambda \in U$, where N_{λ} is a finite dimensional subspace, N_{λ} is A-invariant and $(A-\lambda)_{|N_{\lambda}|}$ is nilpotent on it. Thus, W is closed, hence a Banach subspace in X ([5, Theorem 3.8]). The restriction of A to the subspace W has been studied in [16] and [19].

Theorem 5.4. If $A \in V(X)$, set $v_0(A) = \sup \{\varepsilon > 0: A - \lambda \in V_0(X) \text{ for } 0 < |\lambda| < \varepsilon \}$ and $v(A) = \sup \{\varepsilon > 0: A - \lambda \in V(X) \text{ for } |\lambda| < \varepsilon \}$. Then

$$v(A) = \sup \{v_0(A+F): F \in F(X) \text{ and } AF = FA\}.$$

Proof. Let $F \in F(X)$ and AF = FA. Then $A + F \in V(X)$ ([5, Theorem 5.9]). If $|\lambda| < v_0(A+F)$, again by ([5, Theorem 5.9]) we have that $A - \lambda = (A + F - \lambda) - F \in V(X)$. Hence, $v_0(A+F) \leq v(A)$, i.e., $\sup \{v_0(A+F): F \in F(X) \text{ and } AF = FA\} \leq v(A)$.

To prove the other inequality suppose that $\varepsilon > 0$, and let p denote the total multiplicity of the jumps having absolute value less than $v(A) - \varepsilon$. As in the proof of [18, Theorem 1.1(II)] (using Theorem 2.1 instead of Kato's decomposition theorem [9, Theorem 4]) we conclude that the space X decomposes into the direct sum of two closed subspaces Z and Y which are A-invariant, dim Z = p and Z is the direct sum of the finite dimensional summands at the jumping points $\lambda_1(A), \ldots, \lambda_p(A)$ (where each jump appears consecutively according to its multiplicity). Let $P^2 = P \in B(X)$ be the idempotent with R(P) = Z and N(P) = Y. It is clear that $P \in F(X)$ and AP = PA. Set $F = \alpha P$, with $|\alpha| > ||A|| + v(T)$. Now, as in the proof of [20, Theorem 7.1], for each λ with $|\lambda| < v(A) - \varepsilon$ we have that $R(A + F - \lambda)$ is closed and $N(A + F - \lambda) \subset R((A + F - \lambda)^{\infty})$. Thus, $v_0(A + F) \ge v(A) - \varepsilon$, and the proof is complete.

Lemma 5.5. Let $A \in B(X)$ and let U, G and W be as above. Then:

(i) $(A - \lambda)_{|W} \in \Phi_{-}(W)$ for each $\lambda \in U$;

(ii) if $\lambda \in U$, then $\lambda \in U \cap G$ if and only if λ is a jumping point in the semi-Fredholm region of A_{W} .

Proof. Let $\lambda \in U$. Then $W = R((A - \lambda)^{\infty}) \oplus N_{\lambda}$ (Remark 5.3). By [5, Theorem 3.4] we

have that $(A - \lambda)W = (A - \lambda)R((A - \lambda)^{\infty}) \oplus (A - \lambda)N_{\lambda} = R((A - \lambda)^{\infty}) \oplus (A - \lambda)N_{\lambda}$. Thus, $(A - \lambda)_{|W} \in \Phi_{-}(W)$, which proves (i). (ii) follows by Remark 5.1 and (i).

For a technical reason we suppose that the connected component U contains zero. Then the points in $G \cap U$ can be ordered in such a way that

$$|\lambda_1(A)| \leq |\lambda_2(A)| \leq \ldots < v(A),$$

where each jump appears consecutively according to its multiplicity. If there are only p (=0, 1, 2, ...) such jumps, we put $|\lambda_{p+1}(A)| = |\lambda_{p+2}(A)| = v(A)$.

Let S denote the closed unit ball of X. Let

$$q(A) = \sup \{ \varepsilon \ge 0 : AS \supset \varepsilon S \}$$

be the surjection modulus of A. For each r = 1, 2, ... we define

$$q_r(A) = \sup \{q(A+F): \operatorname{rank} F < r\}.$$

Theorem 5.6. Let $A \in V(X)$, $0 \in U$, and let U, G and W be as above. Then for each jumping point $\lambda_r(A)$, r = 1, 2, ... we have

$$|\lambda_r(A)| = \lim_{k} q_r((A_{|W})^k)^{1/k}$$

Proof. By Lemma 5.5 we know that $(A - \lambda)_{|W} \in \Phi_{-}(W)$ for each $\lambda \in U$, and that $\lambda_r(A)$, r = 1, 2, ... are jumps (with the same multiplicity) in the semi-Fredholm region of $A_{|W}$ (Remark 5.1). Thus, the proof of the theorem follows by [18, Theorem 1.1, pp. 232-233] (since the stability index of the semi-Fredholm operator $A_{|W}$ is 0).

If T is a linear operator from a Banach space X to another Banach space Y, then the reduced minimum modulus of T is defined by

$$\gamma(T) = \inf \{ \|Tx\| : \operatorname{dist}(x, N(T)) = 1 \}.$$

For each $r = 1, 2, \ldots$ we put

$$\gamma_r^-(T) = \sup \{\gamma(Q_V T): \dim V < r\},\$$

where Q_V is the canonical map of X onto the quotient space X/V. Now, we have:

Corollary 5.7. Let $A \in B(X)$ and let $\lambda_r(A)$, r = 1, 2, ..., U and W be as above. Then for each jumping point $\lambda_r(A)$, r = 1, 2, ... we have

GENERALIZED SPECTRUM

 $\left|\lambda_{\rho+r}(A)\right| = \lim_{k} \gamma_r^{-} ((A_{|W})^k)^{1/k},$

where ρ is the multiplicity of the jump at zero.

Proof. The proof follows by [22, Theorem 1, p. 451], Lemma 5.5 and Theorem 5.6.

Corollary 5.8. If $A \in V(X)$, then

$$v_0(A) = \lim_k \gamma((A_{|W})^k)^{1/k}.$$

Proof. This follows from Corollary 5.7.

Let $A \in B(X)$ be a semi-Fredholm operator. Then the semi-Fredholm radius s(A) of A is the supremum of all $\varepsilon \ge 0$ such that the operator $A - \lambda$ is semi-Fredholm for $|\lambda| < \varepsilon$.

Corollary 5.9. Let $A \in V(X)$ and let $\lambda_r(A)$, r = 1, 2, ..., U and W be as above. Then:

(i) if there is a finite number of jumps, then $v(A) \leq s(A_{1W})$.

(ii) if there is an infinite number of jumps, then $v(A) = s(A_{|W})$.

Proof. This follows by Lemma 5.5 and [6, Theorem 4.1].

We would like to finish this paper with the following questions:

Question 1. If $A \in V(X)$, must $\lim_k \gamma(A^k)^{1/k} = v_0(0)$?

(Let us remark that the limit exists (by Theorem 2.1 and the proof of [2, Theorem 2]). If X is a Hilbert space, then the answer to the Question 1 is positive (see [1, Theorem 3.2, Corollary 3.4] or [13, Théorème 3.1, Corollaire 3.9]).)

Question 2. If A, $B \in B(X)$ and $AB = BA \in V(X)$, must A, $B \in V(X)$?

(Let us remark that if A, $B \in B(X)$ and $AB = BA \in V_0(X)$, then A, $B \in V_0(X)$ ([13, Lemma 4.15]).)

Question 3. If A, $B \in B(X)$, AB = BA and B is a quasinilpotent operator, must

$$\sigma_{ab}(A+B) = \sigma_{ab}(A)?$$

(Recall that if X is a Hilbert space, A, $B \in B(X)$, AB = BA and B is a quasinilpotent operator, then $\sigma_a(A + B) = \sigma_a(A)$ ([13, Théorème 4.8].)

Question 4. If A, $B \in V(X)$ (or $V_0(X)$) and AB = BA, must $AB \in V(X)$ (or $V_0(X)$), and possibly $k(AB) \leq k(A) + k(B)$?

Acknowledgements. I am grateful to Professor Laura Burlando for the examples in the Remark 4.4, and to Professor Jean-Philippe Labrousse for comments and verification of the proof of Theorem 2.1. The author also thanks the referee for helpful comments and suggestions concerning the paper.

REFERENCES

1. C. APOSTOL, The reduced minimum modulus, Michigan Math. J. 32 (1985), 279-294.

2. K.-H. FORSTER and M. A. KAASHOEK, The asymptotic behaviour of the reduced minimum modulus of a Fredholm operator, *Proc. Amer. Math. Soc.* 49 (1975), 123–131.

3. M. A. GOLDMAN, On the stability of normal solvability of linear equations (Russian), Dokl. Akad. Nauk SSSR. 100 (1955), 201-204.

4. M. GONZÁLEZ, Null spaces and ranges of polynomials of operators, Publ. Mat. 32 (1988), 167-170.

5. S. GRABINER, Uniform ascent and descent of bounded operators, J. Math. Soc. Japan 34 (1982), 317-337.

6. M. A. KAASHOEK, Stability theorems for closed linear operators, Indag. Math. 27 (1965), 452-466.

7. M. A. KAASHOEK, Ascent, descent, nullity and defect, a note on a paper by A. E. Taylor, Math. Ann. 172 (1967), 105-115.

8. S. N. KRACHKOVSKII, On the extended region of the singularity of the operator $T_{\lambda} = E - \lambda A$ (Russian), Dokl. Akad. Nauk SSSR 96 (1954), 1101–1104.

9. T. KATO, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Analyse Math. 6 (1958), 261-322.

10. J. P. LABROUSSE, Les opérateurs quasi-Fredholm: Une généralisation des opérateurs semi-Fredholm, Rend. Circ. Mat. Palermo (2) 29 (1980), 161–258.

11. D. C. LAY, Spectral analysis using ascent, descent, nullity and defect, Math. Ann. 184 (1970), 197-214.

12. A. S. MARKUS, On one theorem of F. Reisz (Russian), Uch. Zap. Kishinev. Gos. Univ. 17 (1955), 73-76.

13. M. MBEKHTA, Résolvant généralisé et théorie spectrale, J. Operator Theory 21 (1989), 69-105.

14. S. M. NIKOLSKII, Linear equations in normed linear spaces (Russian), Bull. Acad. Sci. URSS Ser. Math. 7 (1943), 147-166.

15. R. K. OLIVER, Note on a duality relation of Kaashoek, Indag. Math. 28 (1966), 364-368.

16. M. O SEARCOID and T. T. WEST, Continuity of the generalized kernel and range of semi-Fredholm operators, *Math. Proc. Cambridge Philos. Soc.* 105 (1989), 513-522.

17. V. RAKOCEVIĆ, Approximate point spectrum and commuting compact perturbations, Glasgow Math. J. 28 (1986), 193-198.

18. V. RAKOČEVIĆ and J. ZEMÁNEK, Lower s-numbers and their asymptotic behaviour, Studia Math. 91 (1988), 231–239.

19. T. T. WEST, A Riesz-Schauder theorem for semi-Fredholm operators, Proc. Roy. Irish Acad. Sect. A 87 (1987), 137-146.

20. J. ZEMÁNEK, Geometric characteristics of semi-Friedholm operators and their asymptotic behaviour, Studia Math. 80 (1984), 219–234.

21. J. ZEMÁNEK, Compressions and the Weyl-Browder spectra, Proc. Roy. Irish Acad. Sect. A 86 (1986), 57-62.

22. J. ZEMÁNEK, The reduced minimum modulus and the spectrum, Integral Equations Operator Theory 12 (1989), 449-454.

University of Nis, Faculty of Philosophy Department of Mathematics Ćirila and Metodija 2 18000 Nis Yugoslavia