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Let X be an infinite-dimensional complex Banach space and denote the set of bounded (compact) linear
operators on X by B(X) (K(X)). Let N(A) and R(A) denote, respectively, the null space and the range space of
an element A of B{X). Set R[Aa>) = f]aR(A") and k{A) = dimN(A)/(N(A)r\R{A«')). Let ag(A) =
C\{XeC:R(A — X) is closed and k{A — X) = 0} denote the generalized (regular) spectrum of A. In this paper we
study the subset agb(A) of <sg(A) defined by ogb(A) = C\{XeC:R(A — X) is closed and k(A — A)<oo}. Among
other things, we prove that if / is a function analytic in a neighborhood of a(A), then <Jgb(f(A))= f(agb(A)).

1991 Mathematics subject classification scheme: 47 A53, 47 A55.

1. Introduction and preliminaries

Let X be an infinite-dimensional complex Banach space and denote, respectively, the
set of bounded, compact and finite dimensional operators on X by B(X), K(X) and
F(X). For A in B(X) throughout this paper N(A) and R(A) will denote, respectively, the
null space and the range space of A. Set N(Am) = {JnN(A"), R(At:o) = f]nR(An),
a(A) = dimN(A), P(A) =dimX/R{A) and k(A) = dimN(A)/(N(A) n/^/l00)). Recall that an
operator A e B(X) is semi-Fredholm if R(A) is closed and at least one if tx(A) and P(A) is
finite. For such an operator we define an index i(A) by i(A) = <x(A)—fl(A). Let <t>+(X)
(<b-(X)) denote the set of semi-Fredholm operators with <x(i4)<oo(/J(/4)<oo) and aek(A)
Kato's essential spectrum of A, i.e., aek(A) = {XeC:A — X<fcQ>+(X)v<&-(X)}. Further-
more, let (j(A), aa(A) and aab(A) = f]{(Ja(A + K):KeK{X) and AK = KA} denote,
respectively, the spectrum, the approximate point spectrum and Browder's essential
approximate point spectrum of A ([17]).

Set V(X) = {AeB{X):R(A) is closed and k(A)<oo} and Vn(X) = {A e V(X): k(A) = n},
n=0,1,2,.... Let us remark that fc(/4) = n<oo precisely when A has Kaashoek's
property P(l,n) ([6, pp. 452-453]), or when A has almost uniform descent ([5,
Definition 1.3]). In particular k{A) = 0 if and only if Kato's number v(A:I) = co ([9, pp.
289-290]), i.e., if and only if N(A">)<=R{A'*'). Recall that O+(X) u O . ( X ) c V(X) ([5,
Theorem 3.7], [10, p. 197, Example 4]). Let ag(A) = {A e C: A - X 4 V0(X)} denote the
generalized (regular) spectrum of A ([1,10,13]). ag(A) is a non-empty compact subset of
the set of complex numbers C.

In this paper we study the subset <xgb(A) of og(A) defined by
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The relation between og(A) and agb(A) that is exhibited in this paper resembles the
relation between the <Ja(A) and the <rab(A), and it is reasonable to call agb{A) Browder's
essential generalized spectrum of A.

First in Section 2 we prove a Kato-type decomposition theorem for operators in
V(X) which is related to Kato's theorem for semi-Fredholm operators ([9, Theorem 4],
[19, Proposition 2.5]).

In Section 3 we characterize agb(A) (Theorem 3.1) and derive several corollaries.
In Section 4 we prove that if / is a function analytic in a neighborhood of <r(A), then

cgb(f(A)) = f(<Jgb(A))-
Finally, in Section 5 we investigate connected components of the set C\agb{A).

2. A Kato-type decomposition theorem

Theorem 2.1. Let AeB(X) be an operator with closed range. Then, k(A) is finite if
and only if the space X decomposes into the direct sum of two closed subspaces Xo and Xi
which are A-invariant and have the following properties:

(i) if Ao is the restriction of A to Xo considered as an operator from Xo to itself then
N(A0)<zR(A£),

(ii) the space Xx is finite-dimensional and A is nilpotent on it.

Proof. Suppose that the operator A satisfies conditions (i) and (ii). If At is the
restriction of A to X t considered as an operator from Xt to itself, then there is an
integer n such that A\ = 0. Also, we have N(A) = N(A0) © N(At) and R{Ax) = R(A£)<zX0.
By [5, Lemma 2.1(a)] N(A) nR(Ax) = [N(A0) © N ^ ) ] n R(Aaa) = N{A0) ©
INiAJ n R(Aa>)] = N(A0). Hence dim lN(A)/(N(A)nR(Aa>))'] = dim NiAJ is finite, and
k(A)<oo.

Conversely, suppose that k(A) = p is finite. Then, by [5, Theorem 3.8] R(An) is closed
for each positive integer n, and there are p vectors xkl,k=l,...,p, in N(A) which are
linearly independent modulo the subspace N(A) n i?(/l°°). Now, as in [8] and [12] there
are p finite chains associated with xkl,k=l,...,p, i.e., there are vectors

xk.i,---,xk,rk, (k=l,...,p) (1)

s u c h t h a t Axkm = x k m - l (m = 2,...,rk;k = l,...,p) a n d Axkl = 0 ( k = l , . . . , p ) . B y [ 8 ] t h e
adjoint operator A* of A has exactly p elements in N(A*), say x j \ u k = \ , . . . , p , with
finite chains. Moreover, the chain associated with xjf,, has the same number of elements
as the corresponding chain associated with xk , for each k = l,...,p. Thus, there are
elements

x?.i. . . •,*?.*. (*=1.- ,J») (2)

in the dual space X* of X such that /4*xfm = xfira_1 (m = 2,...,rk;k=l,...,p) and
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f1 = O (k = l,...,p). Again, by [8] we can choose functionals in (2) such that the
vectors in (2) and (1) are biorthogonal; i.e., x£rk-j+1(xm,,) = 1, if k = m and j = i,
x£rk-j+1(xmJ) = 0 in the other cases. Let X1 be the subspace in X spanned by vectors in
(1) and X0 = f){N(x£m):k=l,...,p;m=l,...,rk}. Xo and Xx are closed subspaces in X,
and by [14, pp. 150-151] we have X = X0©Xl. It is easy to see that Xx is a finite
dimensional space which is X-invariant and that A is nilpotent on it. Further, by [12,
Remark] the subspace Xo is invariant. Next, R(A") is closed for each positive integer n
[5, Theorem 3.8], by the proof of [12, Theorem 5] we have N(A0)<=R(A$'). This
completes the proof.

Remark 2.2. Since R(A) is closed subspace in X, and R(A) = R(A0) © R(Ai) by [9,
Lemma 3.32] R(A0) is a closed subspace in X.

Remark 2.3. By [19, Lemma 1.3 and Corollary 1.4] we have k(Ao)=0. Thus, by
Remark 2.2, Ao e V0{X0).

3. Characterization of <rgb(A)

Theorem 3.1. Let AeB(X). Then

agb(A) = f) {ag(A + K):Ke K{X) and AK = KA}.

Proof. If X$f){eg(A + K):KeK(X) and AK = KA}, there is a KeK{X) such that
AK = KA and X$og(A + K). Thus, R(A + K-X) is closed and k(A + K-X) = 0. Adding
the operator — K to A + K — X, we see that R(A — X) is closed and k(A — X) < oo ([5,
Theorem 5.9]). Hence A-XeV(X). To prove the converse suppose that A-XeV(X). If
k(A—X) = 0, then X$og{A) and the proof is complete. If 0<k(A — X), then by Theorem
2.1 we conclude that the space X decomposes into a direct sum of two closed subspaces
Xo and Xi. These subspaces are {A — A)-invariant, hence A -invariant, and have the
following properties: The space Xt is finite dimensional (and A — X is nilpotent on it).
If Ao is the restriction of A to Xo considered as an operator from Xo into itself
then k(A0 — X) = 0. Let F be the finite rank operator defined by F = / on Xu F = 0 on
Xo. Hence, AF = FA and R(A + F — X) is closed. Since A — X is nilpotent on Xx we
have N(A + F-X) = N(A0-X)<zR((A0-X)<°)czR((A0-X)'°)®Xl = R{(A + F-X)c°. Thus,
k(A + F-X) = 0, and X$og(A + K). This completes the proof.

Corollary 3.2 f] {ag(A + K):Ke F(X) and AK = KA} = agb(A).

Proof. Inclusion ' =>' is obvious. Suppose that X $ agb(A). From the proof of Theorem
3.1, there exists a finite rank operator F in B(X) such that AF = FA and X$og(A + F),
which proves the inclusion ' a'. This completes the proof.

Let us point out that Theorem 3.1 and its corollary can be proved without using
Theorem 2.1, but instead by using Kaashoek's [6, Theorem 3.2].
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Corollary 3.3. X e og(A)\ogb(A) if and only if X is an isolated point of ag(A),
0<k(A-X)<co and R(A-X) is closed.

Proof. This follows from Theorem 3.1, [5, Theorem 4.7] and [6, Theorem 4.1].

The polynomial hull £ of a compact subset E of the complex plane C is the
complement of the unbounded component of C\£. Given a compact subset E of the
plane, a hole of £ is a component of E\E. If F is another compact set such that
3£ <=£<=£, it follows that dEczdF, £ = F and E can be obtained from F by filling in
some holes of F. (Here and in what follows dE denotes the boundary of the set £.)

Corollary 3.4. Let AeB(X). Then

(i) agb(A)caek(A),

(ii) dcek(A)<=dogb(A) and agb(A) is nonempty,

(iii) dgb = oek{A),

(iv) aek(A) can be obtained from agb(A) by filling in some holes of agb(A),

(v) if agb(A) is connected, aek(A) is connected.

Proof. It is sufficient to prove (ii). It is well known that oek(A) is nonempty and
compact. Suppose Xoedaek(A) and XQ$cgb(A). Hence, k(A — Ao)<oo and R(A — k0) is
closed. Now, we know that there exists an £>0 such that 0<|A0 — k\<e implies that
R(A — X) is closed and a(A — X) and P(A — X) are constant, i.e., <x{A — X) = <x{A — Ao) —
k{A-X0) and ft{A-k) = P(A-ko)-k(A-ko) ([6, Theorem 4.1]). Thus A-Xoe<b+(X)Kj

), which is a contradiction. This completes the proof.

Corollary 3.5. Let A* be the adjoint operator of AeB(X). Then agb(A) = agb(A*).

Proof. This follows from Theorem 3.1, [15, Theorem 2] and [5, Theorem 3.7].

Recall that a(A), the ascent of A, is the smallest non-negative integer n such that
n) = N(An+1). If no such n exists, then a(A) = oo. Let A\M denotes the restriction of A

to the subspace M of X.

Corollary 3.6. Let A e V(X). Then the following statements are equivalent:

(i) A = V+F, where a(K) = 0, F is finite rank and VF = FV;

(ii) there exists a finite rank projection P commuting with A such that a(A^N{P)) = 0;

(iii) there exists e > 0 such that a(A + X)=0 for 0<|A|<e;

(iv) a(K)<oo.

Proof. If A satisfies any condition among (i)-(iv). t n e n Ae<t>+(X) and i{A)^0 ([11,
Lemma 2.5], [6, Theorem 4.1]). Thus, the proof follows by [17, Corollary 2.7] or [19,
Proposition 2.6].
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Let 0>(X) denote the set of all bounded projections P in X such that codim P(X) is
finite. The compression AP is a bounded linear operator on the closed subspace PX
defined by APy = PAy for each y in PX. Consequently, ag{AP) is the generalized
spectrum of this operator on the Banach space PX.

Theorem 3.7. For every bounded linear operator on a Banach space X we have

PA = AP}.

Proof. Suppose that A is not in agb(A). Then R(A — A) is closed and k(A — A)<oo, i.e.,
A — Xe V(X). Consequently, by Theorem 2.1 the space X is the direct sum of two closed
subspaces Xo and Xx which are -4-invariant and have the following properties: The
space Xt is finite dimensional (possibly zero) and A — A is nilpotent on it. If Ao denotes
the restriction of A to Xo considered as an operator from Xo into itself (and P the
projection of X onto Xo along Xx), then N((A0 — X)P)cR((A0 — X)P

D). Let us remark that
PA = AP, Pe&>(X) and R{(A-X)P) is closed (Remark 2.2). Thus X$<Tg(AP). This proves
that ogb{A)=> f){ag(AP): P e&(X) and AP = PA}.

To prove the converse inclusion, suppose that X is not in ag(AP) for some Pe^(X)
such that AP = PA. Thus R((A-X)P) is closed and k({A-X)P) = 0. Since A-X =
(A — X)P+{A — A)(/ — P) and (A — X)(I — P) is a finite rank operator, we conclude that
X$ogb(A) ([5, Theorem 5.9]). The proof is complete.

Let us remark that it has been observed by Zemanek that for Browder's essential
approximate point spectrum of A we have <jab(A) = (^\{aa(AP):Pe0>(X) and AP = PA}
([21, Theorem 3]).

4. Spectral mapping theorem for agb{A)

Theorem 4.1. / / A is any operator and p is any polynomial, then

Proof. Let X$p(ogb(A)) and p(t)-X = c(t-Xl)
mi...(t-Xk)

m>' with mf integers, c#0 and
X^Xj for i^j. Thus, p(A)-X = c{A-X1)

mi...(A-Xk)
mk and k^a^A) for

i=l,...,k. Consequently, we have that R(A — A,) is closed and k(A — A()<oo, for
i=l,...,k. From [5, Theorem 3.8], we know that R{(A - A,)"") is closed and by [5,
Lemma 3.11] k((A - A;)"") < oo for i=l,...,k. Let us remark that by ([4, Corollary]) we
have that

and

-X) = N((A-Xi)
mt)@...®N((A-Xk)

mi<).
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Thus R(p(A) — X) is closed. Further, by ([5, Lemma 2.1(a)]) and the elementary fact that
if A^O, then N((^ + A)00)<=/?(^00), for each integer n we have

N(p(A)-X)
N{p(A)-X)nR((p(A)-m

(N((A - Xt )
mi) 0 • •. 0 N((A - Xk)

mk)) n R((A - A,)"1"1) n . . . n U((i4 - AJ"""1)

AJ"1) n JJftX-AJ"1") © ...© N((A-Xk)
m-n) n

Thus,

JV(p(/l) - A) n K((p(/I) - If) ~ ̂  N((A - *,)»') n

and by [5, Theorem 3.7] it follows that k(p(A) - A) g S/c((/l - A,)""). Hence, A £ a9fc(p(/4)).
We now turn to the proof of the opposite inclusion. Suppose that A e p{agb(A)) and

k$ogb(p(A)). By the definition of ogb(A), we have that R(p(A) — A) is closed and
fc(p(/l)-A)<oo. By ([4, Corollary (hi)]) we know that R((A-X,)mi) is closed for
i=l,...,k. Since N((A — Xi)

n")<zN(p(A)—A), and for each positive integer m and
n,JV((y4-A,)m)<=/?((X-A/), (i#/), then by [7, Lemma 2.3] we have

dimN(p(A)-X)nR(tp{A)-Xn'

This shows that fc(/i-A;)<oo ([5, Theorem 3.7]), and by [5, Theorem 3.8] R(A-Xt) is
closed. According to this, we have that Aj$ogb(A), (i = l,...,/c), which provides a
contradiction. The proof is complete.

Theorem 4.2. Let A e B(X), and let D be an open neighbourhood of o(A). If f is a
rational function on D with no poles in D, then

Proof. We can write f=p/q, where p and q are polynomials and q has no zeros in
D. Hence, 0<tq(o{A)), q(A) is invertible and f{A)=p(A)q(A)~1 =q(Ay1p(A). For each
A G C we now write, assuming that pjq is not constant,
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Hence

and the proof of Theorem 4.2 follows by Theorem 4.1.

Let (Gn) be a sequence of compact subsets of C. The limit superior, lim sup Gn, is the
set of all X in C such that every neighbourhood of X intersects infinitely many Gn. To
show that if / is an analytic function defined on a neighbourhood of a(A), then
f(ogb(A)) = agb(f(A)) we shall prove the following statement.

Theorem 4.3. Let A, AneB(X), An-*A and AAn = AnA for each positive integer n.
Then

(i) Iimsupff9(/ln)c<rfl(>l),

(ii) limsupagb(An)c(jgb(A).

Proof, (i) It is enough to show that if 0 £ ag{A), then 0 $ lim sup <rg(An). Suppose that
Q$ag{A). Then R(A) is closed and k(A) = 0. Then, by [5, Lemma 4.2] we know that
there exists an e>0 and an integer n0 such that R(An—A) are closed for n^n0 and
k{An~X)=0 for |A|<e. Therefore, for n^n0 we see that <?g(An) n {AeC:|A|<e} is empty.
Thus, we have that 0 £ lim sup ag{An).

(ii) To prove (ii), it is enough to show that if Q$agb(A), then 0 $ lim sup ogb(An). If
0$og{A), then by (i) we know that 0 £ lim sup <rg(An), and 0 $ lim sup agb(An). If 0eag(A)\
agb(A) then R(A) is closed and 0<k{A)<co. Consequently, by [5, Theorem 4.10(a)]
there exists an e>0 and an integer n0 such that R(An — k) are closed and k(An — X)<co
for |A|<e and n^n0. Therefore, for n ^ n 0 we see that agb(An)n {AeC: |A| <e} is empty.
Thus we have 0 $ lim sup agb(An), and the proof is complete.

Remark 4.4. Let us remark that the commutativity conditions in Theorem 4.3 are
necessary. Examples in which ag and agb are not upper semi-continuous can be
constructed using the result of Goldman [3, Theorem 1]. In fact, if AeV(X) (V0(X)),
<x(/4) = oo and P(A) = oo, by [3, Theorem 1] there exists a sequence An of linear bounded
operators on X, with non-closed ranges, such that An-*A. Thus, we have that 0$agb{A)
(ag(A)) and 0 6 agb(An) for each n (which implies 0 e lim sup ogb(An)).

Theorem 4.5. Let A e B(X) and let f be an analytic function defined on a neighbour-
hood of a(A). Then

Proof. Let D be a neighbourhood of a(A), and let (/„(£)) be a sequence of rational
functions, with no poles in D, converging to fit) on D. We have
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= lim sup ogb(fn(A)) (by Theorem 4.2)

<= ogb(f(A)) (by Theorem 4.3(ii)).

To prove the converse suppose that n$f(ogb(A)). Thus, for each keagb(A) we have
that f(X)-n*0. Set #(A)=/(A)-/*. If g(X)*0 for each keo(A), then g(A) is invertible,
and ii$o(f{A)). Thus n$agb(f(A)). Now suppose that g(A) has zeros of order n, at
A,ea(A), i=\,...,k. Then

k

g(X)= f ] (A-A,)"'/!^) and h(A)#O for each
i = i

Set

By Theorem 4.1, we know that 0 $ cgb(p(A)). Then R(p(̂ 4)) is closed and k(p(A))<co.
Consequently, since h(A) is an invertible operator commuting with p{A), it is easy to see
that g(A)=p(A)h(A) has closed range and k(g(A))<oo. Thus, we have that fi$agb(f(A)),
i.e., ogb(f{A))cz f(ogb(A)). This completes the proof of the theorem.

5. Connected components of C\agb(A)

If AeB(X), then C\ogb(A) is an open set in the complex plane C. Let U be a
connected component of C\<rgb(A) and G = {keC\agb(A):k(A — A)#0}. By [6, Theorem
4.1] we know that G has no accumulation point in C\agb(A). A complex number
X e G n [/ is called a jumping point in U.

Remark 5.1. If A is a jumping point in U, then by Theorem 2.1(ii), there is an
,4-invariant finite dimensional subspace Nx in X such that A — A is nilpotent on it.
Consistent with the matrix case we define the (algebraic) multiplicity of the jumping
point A to be dim Nx. If U is a connected component of the semi-Fredholm region of A,
then our definition of the multiplicity of the jumping point A in U is consistent with the
definition in [18, p. 232] and [22, p. 449].

Theorem 5.2. Let A e B(X) and let U and G be as above. Then the functions

A-»N((/4-A)co) + «((/l-A)00) and A

are constant on U, while the functions

A)°°) and A
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are constant on U\G.

Proof. The proof follows from [9, Theorem 3] and ([5, Theorem 4.7(d), (e); Lemma
4.2(d), (e); Lemma 3.6]).

Remark 53. Let us remark that by [5, Lemma 3.6(a)] and Theorem 5.2 we have
that

R((A - A)00) + N{A - A)00) = R((A - A)"0) + cl(N((A - A)00))

for each A e U, where Nx is a finite dimensional subspace, Nx is A -invariant and
(A — X)\Ni is nilpotent on it. Thus, W is closed, hence a Banach subspace in X ([5,
Theorem 3.8]). The restriction of A to the subspace W has been studied in [16] and
[19].

Theorem 5.4. / / AeV(X), set vo{A) = sup {e > 0: A - A e V0(X) for 0<|A|<e} and
v(A) = sup{£>0:A-XeV{X) for |A|<e}- Then

v{A) = sup {vo(A + F):Fe F(X) and AF = FA}.

Proof. Let FeF(X) and AF = FA. Then A + FeV(X) ([5, Theorem 5.9]). If |A|<
vo(A + F), again by ([5, Theorem 5.9]) we have that A-X = (A + F-X)-Fe V(X).
Hence, vo{A + F)gv(A), i.e., sup{vQ(A + F):FeF{X) and AF = FA}^v(A).

To prove the other inequality suppose that e>0, and let p denote the total
multiplicity of the jumps having absolute value less than V(A) — E. AS in the proof of [18,
Theorem 1.1 (II)] (using Theorem 2.1 instead of Kato's decomposition theorem [9,
Theorem 4]) we conclude that the space X decomposes into the direct sum of two
closed subspaces Z and Y which are /4-invariant, dim Z = p and Z is the direct sum of
the finite dimensional summands at the jumping points kv(A),...,XP(A) (where each
jump appears consecutively according to its multiplicity). Let P2 = PeB(X) be the
idempotent with R(P) = Z and N(P)=Y. It is clear that PeF{X) and AP = PA. Set
F = aP, with |a|>||/4|| + t;(T). Now, as in the proof of [20, Theorem 7.1], for each A with
|A|<u(/i)-E we have that R{A + F-X) is closed and N{A + F-X)c:R((A + F~X)!a).
Thus, vo(A + F) ^ v(A) — e, and the proof is complete.

Lemma 5.5. Let Ae B(X) and let U, G and W be as above. Then:

(i) (A-k\wB<b_(W) for each AeU;
(ii) if XeU, then XeU nG if and only if A is a jumping point in the semi-Fredholm

region of A\W.

Proof. Let Ae U. Then W=R((A-X)m) © Nx (Remark 5.3). By [5, Theorem 3.4] we
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have that (A-X)W=(A-X)R((A-X)a3)@(A-X)Nx = R((A-X)co) @(A-X)NX. Thus,
(A—X)iWeQ>-(W), which proves (i). (ii) follows by Remark 5.1 and (i).

For a technical reason we suppose that the connected component U contains zero.
Then the points in G n U can be ordered in such a way that

where each jump appears consecutively according to its multiplicity. If there are only p
( = 0,1,2,...) such jumps, we put |Ap+1(X)| = |Ap+2(i4)| = i;(X).

Let S denote the closed unit ball of X. Let

q(A) = sup {e = 0: AS => eS}

be the surjection modulus of A. For each r = l,2,... we define

qr(A) = sup {q(A + F): rank F < r}.

Theorem 5.6. Let AeV(X), OeU, and let U, G and W be as above. Then for each
jumping point Xr{A), r = 1,2,... we have

Proof. By Lemma 5.5 we know that (A-X)]we<t>-(W) for each AeU, and that k,(A),
r= l ,2 , . . . are jumps (with the same multiplicity) in the semi-Fredholm region of A\W

(Remark 5.1). Thus, the proof of the theorem follows by [18, Theorem 1.1, pp. 232-233]
(since the stability index of the semi-Fredholm operator A\W is 0).

If T is a linear operator from a Banach space X to another Banach space Y, then the
reduced minimum modulus of T is defined by

= inf{||rx||:dist(x,Ar(T)) = l}.

For each r = 1,2,... we put

where Qv is the canonical map of X onto the quotient space X/V. Now, we have:

Corollary 5.7. Let A e B(X) and let kr(A), r = 1,2,...,[/ and W be as above. Then for
each jumping point Ar(/1), r = 1,2,... we have
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k

where p is the multiplicity of the jump at zero.

Proof. The proof follows by [22, Theorem 1, p. 451], Lemma 5.5 and Theorem 5.6.

Corollary 5.8. If Ae V(X), then

k

Proof. This follows from Corollary 5.7.

Let A e B(X) be a semi-Fredholm operator. Then the semi-Fredholm radius s(A) of A
is the supremum of all e^O such that the operator A — X is semi-Fredholm for |A|<2.

Corollary 5.9. Let A e V(X) and let Ar(/4), r = 1,2,..., U and W be as above. Then:

(i) if there is a finite number of jumps, then v(A)^s(A\W).
(ii) if there is an infinite number of jumps, then v(A) = s(A\w).

Proof. This follows by Lemma 5.5 and [6, Theorem 4.1].

We would like to finish this paper with the following questions:

Question 1. If Ae V(X), must limfcy(/l'[)1/'I =

(Let us remark that the limit exists (by Theorem 2.1 and the proof of [2, Theorem 2]).
If X is a Hilbert space, then the answer to the Question 1 is positive (see [1, Theorem
3.2, Corollary 3.4] or [13, Theoreme 3.1, Corollaire 3.9]).)

Question 2. If A, BeB(X) and AB = BAe V{X), must A, Be V(X)1

(Let us remark that if A, BeB(X) and AB = BAe V0(X), then A, Be V0{X) ([13, Lemma
4.15]).)

Question 3. If A, BeB(X), AB = BA and B is a quasinilpotent operator, must

(Recall that if X is a Hilbert space, A, BeB(X), AB = BA and B is a quasinilpotent
operator, then ag{A + B) = ag{A) ([13, Theoreme 4.8].)

Question 4. If A, Be V{X) (or V0{X)) and AB = BA, must ABeV(X) (or V0{X)), and
possibly k(AB)^
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