
A FAMILY OF GROUPS WITH NICE WORD PROBLEMS

Dedicated to the memory of Hanna Neumann

VERENA HUBER DYSON

(Received 27 June 1972)

Communicated by M. F. Newman

This paper is an outgrowth of my old battle with the open sentence problem
for the theory of finite groups. The unsolvability of the word problem for groups
(cf. [1] and [4]) entails the undecidability of the open sentence problem for the
elementary theory of groups and thus strengthens the original undecidability
result for this theory (cf. [7]). The fact that the elementary theory of finite groups
is also undecidable (cf. [2] and [6]) therefore justifies my interest in the open
sentence problem for that theory. This paper contains a construction of groups that
might lead to a negative solution.

With every set S of integers is associated a finitely generated group L(S) with
the following properties:

(i) L(S) has a solvable word problem if and only if S is recursive, and
(ii) the largest residually finite epimoprhic image of L(S) is isomorphic

to L(S*), where S* denotes the closure of S in the ideal topology on the ring of
integers.

For an appropriate choice of the set C, L(C*) is re presentable and residually finite
but has an unsolvable word problem. A suitable choice of the set D yields a group
L(D) that has a solvable word problem while the group L(D*) has an unsolvable
word problem, although the set of non-trivial elements of L(D*) is recursively
enumerable. A modification of D leads to an re presentable group L(£), for which
the set of trivial words is recursively inseparable from the set of non-trivial ones
of L(£*). A so-called finitary embedding of L{D) into a finitely presented group
would establish the undecidability of the open sentence problem for the theory
of finite groups. A finitary embedding of L(E) into a finitely presented group would
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[2] Groups with nice word problems 415

lead to the recursive inseparability of the set of open sentences true in all groups
from the set of open sentences whose negations are satisfiable in finite groups.
L(C) shows that not every decidable group is so embeddable. However, L(D)
and L(£) do satisfy an obviously necessary condition for finitary embeddability
and the question arises whether this condition might also be sufficient.

The groups L(S) are amalgamated products of two copies of the restricted
wreath product of the group of order two by the infinite cyclic group. They are
transparent enough to yield examples and counterexamples in many contexts.

1. Notation, definitions and generalities

If X is a set we denote by F(X) the free group generated by X. A triple,
{X, W, n), is asid to present the group G if W c F(X) and %: X -* G is a set map
whose natural extension n:F(X)-+G is an epimorphism, with kernel <<W»,
where «W}} is the normal closure of W in F{X). If n is the inclusion X -> F(X)
we simply write <Z; W) and identify this canonical presentation with the group
F(X)l((Wy}. If X is countable then any enumeration of X gives rise to various
intuitively effective bijections y of F{X) onto the set w of natural numbers. We
shall from now on consider X to be countable and fix such a bijection y. If
U a F(X) and y(U) is recursive or recursively enumeable, or is the complement of
a recursively enumerable set, then accordingly U is called recursive, re or co-re.
A presentation <Z, W, n} is said to be recursive, re or co-re if its kernel «W>>
has the corresponding property. If (X, W, n} presents the group G, U c G and the
preimage of U under n is recursive, re or co-re, then U is called 7r-recursive, 7t-re
or 7r-co-re respectively. It is clear now what we mean by a recursively, re ore co-re-
presentable group. Observe, however, that a recursively presented group in our
sense has a solvable word problem, while what we call an re presentable group
would often be called a recursively presentable one. The reason for this lies in the
fact that, for an re set W, one can always find a recursive set W such that
« W » = << W'}}. We have chosen our terminology because it is really the normal
closure « W}} that matters. If G is finitely generated then all the above properties
are independent of the particular choice of a presentation {X, W, n} for G,
provided X is finite. We then simply talk about re, co-re or recursive groups and
subgroups. If both X and W are finite then the presentation {X, W, 7t> is called
finite. We shall only be concerned with finitely generated groups.

Let X be a class of groups closed under isomorphisms. We denote by 0ttf
the class of all residually Jf groups, i.e., the subcartesian closure of Jf. For any
group G we set

MAG) = n {N^G\GINeJf}

KG =
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416 V. H. Dyson [3]

Then KG is the largest epimorphic image of G that belongs to ^JT, and
if and only if G = KG. If Jf" contains with a group also all its subgroups, then @Jf
is a reflective subcategory of the category 'S of all groups with reflector Kand unit
can: G -+ G jM#{G). Though the functor K obviously preserves epimorphisms
it does not in general preserve monomorphisms, since U < G only implies
Mx{U) < ^jr(G) n U. We call a monomorphism <f> : G -* H Jf-proper if
K(j>: KG -> KH is monic, i.e., if

Moreover, if W <= F(X), we set

<X, JF, 7t> is said to Jf -present H e ^?JT (or to present # as an ^Jf-group) if the
natural extension of n: X -*• H has kernel «W»:r> i.e., if n induces an isomor-
phism K(X, Wy = H. The concepts of recursiveness etc. introduced above carry
over to ^-presentations in an obvious way.

We now define the open sentence problem for the class Jf. The universal
closure of any Boolean combination of equations is called an open sentence. The
Boolean operations used here are those of conjunction, disjunction, negation and,
for convenience, also implication. Of particular interest to us are among them
the so-called conditional equations, i.e., open sentences of the form

S = (Vx^ -CVxJK = 1 &••• &wk = 1 => w = 1).

where the w/s and w are words on the variables xlt •••,xn and their formal inverses
X,-"1. The open sentence problem for the class Jf is said to be solvable (decidable)
if and only if there exists a uniform algorithm for deciding whether or not an open
sentence holds for all groups G e Jf'; in other words, if and only if the set of open
sentences valid for Jf" is recursive. We observe that the existence of a proof
procedure means that the set is re, and that of a disproof procedure means that it
is co-re. The conditional equation problem is defined similarly. It is clear that the
unsolvability of the conditional equation problem entails the unsolvability of the
open sentence problem. If the class is closed under direct products, then the two
problems coincide. We collect a few easily verified facts:

(1) IfGe Mtf, then every conditional equation that is valid in Jf holds in G.
(2) / / 3C is closed under finite direct products and Ge0iC^~ then every open

sentence that is valid in Jf" holds in G.
Now let X = {xu---,xn}, W = {w!,---,wfc} and let Cons^FF stand for the set of all
words weF(X) for which the sentence Z above is valid in Jf. If w^Cons^W
then there exists a homomophism of F(X) into a Jf-group, whose kernel contains
W but not w. Thus, if Jf contains with a group also all its subgroups, w $ « W}}#.
From this together with (1) follows:
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[4] Groups with nice word problems 417

(3) / / Ctf is closed under subgroups then
Observing that KG s F(X) / « W»# if G has a presentation <Z, W, 7r>, we obtain
from this

PROPOSITION 1. Let the class ctf of groups be closed under subgroups.
(i) A finitely presented group G belongs to SHcf if and only if all conditional

equations that are valid for Jf hold in G.
(ii) If there exists a finitely presented group G for which KG has an unsolv-

able word problem, then the conditional equation problem and hence also the
open sentence problem for X~ is undecidable.

We shall only be concerned with the class !F of finite groups and use the fol-
lowing terminology: Mf(G) = M#(G) is the finitary kernel of G and Gf = FG
is its finitary image, « W » / = «W»>- is the finitary kernel of the presentation
<X; Wy, and an ^"-proper monomorphism is a finitary embedding.

A few trivial considerations and the observation that a list of all finite
multiplication tables yields an effective enumeration of all finite groups which
uniformly displays decision procedures for their word problems lead to the fol-
lowing (cf. [5])

PROPOSITION 2. (i) Every finitely generated subgroup of a recursive group
is recursive.

(ii) A group that is embeddable in a finitely presented group is re.
(iii) / / a group G is finitarily embeddable in a finitely presentable group

then Gf is co-re.
(iv) / / a residually finite group H is embeddable in a residually finite

group that is finitely presentable as a residually finite group, then Hf is co-re.

COROLLARY. Every finitely presentable residually finite group has a solvable
word problem. In particular, every finitely generated nilpotent group has a
solvable word problem and so does every finitely generated metabelian group.

Note that finitely generated nilpotent or metabelian groups satisfy the maximal
condition on normal subgroups and are thus finitely presentable (cf. [3]).

We recall that Higman's remarkable result (cf. [4]) proves the unsolvability
of the word problem for groups by establishing the converse of (ii). The con-
struction of an re presentation (X; W}, X finite, for which « W » is recursively
inseparable from the complement F(X)\((W)yf, which also is re, leads to the
question, whether the converses of (iii) and (iv) might also be true, i.e.,

PROBLEM 1. Is every re group G with co-re finitary image Gf finitarily
embeddable in a finitely presentable group"?

PROBLEM 2. Is every residually finite co-regroup embeddable in a residually
finite group that is finitely presentable as a residually finite group!
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418 V. H. Dyson [5]

A positive answer to either problem would establish the undecidability of the
open sentence problem for the theory of finite groups. A positive answer to Prob-
lem 1 would entail the recursive inseparability of the set of conditional equations
valid for all groups from the set of those that fail in some finite groups.

2. The groups L(S)

We use the customary notation for presentations and denote by <t/>G and
« C / » G the subgroup and the normal subgroup of G generated by the subset U
of G, respectively. Whenever there is no danger of ambiguity we omit the subscripts.
By 7m(G) we denote the m-th term of the lower central series of G, i.e., yo(G) —
G,yn+1(G) = [yn(G),G]. Moreover we set:

[x, y(0)] = x, [x, y(n + 1)] = [[x, y(n)],y],

A = <a>, the infinite cyclic group generated by a,
An = <a; a">, the cyclic group of order n generated by a,
Bo = (b; b2}, the group of order 2 generated by b,

2W2\ A,
~ Bo i An,

B = «fc»L<iL, the base group of L, generated by the
Bn = «fc» t n < iL n , the base group of Ln.

Note that

Every element I of L or Ln has a unique normal form with / = Z or
{0, •••,« — 1}, respectively:

(1) l = ak Y\ b?', k e / , v, = 0 or 1, 0 for all but finitely many i,
i l

ak+k'( 2 ) //' = ak I ] fe-'

where the exponents of the bt are to be taken modulo 2, and, in the case of Ln,
the exponent of a is to be taken modulo n. It follows that L and Ln have solvable
word problems.

Let <x,tx'eA (or An), p,P'eB(oi Bm), then we have

(3) [/, /'] = iafi, a'/T] = [fl, a'] [/T, a] = [/', /] e B (or Bn),

(4) [/*/»',«] = I M [/*',«]•
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[6] Groups with nice word problems 419

Moreover, for all i, keZ,

(5) [b,,a*] = btbl+k, [6,,ak+x] = [bba
fc] [bi+k,a] and [bha"*] = [6,.,,a*],

(6) [ / U < | = [&«

in particular

(7) [/*,«2]

and thus by induction

(8) [/?,a2';| = [/

It follows from (3), (4) and (5) that

(9) yJL) = «[&, a(m)]» = <[*„ a(m)] | i e Z>

freely generated as an elementray abelian 2-group.

(10) \B/yJL)\=2m.

From (8) and (9)

(11) y2r(Ln) = y2r+1(Ln) for n = Tq, q odd.

(12) « a " » n B = «&&„» = <feifei+n | i e Z> = X <^i+B>-

We collect some conclusions from all this:

LEMMA 1. (i) If n = 2k then Ln is nilpotent of class n.
(ii) If n = 2kq, 1 # q odd, then the intersection of the lower central series

of Ln coincides with its 2*411 term and is non-trivial.
(iii) L is metabelian, and so is Ln.
(iv) L is residually an {Ln\n e U}-group for every infinite set U of positive

integers. In particular L is residually finite non-nilpotent as well as residually
a finite 2-group.

We now proceed to construct a group L(S) for every set S of integers. Let
L', generated by {a',b'}, be an isomorphic copy of L with the isomophism
a:L-*L' induced bya H O ' , fen b'. Given a set S £ Z we denote by a(S) the
restriction of a to the subgroup J(S) = (bt \ i e S>. We define L(S) as the free
product of L and L' with the subgroups J(S) and J'(S) amalgamated under o(S),
i.e.,

L(S) = L*L' = <.L,L'; {btbl\ ieS}}.
<r(S)

Similarly we define Ln(S) for S £ {0, ••-,« — 1}. As an amalgamated product of
finite groups Ln(S) is residually finite. Note that if S c T then L(T) is a proper
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420 V. H. Dyson [7]

epimorphic image of L(S). We shall establish a criterion for the residual finiteness
of L(S). For this purpose we need

LEMMA 2. Given groups G and H with subgroups U < G and V < H and
an isomorphism o:U-+V. Assume that JT and Jt are families of normal
subgroups of G and H, respectively, satisfying the following conditions:

(i) G/N and H \M are finite for all N e JT, M e Jt

(ii) to each Ne^V there exists M e J such that a restricts to an isomor-
phism U r\N —• V n M, and vice versa,

(ii) fl jr = i and pi jf = x>

(iv) PI {UN\NeJ^} = U and f] {VM\MeJt} = V.
Then the amalgamated product G*H is residually finite.

a

PROOF. If l # w = M ^ 1 / I 1 - - - gnhn in canonical form, then we can choose

N0,---,Nn and Mu---,Mn such that w^N 0 e>"or No = G (if u = I), g^UN,^
with JVX eJ^ or Nt = G (if gt = 1), g} $ UNS with N,e JV for j = 2,-,n,
1^ $ VMt with M, e ^T for i = 1, • •-,n - 1, and ftn £ FMn with Mn e Jt or Mn = if
(if /)„ = 1). Since w # 1 at least one of N0,---Nn, Mu---,Mn will belong to^T
or v#. Now pick M), j = 0,--,n and JV,', i = 1, ••-,«, so that cr restricts to iso-
morphisms Nj-nU-* M'j n F, iV; O 1/ ̂  M; n K, for Nj^G, M ^H and set
G' = H, H' = G. Then the normal subgroups

K = No n ••• nNnnM[ n ••• n M ;
and

are of finite index in G and H, respectively, and a induces an isomorphism
a': UK/K-yVJ jJ. But zxtyt •••xryr ^2x^1 •••xryr, where x i->Jc and y >->y
denote the canonical maps G^GjK and H^-HjJ, defines an epimorphism
G * H -> (G/K) * (H jJ). Since it preserves the normal form length of w and its
image is an amalgamated product of finite groups, and so is residually finite, the
lemma is proved.

Now a set S c Z is closed under the ideal topology of Z if and only if its
complement is open, i.e., if Z\S is the union of a family of arithmetic pro-
gressions,

Z\S = U {h + kZ\(h,k)eR}

for some set R £ Z x (Z \ {0}). We denote the closure of S by S*. The complement
Z\S* of S* is then the union of all residue classes contained in the complement
of S. We observe that S* is the intersection of all preimages of S under proper
epimorphisms of Z, or, using self-explanatory notation,
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[8] Groups with nice word problems 421

S* = 0 {S+mZ|meZ\{0}}.

The closed sets of integers are exactly those sets S for which L(S) is residually
finite!

THEOREM 1. The residually finite image (L(S))f of L(S) is canonically
isomorphic to L(S*), where S* denotes the closure ofS under the ideal topology of
S. In particular L(S) is residually finite if and only if S is closed.

PROOF. We show that Mf(L(S)) is the normal closure in L(S) of the set
{fcjbj|ieS*}. First let ieS*, and let <j):L(S)-+G be any epimorphism onto a
finite group. Then am, a""eKer<£ for some positive integer m. Now let
a:Z-»Z/mZ be the canonical epimorphism. Then, by the definition of S*,
s- ie Ker a for some seS. Hence bsbh fcs'fc/e Ker <p and, since bsb^ = 1 in L(S),
we have 6,6,'e Ker <f>. Thus &,&; e Mr(L(S)).

For the converse it suffices to show that L(S) is residually finite whenever S
is closed. We apply Lemma 2. with G = L,U = J(S), a = a(S), N = {N<iL\L/N
finite}, H = L', etc. Conditions (i),(ii) and (iii) are obviously satisfied and the
crucial point is to verify (iv). Now either S = Z or Z\S is infinite. But J(Z)
= B<sLandLjB ~ A is residually finite, so (iv) holds if S = Z and we may assume
that Z\S is infinite. Then there are functions, r,q: Z->Z defined by

M if heS,
n ) I the least keZ such that k> \h\ and h + kZcZ\S, if/i^S,

q(m)= fl r(h).
h = —m

Observe that the range of q is an infinite set of positive integers. Set Nm

= «a ? ( m ) » L . Then N m e ^ a n d to verify (iv) we show that f\metaJ(S)Nm

= J(S). Let

choose m^n large enough so that 111 < q(m) and 2n < q(m) and assume that
weJ(S)Nm. Since L/B ~ A, J(S) < B and | f | < g(m) we have t = 0 and

n
w" = II &f'»eJ(S) for some veNmnB.

i = —n

Now, by (12), v written in reduced form on the b/s is a product of words of the
form bjbj+zq(m). Thus, if vf i= 1, then either bt occurs in the reduced form of wv
or else it is replaced by 6i+zg(m), for some O ^ z e Z , since by choice of m,
I i + zq{m) I > /!. But i + zq(m) e i + r(i)Z, since m ̂  I i I, and so i + zq{m) $ S
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422 V. H. Dyson [9]

if i $ S. Therefore, if v; # 1 then i e S and so w e J(S). It follows that w e J(S)Nm

implies weJ(S). Hence f]m£l0J(S)Nm = J(S), all the conditions of Lemma 2
are satisfied, and L{S) is residually finite.

Incidentally, this proof shows that the residually torsion groups L(S) are
residually finite.

The re structure of L(S) is properly correlated with that of S, namely:

THEOREM 2. The group L(S) is re, co-re or recursive if and only if S has
the corresponding property.

PROOF.Because of the normal forms for L and for amalgamated products,

ieSif and only if bft = 1 in L(S), for all isZ.

Hence it is clear that L{S) is re, co-re or recursive whenever S is re, co-re or re-
cursive, respectively. Conversely, if S is re, then so is the entire set of defining
relators for L in terms of the generators, a,a',b,b' and so their normal closure
in F(a,a', b, b') is also re.

Now let S be co-re. Then a recursive enumeration of Z \ S gives rise to an
enumeration of the set T of all words of the form

where a, e A, a/e A', P, e J(Z\S), P) eJ'(Z\ S) and P e J'(Z) = B'. Since (*) is just
the normal form for the amalgamated product L(5), every element of L(S) is
equal to exactly one word of T. In particular, 1 equals the empty word A. Thus
we have the domain of L(S), and hence also L(5) — {1}, represented by an re set.
Note, however, that the multiplication of L(S) is not represented by a recursive
operation, e.g., if 0 £S then wt = a~k boeT and w2 = akb'k e T, but w{w2 = A
or bkb'ke T according as feeS or k^S. It remains to show that the set of all
words on {a,a',b,b'} that do not belong to the normal closure of {b,b{\ieS}
is re. This follows now from the fact that L(S) is effectively residually recursive.
More precisely, for any w # A as in (*) set

Iw = {k e Z | bk occurs in some ft or b'k occurs in some /?,},

and Sw = Z\IW. Then Sw is co-finite and hence recursive. Thus the kernel Kw

= {ueF{a,a', b, b'} \ u = 1 in L(SW)} is re. But w is clearly also in normal form
for L(SW). Hence, for all ueKw, wu # 1 in L(SW) and therefore wu # 1 in L(S),
since S <= Sw. It follows that U {wKw \weT- {A}} coincides with the set of all
nontrivial words of L(S). Since T is re and the sets Kw are re sets uniformly
dependent on the w's, this set is re.

Finally, if S is recursive then by above L(S) is both re and co-re hence re-
cursive. So the theorem is proved.
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3. The examples

We denote by P = {pn | n e X) the sequence of rational primes in their natural
order starting with p0 = 2. Every finite set S <= Z is clearly closed and so is Z
itself.

(1) If S aP then S' = S <j { - 1,1} is closed.

In fact, the complement of of S' is the union of all sets of the form mZ with
meP\S or — p + p2Z with peS. Whether or not the closure of S <= p contains
1 or — 1 depends on whether or not S contains for every positive integer m a
prime congruent modulo m to 1 or — 1, but this question does not concern us
here. Let R be any non-recursive re set, and let S t = {pn e P | n e R}, S2

= {pn e P | n 4 R}- By Theorems 1. and 2. we have

(2) The groups L(S'^) and L(S'2) are both residually finite groups with unsolvable
words problems. L(S[) is re and L(S'2) is co-re.

It follows from Proposition 2. that these groups are neither finitarily embedda-
ble into a finitely presentable group nor embeddable into a residually finite group
that is finitely presentable as a residually finite group.

Now let / : co -»• ca be a fixed recursive function whose range is not recursive
and define the recursive function g: co x <U-»OJ by

g(n,0) = 0, g{n, m + 1) = g(n, m)+\\n -f(g(n, m)) \\
and

g(n, - m) = - g(n, m) for meco, where 101 = 0 and | x || = 1 for x # 1.

(3) g(n, m)= m if n$ Imf, the range off,

|g(f(k), m)| g k, for all k eco, m eZ .

We define h: co x co -> co by

h(n, m) = m(l - || n -f(g(n, m)

(4) / i(«,m)=0 if n $\mf,

h(f(k), m) = m, for | m | Jg k and all keco.

The sets of integers C and D are now defined as follows:

C = Z\{pn + g(n,m)pn\\neco, meZ}

D = Z\{pn + h(n,m)pnl\neco, meZ} .

Clearly 1, - 1 e C U D, 0 $ C if and only if / (0) = 0 and 0 $ D if and only if
/(0) # 0. For an arbitrary integer t with 111 > 1 we have the following situation:
t $ C if and only if for one of its prime divisors, say pk, an integer r can be found
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such that | r | < | « | , | r | = g(k, \ r |) and t — pk = rpk!; similarly for t$ D where
the function h replaces g. It follows that

(5) C and D are recursive sets.

We claim that the closures of C and D are the following sets:

(6) C*=

(7) D* = Z\{pm + mPf(k)\Z\ keco,m^k} = {Pn\nt Im/} U D.

That these sets are closed is clear and that they include C and D respectively
follows from (3) and (4). To prove (6) it remains to show that

r==Pnk) + g(f(k),m)pf(k)\eC* for all kew, meZ.

Now let q be an arbitrary positive integer and assume that

r + q{2k + l)pnk)l = pn + g(n,j)pn\

for some necoJeZ.Un =/(/c) then g(f(k),j) = g(f(k), m) + q(2k + 1). But by
(3) | g(f(k),j) | :g k, for all j e Z, and we have a contradiction. On the other hand,
if f(k) < n, then the left-hand side of our equation is divisible by pf(k) but not the
right side. Similarly we argue if n <f(k). Thus we have found an integer in the
residue class r + qZ that does not belong to the complement of C. Therefore
Z\C includes no open neighbourhood of r and reC*. To establish (7) we first
observe that if n e Im/and k is the least natural number x such that n = / (x ) , then

/ />/(*)> if | m | < fe
pn + h(n,m)pn\ = j . . . I I._ ,

Thus by (4) it remains to show that pn e D* for n £ Im/. Assume that then n $ I m /
and that, for some q ̂  1,

pn + qpnl = Pi+ h(l,m)pll for some leco, meZ.

By (4), / ¥= n. But, if n < I, then the left side of the equation is divisible by pn and
the right side is not. Similarly it follows that 1 <fc n. Therefore no residue class of
the form pn + qZ is entirely contained in the complement of D and we have shown
that pneD*, which proves (7).

Clearly C* is re but not co-re and D* is co-re but not re. Now let / b e chosen
so that its range is recursively inseparable from the range of a recursive function s
and set

E = D u{ /> n | ne lms} .

(7) implies that £ c D * . Hence E* = D* and {pn\nelmf} <=Z\E*, and we
obtain
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(8) E and Z\E* are recursively inseparable re sets.

From Theorems 1, 2 and Section 1 now follows:

THEOREM 3. (i) L(C) is finitely generated and has a solvable word problem.
L(C)j is residually finite and re but has an unsolvable word problem. L(C) is not
finitarily embeddable in a finitely presentable group.

(ii) L(D) is finitely generated and has a solvable word problem. L(D)f is
residually finite and co-re but has an unsolvable word problem. Moreover L(D)
has an epimorphic image L(E), with L(E)f = L(D)f, such that the set of trivial
words of L(E) is recursively inseparable from the set of non-trivial words of

(iii) / / L(D)f is embeddable in a group that is finitely presentable as a
residually finite group, then the open sentence problem for the theory of finite
groups is undecidable. If L(E) is finitarily embeddable in a finitely presentable
group, then the set of conditional equations true in all groups is recursively
inseparable from the set of conditional equations that fail in some finite groups.

We conclude by observing that replacement of the ideal topology by the
2-adic topology leads to similar results for residually finite 2-groups.
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