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Abstract
ThedinoflagellatesHematodinium spp. are important endoparasites of a wide range of decapod
crustaceans from across the globe. High prevalences of infection have been reported particu-
larly in decapods of commercial importance including crabs and some lobster species. While
such infections usually result in their death, the dynamics of these differ widely depending on
location, the genotype of Hematodinium and host. This review aims to explore the interaction
between these parasites and their hosts with particular emphasis on the diversity of host range,
methods of detection, impact on fisheries and how this parasitemultiplies within hosts without
causing any apparent cellular immune response. Emphasis is placed on evaluating the future
directions required to solve key unanswered questions of this increasingly important parasite.

Introduction and background

It is nearly a century since 2 French scientists, Chatton and Poisson (1931), recorded a novel
protistan endoparasite in both shore crab (Carcinus maenas) and harbour crab (Liocarcinus
depurator) haemolymph but at low prevalence (<1%).They named this parasiteHematodinium
perezi after Professor Charles Pérez who had first observed it in shore crabs in 1905 and the
drawings accompanying their paper showed several morphological forms including multin-
ucleate elongate plasmodia with characteristic dino-mitotic chromosomes as seen in other
dinoflagellates (Gornik et al., 2019). Some 40 plus years later, the presence of Hematodinium
sp. was reported in blue crabs, Callinectes sapidus, collected from several locations in North
America but at a much higher prevalence (ca. 30%) at least in 1 site (Newman and Johnson,
1975). A second species of this parasite was identified in 1994 in Moreton Bay, Australia by
Hudson and Shields (1994) in the sand crab, Portunus pelagicus and, based on its different mor-
phology to the type species, it was named Hematodinium australis. Since these initial reports,
over 45 species of marine decapod crustaceans from across the globe have been recorded as
hosts to these parasites (see Alimin et al., 2024; Small and Li, 2025 for maps of their geographic
location). There are no known control measures or treatments to combat the effect of infections
caused by Hematodinium spp. (Coates and Rowley, 2022; Small and Li, 2025).

Hematodinium spp. belong to the eukaryotic phylum Dinoflagellata and members of this
assemblage are found in both marine and freshwater environments. Most of the ca. 2400 rep-
resentatives of this monophyletic group are free living plankton and are either photosynthetic
autotrophs, mixotrophs or heterotrophs (Gómez, 2012). However, ca. 150 are ecto- or endo-
parasites of a range of hosts including ciliates, invertebrates, vertebrates and other dinoflagellates
(Coats, 1999).These parasitic forms include Syndinium turbo an endoparasite of variousmarine
copepods (Skovgaard et al., 2005) and the ectoparasitic Amyloodinium ocellatum found on var-
ious marine and brackish water fish where the trophont stage feeds on gill epithelia resulting
in damage and inflammation (Rückert, 2025). The nucleus of dinoflagellates contains unusual
DNA where the chromosomes are constantly condensed during interphase and this gives
Hematodinium its characteristic nuclear morphology observed in live and fixed, stained prepa-
rations (Figure. 1A–D)making it relatively easy to identify these parasites in either haemolymph
or solid tissues. The genome of many dinoflagellates is extremely large ranging from 1 to 250
Gbp (Lin, 2024) and inHematodinium it is 4.8 Gbp (Gornik et al., 2012), but the reason for this
evolutionary expansion of the dinoflagellate genome is unclear (Talbert and Henikoff, 2012). A
second unusual feature of the nuclear material of Hematodinium and many other dinoflagel-
lates, is the apparent lack of histone proteins and their ‘replacement’ with novel DNA binding
proteins christened dinoflagellate/viral nucleoproteins (Gornik et al., 2011).

Many commercially important decapods from fisheries and aquaculture sectors are subject
to parasitization by Hematodinium spp. including Norway lobsters (langoustines), Nephrops
norvegicus (e.g. Field and Appleton, 1995; Appleton and Vickerman, 1998; Small et al., 2006;
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2 Andrew F. Rowley

Figure 1. Examples of the variable morphology of life
history stages of Hematodinium. (A) Characteristic con-
densed chromatin in individual trophonts in the hep-
atopancreas. (B) Trophonts in the connective muscle
between muscle fibres. (C) Phase contrast view of live
trophonts in the haemolymph showing condensed chro-
matin (arrow). (D) Multinucleate plasmodia (arrows)
attached to the inner margin of gill lamella. Images A,
B, and D, H&E-stained sections. Scale bars = 10 µm.

Molto-Martin et al., 2024; Martin et al., 2025) and edible crabs,
Cancer pagurus (Ní Chualáin et al., 2009; Ní Chualáin and
Robinson, 2011; Smith et al., 2015) in Northern Europe, inva-
sive blue crabs C. sapidus in the Mediterranean (Patrizia and
Giorgio, 2018; Lattos et al., 2024) and in their native range (Messick
and Shields, 2000; Small et al., 2019), Tanner, Chionoecetes bairdi
(Meyers et al., 1987; Wheeler et al., 2007; Siddeek et al., 2010),
and snow crabs, Chionoecetes opilio (Taylor and Khan, 1995; Pestal
et al., 2003; Shields et al., 2005, 2007; Fedewa et al., 2025) in North
America, and Chinese swimming crabs, Portunus trituberculatus
(Li et al., 2013; Wang et al., 2017), mud crabs, Scylla paramamo-
sain (Li et al., 2008), giant tiger prawns, Penaeus monodon (Wang
et al., 2017), Ridgetail white prawns, Exopalaemon carinicauda (Xu
et al., 2010), Asian bush-clawed crabs,Hemigrapsus takanoi (Gong
et al., 2023) and mudflat crabs, Helice tientsinensis (Huang et al.,
2019) in China. The effect of disease by Hematodinium spp. on
these populations can be profound and it is often fatal. In some,
infections are enzootic within crustacean populations and apart
from seasonal change in their occurrence, differ little from year to
year in their presence. Such infections include those of langoustines
in the Clyde Sea Area, Scotland, UK (Molto-Martin et al., 2024)
and edible crabs in South Wales, UK (Smith et al., 2015). In others,
including Tanner and snow crabs, environmental changes includ-
ing increased water temperatures, appear to drive higher levels of
infections both in terms of prevalence and severity (Table 1). Such
epizootic outbreaks can alone result in population declines or exac-
erbate these caused by other factors such as overfishing and climate
change.These can result in the closure of the fishery, economic loss
due to the death of infected crabs, and to the loss of marketabil-
ity, because of the bitter taste of the infected muscle in some crabs
(hence the disease is sometimes referred to as bitter crab disease)
(Balstad et al., 2024).

The rationale for this review is not to simply update the exist-
ing excellent and comprehensive reviews of Hematodinium spp.
published over the last 20 years (e.g. Stentiford and Shields, 2005;
Small, 2012; Li et al., 2021a; Alimin et al., 2024) but to exam-
ine in depth some of the areas where our understanding of these

infections is still uncertain. These include (1) an exploration of
how these parasites can flourish in the tissues of so many dif-
ferent hosts apparently free of a cellular immune response, (2)
the consequences of inadequate approaches to the detection of
infected crustaceans of relevance to fisheries science and aqua-
culture development and (3) a reappraisal of infection dynamics
and the involvement of secondary infections in the pathogenesis of
these parasites taking into account the diversity of different parasite
genotypes.

How many species of Hematodinium are there?

While only 2 distinct species ofHematodiniumhave been described
(H. australis and H. perezi) there is known diversity in the ITS
region of rDNA within H. perezi. As reviewed by Small (2012), Li
et al., (2021a) and Small and Li (2025), there are 3 genotypes (I,
II and III) in this latter species with differing host ranges and geo-
graphic locations. Genotype I, found mainly in Northern Europe,
infects L. depurator and the shore crab, Carcinus maenas (Small
and Li, 2025), while genotype II is chiefly restricted to China in a
variety of crabs and shrimp (Xiao et al., 2016; Li et al., 2021a). H.
perezi genotype III is found in North America in a wide range of
crustaceans including C. sapidus (Pagenkopp Lohan et al., 2012,
2013; Small and Li, 2025). Whether crustaceans are susceptible to
infections with more than 1 genotype (i.e. infected simultaneously
with several genotypes) is unknown.

What is the host range of Hematodinium spp.?

There are still increasing numbers of reports year on year of new
hosts shown to be subject to infections by Hematodinium spp.
For instance, since a recent review in 2021 by Li and co-authors
(Li et al., 2021a), several new hosts have been reported includ-
ing Asian bush-clawed crabs, Hemigrapsus takanoi (Gong et al.,
2023) the marine crab, Macrophthalmus abbreviatus (Liu et al.,
2024) and the Chinese mitten crab, Eriocheir sinesis (Kerr et al.,
2025). This continued increase in host range suggests that all true
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Table 1. Examples of outbreaks of infections caused by Hematodinium in crustaceans of commercial importance

Host Location Fishery/aquaculture Comments References

Velvet swimming crabs
(Necora puber)

Brittany, France Fishery 96% decrease in crab capture
believed to be at least
partially driven by
Hematodinium

Wilhelm and Mialhe (1996)

Blue crabs (Callinectes
sapidus)

Atlantic and Gulf coasts, USA Fishery Decline in blue crab thought
to be linked to disease
including bitter crab disease
caused by Hematodinium sp.

Messick and Shields (2000);
Lee and Frischer (2004); Lycett
and Pitula (2017)

Snow crabs (Chionoecetes
opilio)

Newfoundland, Canada Fishery Epizootics driven by rising
bottom temperatures (causing
higher frequency of moulting
and increased susceptibility
to infection?)

Shields et al. (2005), (2007)

Snow (C.opilio) and Tanner
(C. bairdi) crabs

East Bering Sea, Alaska, USA Fishery Declines in populations
considered to be linked to
crab mortality and
recruitment failure.
Hematodinium thought to be
an important driver of
mortality based on
re-assessment of prevalence
following improvement of
detection assay (see Table 2)

Fedewa et al. (2025)

Portunus trituberculatus and
Penaeus monodon

Various coastal regions of
China including Shandong
Peninsula

Aquaculture High levels of mortality in
polyculture pond system of P.
trituberculatus and P.
monodon caused by H. perezi
(genotype II). Reservoirs of
infection in co-located wild
crabs with potential of
transfer disease

Li et al. (2013); Wang et al.
(2017); Huang et al. (2019)

(brachyuran) crabs in the marine environment are susceptible to
this host-generalist parasite. Outside of these true crabs, king crabs
(Ryazanova et al., 2010, 2021) of the family Lithodidae, some
penaeid shrimp (Wang et al., 2017), the homarid, N. norvegicus
(Field and Appleton, 1995; Small et al., 2006; Molto-Martin et al.,
2024; Martin et al., 2025), the anomuran hermit crab, Pagurus
bernardus (Hamilton et al., 2009) and possibly some amphipods
(Pagenkopp Lohan et al., 2012) are hosts. Notable by their absence
as hosts are the commercially important clawed lobsters,Homarus
americanus andH. gammarus found in North America and north-
ern Europe, respectively. These 2 species have been subject to
extensive investigations of their parasites and pathogens over
the last few decades (see reviews by Davies and Wootton, 2018;
Cawthorn, 2011 for details) yet no reports exist on the presence
of Hematodinium or Hematodinium-like parasites in their tissues.
A preliminary trial to infect juvenile H. gammarus with trophonts
of Hematodinium sp. (probably H. perezi genotype I) from an
infected edible crab,C. pagurus donor, failed to find any evidence of
ensuing infection (Davies and Rowley, 2015). Therefore, it can be
concluded that while all brachyuran crabs living in high-salinity
environments are probably susceptible, this is not the case for all
homarids. This lack of susceptibility in the latter group deserves
further exploration to determine the mechanisms of resistance.
Such an approach may shed light on how Hematodinium avoids
detection and elimination in susceptible hosts.

Both the European shore (= green) crab, C. maenas and the
blue crab, C. sapidus are recognized as ‘successful’ invasive non-
native species. The ‘natural’ range of shore crabs is in northern
Europe but they have spread to the Americas, Africa and Australia

over the last 200 years (Ens et al., 2022). Similarly, blue crabs,
native to the Western Atlantic, appeared in the Mediterranean by
the 1940s and the Atlantic coast off Morocco in 2019 (Oussellam
et al., 2023).When these non-native species relocate to new regions
they can either bring parasites, such as Hematodinium, with them
or act as novel hosts by spillback. There are reports of shore
crabs infected with Hematodinium along their invasion route in
the Faroe Isles but not in Nova Scotia in Canada (Bojko et al.,
2018). Similarly, infected blue crabs have been recorded in the
Mediterranean (Lattos et al., 2024) and off Morocco in the Atlantic
Ocean (Lamkhalkhal et al., 2024). Whether these infections were
carried by infected crabs during these invasions or acquired from
other native crabs once in their new locations, is unclear but this
gives the potential for mixing of Hematodinium spp. genotypes as
already described. The form of this parasite in blue crabs in the
Mediterranean appears to be distinct to the H. perezi genotype III
found in this species back in its native range in America (Lattos
et al., 2024; Small and Li, 2025) suggesting its acquisition from
other decapods in its new environment. Similarly, the recent obser-
vation of H. perezi genotype 1 in non-native Chinese swimming
crabs, Eriocheir sinensis in the River Thames, UK, suggests that it
has become an accidental host for this parasite in its new habitat
(i.e. by spillback) (Kerr et al., 2025).

How are Hematodinium infections identified?

There are several approaches to the detection of Hematodinium
that vary in terms of their practicality, cost, sensitivity and speci-
ficity (Table 2). Visual approaches, such as those carried out
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4 Andrew F. Rowley

Table 2. A comparison of the methods commonly used to determine the presence of Hematodinium in decapods and environmental samples

Method Sensitivity* Specificity* Comments (‘pros and cons’) Examples

Visual (colour change in
carapace)

Low (only identifies
advanced infections)

Medium Rapid test particularly
relevant to field observations
but underestimates infection
levels in animals with
sub-clinical infections

Pestal et al. (2003)

Visual (e.g. pleopod
observation in langoustines)

Low-medium (known to
miss low level infections)

Medium Rapid test, that usually
involves use of low power
microscope and looks for
accumulations of parasites
under the cuticle

Field et al. (1992);
Molto-Martin et al. (2024);
Martin et al. (2025)

Haemolymph opacity
(examination by eye)

Low Low Milky appearance reflects
haemolymph parasitaemia
but many other infectious
agents (e.g. fungi and
haplosporidians) can also give
this appearance. Needs
follow-up with microscopy
and/or PCR to prove presence
of Hematodinium

Xu et al. (2010); Small (2012)

Haemolymph preparations Medium-high High Needs experienced
microscopist. Preparations
can be observed with phase
contrast or brightfield optics
using neutral red to stain lipid
droplets in parasites that aids
in differentiation of parasites
from haemocytes. Rapid
assessment that is
quantifiable

Messick (1995); Pestal et al.
(2003); Shields (2017); Davies
et al. (2019), Davies et al.
(2022)

Histology Medium-high High Hematodinium forms easily
seen due to unusual nuclei
with condensed chromatin
that stain intensely blue/black
with haematoxylin
dye (Figure. 1). Advantage is
that histology reveals the site
and location of parasites and
general pathology of
infection. Lengthy procedure
that needs careful
interpretation to avoid
artefacts of processing

Field and Appleton (1995);
Stentiford et al. (2002);
Wheeler et al. (2007); Ní
Chualáin and Robinson
(2011); Small et al. (2012);
Davies et al. (2019)

Immunoassays (ELISA, blots,
immunofluorescence)

Medium-high High Lengthy procedure relies on
specificity of antiserum not
commercially available. Rarely
used after advent of
PCR-based assays

Stentiford et al. (2001a); Small
et al. (2002); Gornik et al.
(2013)

PCR and qPCR (and ISH**) High High (may allow
determination of
genotypes I–III of H.
perezi)

Several primer sets developed
including long base pair
sequence in ITS1&2 region of
rRNA complex useful for
taxonomic elucidation. ISH
may be a useful addition to
basic histology in some cases

Hudson and Adlard (1994,
1996); Gruebl et al. (2002);
Small et al. (2006, (2007)); Xie
et al. (2025)

eDNA High High Primary employed to find free
living forms of parasite in
water column and those
associated with zooplankton
(e.g. megalopa stage in crab
life cycle). Can be highly
sensitive

Li et al. (2010); Hamilton et al.
(2011); Hanif et al. (2013);
Davies et al. (2022)

*Low/medium/high.
**In situ hybridization.
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onboard survey vessels or in the field, while lending themselves
to rapid assessment, are not sensitive enough and only iden-
tify heavily affected animals in the later stages of infection (e.g.
Beevers et al., 2012; Fedewa et al., 2025; Martin et al., 2025). These
approaches include the pleopod method used with langoustines
(e.g. Field et al., 1992; Field andAppleton, 1995; Albalat et al., 2016;
Molto-Martin et al., 2024; Martin et al., 2025) and colour/opacity
changes in the appearance of the ventral carapace (e.g. Pestal et al.,
2003; Martin et al., 2025) that can be subjective to the investiga-
tor. Indeed, a recent re-evaluation of seasonal prevalence data from
the east Bering Sea in snow and Tanner crabs compared preva-
lence data of disease between a macroscopic assessment based of
carapace colour change compared with the more sensitive PCR-
basedmethod (Fedewa et al., 2025). Not only did the visualmethod
fail to identify 93% of infected individuals but the study demon-
strates a rapid rise in the prevalence of disease from just ca.
10% in 2015 to 40% by 2017 lending weight to the concept that
Hematodinium infections are amajor driver in population declines
of these crabs (Tables 1 and 2).

An increasing number of studies have deployed a comprehen-
sive range of approaches to assess the importance ofHematodinium
in their hosts. Some include histology that has the advantage of
revealing changes in host tissues as these parasites multiply in
the haemolymph but dealing with large numbers of samples for
histology necessary to adequately monitor changes in seasonal
prevalence and severity of infection, can be challenging. Using this
approach, togetherwith PCR-basedmethods, gives the researcher a
full picture of this condition that PCR-basedmethods alone cannot
accomplish. For instance, Davies et al., (2019) carried out a large-
scale survey ofHematodinium infections in the shore crab, C. mae-
nas in South Wales, UK, over a 12-month period involving ∼1200
crabs. These were all initially examined with live haemolymph
preparations to determine if crabs were infected followed up with
histological analysis. All crabs regardless of infection status were
also checked for Hematodinium using several sets of PCR primers
(Small et al., (2007); Gruebl et al., 2002) specific for this parasite.
Those crabs found to be positive by PCR but apparently negative
by histology and microscopic examination of haemolymph, were
re-reviewed by histology. This approach confirmed that histology
alone correctly identified over 95% of all crabs with clinical and sub
patent infections.

How are Hematodinium spp. transmitted?

Late-stage infections in some crustaceans have been shown to
generate a motile stage termed the dinospore (Figure. 2A,B) that
develops in the haemolymph and is thought to be responsible for
transmission of the disease (Chen et al., 2023; Zhang et al., 2025b).
Two forms of dinospore have been described, termed micro- and
macro- at least in some hosts (e.g. Appleton and Vickerman, 1998;
Huchin-Mian et al., 2017; Zhang et al., 2025b). Microdinospores
appear to be faster swimmers than themacro forms (Huchin-Mian
et al., 2017; Zhang et al., 2025b). Therefore, macrospores may be
less infectious because of their lower swimming activity (Chen
et al., 2023). Whether the dinospores of different genotypes of H.
perezi have divergent abilities to swim and infect is unknown.

As there may be several species of susceptible decapods in the
vicinity when a ‘cloud’ of dinospores is released from the gills, there
is chance for the condition to be spread into other adjacent popula-
tions. The dinospore stage is relatively short-lived (>a few hours)
and it is not tolerant of low salinity environments (Coffey et al.,
2012; Zhang et al., 2025b). Its production is also stimulated by high

Figure 2. Dinospore formation and release in the Norway lobster, Nephrops norvegi-
cus. (A) Aquarium-based release of clouds of dinospores from N. Norvegicus, note
cloudy appearance of water post-release. (B) Appearance of flagellated (unlabelled
arrows) dinospores using interference microscopy. Scale bar = 10 µm. Images cour-
tesy of I. Molto-Martin and A. Albalat.

water temperatures (Chen et al., 2023).Howdinospores gain access
to the internal tissues of their hosts is unknown. Possible routes of
entry include across the gut wall, via the gills with their thin outer
epithelium and acellular cuticle, or across the main cuticle perhaps
where there are injuries (Rowley and Coates, 2023). Transmission
via cannibalism of infected animals has not been proven (Li et al.,
2011) probably because the stages of parasite observed in tis-
sues (i.e. trophonts and filamentous trophonts/plasmodia) are not
the natural invasive stage. However, intrahaemocoelic injection of
trophonts taken from infected decapods will develop in naïve hosts
and this has formed the basis of experimental infections aimed to
investigate how these parasites develop in their hosts (e.g. Messick
and Shields, 2000; Smith and Rowley, 2015). Natural transmission
of infections between co-inhabitants have been observed under
aquarium conditions using juvenile blue crabs (Callinectes sapidus)
as experimental hosts (Chen et al., 2023). Changes in temperature
and high temperatures (25 ºC) were reported to favour dinospore
production and transmission, and this was found to correlate with
sea temperatures during peak transmission of the disease as found
in the late summer – early autumnmonths in the USA. In contrast,
peak transmission of Hematodinium sp. (probably H. perezi geno-
type I) in C. pagurus and C. maenas occurs in the winter months
at low sea water temperatures (Smith et al., 2015; Davies et al.,
2019) perhaps reflecting differences in the triggers for dinospore
generation ofH. perezi genotype III in the USA with genotype I in
northern Europe.

What are the effects of parasitization of crustaceans by
Hematodinium spp.?

While it is widely reported that decapods parasitized by
Hematodinium die probably because of the release of dinospores
causing damage to the gills and metabolic exhaustion, the
timescale of this from initial infection through to death varies
widely between host, parasite genotype and their geographic
location. Generally, crustaceans in warmer waters appear to
succumb to parasitization quicker than those in colder waters
probably because multiplication of Hematodinium is temperature
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Table 3. Examples of effects of Hematodinium infection on physiological and behavioural processes

Effect Crustacean Comments References

Respiration Nephrops norvegicus 50% reduction in oxygen carrying
capacity of haemolymph, x5
increase in oxygen consumption
to compensate. Increase in
anaerobic respiration

Taylor et al. (1996)

Moulting Cancer pagurus Increase in intermoult period
following infection
(i.e. suppression of moulting) but
see Huchin-Mian et al. (2018) with
no change in moult frequency in
blue crabs

Smith and Rowley (2015)

Carbohydrate metabolism N. norvegicus and Callinectes
sapidus

Reduction in haemolymph
glucose and hepatopancreatic
glycogen with increasing severity
of infection

Stentiford et al. (2001b); Shields
et al. (2003)

Acid and alkaline phosphatases Portunus trituberculatus Short-term (3–96 hr) increase in
enzyme activities in
hepatopancreas of artificially
infected crabs

Li et al. (2015a)

Protein Various including C. sapidus Reduction in haemolymph total
protein including the respiratory
pigment and immune factor,
haemocyanin

Shields et al. (2003); Conneely and
Coates (2025)

Muscle (meat) structure and
biochemistry

N. norvegicus Depletion of glycogen, alteration
of amino acid profiles, some
apparent structural damage and
increased autolysis post-mortem
affecting commercial value (and
taste/meat texture)

Stentiford et al. (2000); Albalat
et al. (2012)

Total haemocyte numbers Various including C. pagurus Reduction in haemocyte count
(haemocytopenia) in later stages
of infection probably resulting in
heightened chance of secondary
infections and reduced clotting

Smith and Rowley (2015); Rowley
et al. (2015); Conneely and Coates
(2025)

Behavioural C. sapidus Changes in behaviour including
locomotion, burying and
avoidance that may result in
higher predation

Butler et al. (2014)

dependent (e.g. Huchin-Mian et al., 2018; Shields, 2019) and so
changes in sea water temperature caused by climate change may
in future affect the distribution and importance of these parasites
in some locations (Byers, 2020; Rowley et al., 2024). Physiological
and biochemical studies reveal that infected hosts have reduced
glycogen reserves in the hepatopancreas, and glucose and protein
in their haemolymph (Table 3 and references therein). Moulting
is inhibited by an unknown mechanism hence increasing the
intermoult period at least in some crabs (Smith and Rowley,
2015). A major change of significance to immune responsiveness
and haemolymph clotting is the marked reduction in the number
of circulating haemocytes (termed haemocytopenia) in several
host species (Conneely and Coates, 2025). The cause of this rapid
reduction in haemocyte numbers is unknown but could result
from a targeting of haemopoiesis or simply due to metabolic
exhaustion resulting in shifts in energy resources away from
haemocyte production. In edible crabs (C. pagurus) where the
time from first infection to death under aquarium conditions is
lengthy (93–378 days post-challenge in C. pagurus; Smith and
Rowley, 2015), there appears to be 2 phases in haemocytopenia
(Figure. 3A–C). Initially, the numbers of haemocytes in infected
crabs are relatively unchanged but as the parasites in the tissues

quickly develop in warmer months, haemocyte numbers can
rapidly decline at least in some infected animals (Smith and
Rowley, 2015). This terminal decline in haemocyte numbers leaves
edible crabs susceptible to secondary infections including that
caused by the fungus,Ophiocordyceps (Stentiford et al., 2003; Smith
et al., 2013) such that these animals may die from a combination
of metabolic exhaustion, the production and release of dinospores
via the gills and/or secondary infections. It is important to stress
that to the author’s knowledge, such secondary infections have
not been described in other susceptible decapods, particularly
those where the parasite’s life cycle within the host is shortened,
such as blue crabs where mortality occurs>35 days post exposure
(Messick and Shields, 2000).

Histological studies only show modest changes in the integrity
of affected tissues. Both trophonts and filamentous plasmodia are
found in most tissues (Figure. 1A–D) simply because these are
bathed in haemolymph. This latter form of the parasite is rarely
seen in the haemolymph because it appears to be attached to
cells in solid tissues including the gills (Figure. 1D) and hep-
atopancreas (Figure. 4). While subtle changes in muscle fibres have
been reported (e.g. Stentiford et al., 2000) these are modest and
rarely observed histologically. The main change is the swelling
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Figure 3. Schematic of infection dynamics of Hematodinium sp. (probably H. perezi
genotype I) in the edible crab, Cancer pagurus based on the results in Smith et al.
(2015) and Smith and Rowley (2015). (A) Change in prevalence of infection. (B)
Seasonal changes in numbers of haemocytes and Hematodinium sp. (C) Phase
contrast micrographs of low to high grade infections (left to right panels) in the
haemolymph with Hematodinium sp. (P). Note adherent haemocytes (Ha) in low
grade infection and their absence in high grade infection in the right-hand panel.
This model of infection dynamics may differ in the other genotypes of H. perezi
II and III and the prevailing environmental conditions including temperature and
salinity.

of the spaces between the tubules of the hepatopancreas caused
by the large increase in the number of circulating parasites but
there is little evidence of their active penetration by the parasites
although on rare occasions trophonts have been seen in the lumen
of hepatopancreatic tubules (Figure. 4). Finally, changes in the gills
including swelling and potential damage to the outer epithelia dur-
ing dinospore proliferation in the gill lamellae have been observed
(Wheeler et al., 2007). Post-mortem changes such as cellular necro-
sis, particularly in the hepatopancreas, rapidly ensue following the
death of hosts with accompanying bacterial multiplication in the
cadavers (Smith and Rowley, 2015).

There is increasing evidence of the importance of dysbiotic
changes in the microbiome during disease episodes in crustaceans
(e.g. Bass et al., 2019;Holt et al., 2021;Hernández-Pérez et al., 2022;
Lorgen-Ritchie et al., 2023). Changes in microbial diversity and
community composition accompany diseases regardless of their

Figure 4. Histological section of the hepatopancreas of the shore crab, Carcinusmae-
nas showing the presence of trophonts of Hematodinium sp. In the tubule lumen
(unlabelled arrow). Note apparent integrity of the tubule cells and presence of fila-
mentous plasmodia attached to the adjacent tubules (red arrows).

causation. Examples include diseases of cultured shrimp such as
those causing major economic effects highlighting the importance
of determining how microbiomes change in response to disease
(e.g. Boopathi et al., 2023; Jatuyosporn et al., 2023) and envi-
ronmental change that potentiates disease (e.g. Cornejo-Granados
et al., 2018). In the case of parasitization caused by Hematodinium
spp., both haemolymph and gut microbiomes are altered in the
Norway lobster,N. norvegicus (Martin et al., 2025). In lobsters with
sub-patent infections (i.e. those that are PCR positive but nega-
tive using the less sensitive body colour and pleopod methods –
see Table 2), bacterial species richness in the haemolymph is sig-
nificantly reduced. The authors suggested that this effect could
be significant in advancing the susceptibility to secondary infec-
tions in such animals. Furthermore, asmicrobial dysbiosis has been
found to result in changes to immune competence in several dis-
ease conditions in crustaceans (e.g. Zhou et al., 2025) this may be
of importance in this disease.

The crustacean immune system – a brief overview

This section aims to give a brief overview of how crustaceans
deal with infectious agents such as Hematodinium spp. that pen-
etrate their internal tissues with reference to how they defend
against such micro-parasites. Because this is purposely a succinct
overview, the reader is also referred to several recent reviews for
greater detail (e.g. Coates et al., 2022; Rowley, 2026).

The cells at the centre of the immune system of crustaceans
are the circulating blood cells termed haemocytes. These cells are
formed in discreet haemopoietic tissues (Söderhäll and Söderhäll,
2022).There are 3main types of haemocytes in crustaceans, namely
hyaline cells, semi-granular haemocytes (= semi-granulocytes)
and granular haemocytes (= granulocytes). These 3 types are mor-
phologically distinct based on the number and size of granular
inclusions in the cytoplasm. Each cell type has a distinct role in
defence and haemostasis including phagocytosis, nodule/capsule
formation, coagulation and wound healing. For instance, hya-
line cells are actively phagocytic and are found in the flattened
sheath of cells surrounding nodules (Rowley, 2026) while granu-
lar haemocytes are highly unstable and quickly respond to injury
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by bringing about blood clotting and the triggering of the prophe-
noloxidase activating system. Recent approaches looking at the
biological properties of individual haemocytes have revealed fur-
ther diversity in these 3 cell types (Söderhäll et al., 2022; Xin and
Zhang, 2023; Cui et al., 2024) suggesting the presence of a series of
sub-populations or different stages in the ontogeny of such cells.

Crustacean haemocytes, together with other cell types, also
synthesize a range of immune-active molecules involved in the
recognition and killing of extra- and intra-cellular pathogens and
parasites. These include factors produced by the prophenoloxidase
activating system (Cerenius and Söderhäll, 2021), various lectins
(Sanchez-Salgado et al., 2017) and antimicrobial peptides includ-
ing crustins (Barreto et al., 2022) and penaeidins (Destoumieux
et al., 2000) to name just a few. A terminal product of the prophe-
noloxidase activating system is the dark pigment, melanin, that
is a useful marker of immune reactivity seen following cuticular
damage and in the nodules and capsules surrounding parasites,
pathogens and damaged tissues within the haemocoel.

Of importance to our understanding of the interaction between
host and its parasites and pathogens, is how the crustacean immune
system deals with these insults. For example, injection of microbes
into the haemocoel of shore crabs (Carcinus maenas) results in
their rapid clearance from circulation by a combination of phago-
cytosis and nodule formation (Smith and Ratcliffe, 1980). This lat-
ter process forms nodules that consist of a melanized core contain-
ing the invaders together with the remnants of degranulated gran-
ular haemocytes surrounded by a multicellular flattened sheath of
hyaline and semi-granular cells (Smith andRatcliffe, 1980; Ratcliffe
et al., 1985). In the case of microbial pathogens of crabs, includ-
ing some fungi, they are sequestered into nodules (i.e. recognized
and dealt with as ‘foreign’) but they are resistant to the killing
mechanisms, and they multiply within the melanotic cores and in
the phagosomes of haemocytes, to escape and cause a fatal septi-
caemia (Smith et al., 2013). Non-pathogens and avirulent strains
of pathogens are usually sequestered within nodules and their sol-
uble breakdown products stored within nephrocytes in gills (Smith
andRatcliffe, 1981).While themethods of recognition ofmicrobial
agents such as viruses, bacteria and fungi are known, the equiva-
lent process with eukaryotic micro- and macro-parasites has not
been studied. Similarly, knowledge of how the immune system
kills or inhibits the development of micro- and macro-parasites is
wanting.

How do Hematodinium spp. avoid or circumvent the
immune response of crustaceans?

A fundamental observation made from examining haemolymph
preparations and tissues via histology is thatHematodinium is nei-
ther phagocytosed nor incorporated into nodules (Rowley et al.,
2015; Smith et al., 2015; Davies et al., 2019, 2022; Martin et al.,
2025) and this supports the concept that this parasite is not recog-
nized as ‘foreign’ by the crustacean immune system (Rowley et al.,
2015).

There are several ways in which parasites and pathogens can
inhibit and/or avoid the immune response of animals, so that they
can invade, reproduce or reside in their tissues unmolested. These
include:

1. Mimicking host tissues and hence being ‘invisible’ to the
immune system (i.e. they do not appear to elicit a cellular
immune response)

2. Residing in locations that avoid immune activation (e.g. ‘hiding’
inside host cells)

3. Having mechanisms that defeat the immune response allow-
ing them to replicate in host tissues (e.g. pathogenic fungal
infections of crabs [e.g. Smith et al., 2013] as already described)

Molecular mimicry

Molecular mimicry is a mechanism utilized by parasites and
pathogens, such as viruses, to avoid eliciting an immune response.
They achieve this by displaying antigens on their surfaces that
resemble those of the host and hence they do not either elicit an
immune response or only a limited response ensues. Examples
of this phenomenon that have received in-depth study within
invertebrates are few, but a notable exception is how the parasitic
helminth, Schistosoma mansoni, survives during its development
in the molluscan intermediate host, Biomphalaria glabrata (see
Hambrook and Hanington, 2021 for a review). By using resis-
tant and susceptible strains of B. glabrata, it has been possible to
tease-out the determinants that influence the interaction between
host and parasite.These approaches have identified several mecha-
nisms utilized by different stages of the parasite while associated
with snails. These include molecules containing glycan epitopes
shared between the host’s haemocytes and larval schistosomes
(Yoshino et al., 2013). It should be stressed, however, that schis-
tosomes have other mechanisms to circumvent/suppress the host’s
immune system showing that molecular mimicry alone does not
fully explain how these parasites survive when in their mollus-
can host (Hambrook and Hanington, 2021). Extrapolating from
this host-parasite interaction, it is possible thatHematodinium and
host haemocytes of susceptible crustaceans share common anti-
gens but to date, this has not been explored. It would also seem
likely that these parasites rely on a variety of methods other than
just molecular mimicry.

Other potential mechanisms of immune suppression

Although observations fail to reveal a cellular (i.e. phagocytosis
or nodule formation) response in both natural and experimental
infections with Hematodinium, several studies suggest these para-
sites employ a variety of immune suppressive activities affecting the
generation of recognition and killing factors (Li et al., 2015a, 2016,
2018, 2022). These observations have been made in the Chinese
swimming (= gazami) crab, P. trituberculatus following its artificial
infection with trophonts ofH. perezi genotype II. The dynamics of
these changes appear to indicate a short term, rather than a sus-
tained effect post-challenge, and different investigative approaches
utilized by these authors have given contradictory results. For
example, phenoloxidase enzyme activity in haemocytes, as mea-
sured spectrophotometrically, has been found to rapidly decline
over a 16-day period post-challenge with Hematodinium (Li et al.,
2022) but the gene expression of prophenoloxidase (proPO) over an
8 day period in the same host shows both elevation and inhibition
at different time periods (Li et al., 2015b), and the same enzyme
activity in the hepatopancreas is consistently raised from 3 hr to
8 days post-infection (Li et al., 2015a). Whether the products of
the phenoloxidase activating system interact with this parasite is
also unknown and so these contradictory observations may not
be of direct relevance to its development in the host. Similarly,
Li et al., (2016) reported changes in the enzyme, nitric oxide
synthase, post-challenge with Hematodinium. The product of this
enzyme, nitric oxide, is an important factor in the intracellular
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killing of parasites and pathogens within professional phagocytes,
but as Hematodinium spp. do not reside within such cells, it is
unclear what significance this could have in the pathogenesis of
this parasite.

Exosomes and crustacean diseases including those caused
by Hematodinium

Some recent developments may provide a new approach to
study the interaction of parasites and pathogens including
Hematodinium spp. and their crustacean hosts. These have investi-
gated the potential role of extracellular vesicles (e.g. exosomes and
microvesicles) in the pathogenesis of various diseases. Extracellular
vesicles are heterogeneous in size but generally small (>200 nm)
membrane-bound structures that can transport proteins (e.g.
growth factors, enzymes), lipids and nucleic acids (DNA, mRNA
and miRNA) between host cells, and pathogen/parasite and host.
They are produced by awide range of organisms including animals,
plants and bacteria and play a role in intercellular communica-
tion (Liu and Wang, 2023) and host-disease interactions (Shetty
and Upadhya, 2021; Yates et al., 2022). One of the first reports
showing the importance of exosomes in crustacean diseases came
from an investigation of tremor disease caused by Spiroplasma
eriocheris (Ma et al., 2024). This is an important pathogen of fresh-
water crustaceans including the Chinese mitten crab, Eriocheir
sinensis (Wang et al., 2004; Coates and Rowley, 2022). S. eriocheris
is an intracellular pathogen that can develop within the host’s
haemocytes resulting in death. Ma et al. (2024) found that exo-
somes released by haemocytes from spiroplasma-infected crabs
contained immune-active molecules including prophenoloxidase,
lectins and tetraspasnin. These exosomes were found to be impor-
tant in aiding the host defences of crabs by inducing the phagocytic
and apoptotic activities of haemocytes and the tetraspasnin cargo
of these exosomes appears to be of importance in this protective
activity.

Two recent studies have investigated the potential role of exo-
somes in the parasitization of crabs byHematodinium spp. (Coates
et al., 2023; Zhang et al., 2025a). Coates et al. (2023) found a reduc-
tion in the number of extracellular vesicles in the haemolymph of
shore crabs (C. maenas) naturally infected with Hematodinium sp.
(probablyH. perezi genotype I).Their study also observed the post-
translational modification of immune factors in infected crabs
by deamination including actin, non-inducible nitric oxide syn-
thase and the tail-less form of Down syndrome cellular adhesion
molecule.This latter molecule has been identified as a multivariant
recognition factor that is involved in the internalization of vari-
ous microbes by professional phagocytes in arthropods including
crustaceans (Ng and Kurtz, 2020; Rowley, 2026) but its potential
interaction with Hematodinium is unknown. The second of these
studies gives further and detailed insight into how exosomes may
influence the immune response to Hematodinium (Zhang et al.,
2025a). This study observed thatH. perezi genotype II release exo-
somes that come to reside in the peri-nuclear region of the host’s (P.
trituberculatus) haemocytes. The cargo of these exosomes includes
miRNAs that suppress part of the Toll pathway that is important
in the recognition of some bacteria and fungi resulting in their
internalization by haemocytes and switching on the production of
antimicrobial peptides (Habib and Zhang, 2020; Rowley, 2026). Of
note was the finding that the in vitro phagocytosis of test bacte-
ria (E. coli) by haemocytes fromHematodinium infected crabs was
inhibited and this was linked to the gene rictor that is a target of the
parasite-delivered miRNAs (Zhang et al., 2025a). While it should

be remembered that Hematodinium spp. are not phagocytosed by
crustacean haemocytes, this inhibition could leave such animals
with reduced ability to deal with secondary infections caused by
bacteria and some fungi.

Are there explanations of contrasting viewpoints on how
Hematodinium circumvents the host’s immune system?

There are potentially conflicting viewpoints of howHematodinium
spp. survive and replicate in the haemolymph of susceptible hosts
apparently unmolested. For instance, Rowley et al., (2015) showed
that the dynamics of bacterial clearance (a marker of phagocytosis
and nodule formation) inHematodinium infected vs. non-infected
edible crabs did not differ. This implies a mechanism of action that
does not compromise how the immune system deals with other
invaders (i.e. general immune suppression). However, others have
demonstrated changes in the antimicrobial armoury and recogni-
tion pathways in Hematodinium infected crabs (Li et al., 2015a,
2015b, 2016, 2018, 2022) that would be expected to result in a
reduction in the ability of such animals to remove any invaders
from circulation. These apparent differences may be explained by
the diversity of model hosts, parasite genotypes and the severity of
infections in these studies. Rowley et al., (2015) used edible crabs
(C. pagurus) in their study while others (Li et al., 2015a, 2016,
2018, 2022) made use of the Chinese swimming crab, P. trituber-
culatus as a model species where the dynamics of infection with
Hematodinium spp. differ. Depending on the genotype investi-
gated, studies on parasite and haemocyte number both in naturally
and artificially infected edible crabs reveal that the replication of
the parasite is initially very slow, especially in genotype I, and that
it is only in the late phase several months post-infection when
haemocyte numbers rapidly decline and trophonts mass in the
haemolymph (Figure. 3). The preliminary experiments described
in Rowley et al., (2015) and Smith and Rowley (2015) used crabs
with only modest infections where the haemocyte numbers were
unaffected by parasitization. Clearly, when the haemocyte num-
bers decline in late-stage infections this must leave crustaceans
vulnerable to secondary infections such as those caused by fungi
(Smith et al., 2013). In P. trituberculatus, however, post-challenge
with trophonts ofH. perezi genotype II, there is a rapid increase in
parasite number over just a few days with ensuing mortality and
the rapid changes in the capacity of the immune system in terms of
haemocyte number alone would be more pressing.

Taken together, these studies with both C. pagurus and P. tritu-
berculatus probably demonstrate that Hematodinium spp. (i.e. H.
perezi genotypes I and II respectively) are utilizing a range of
mechanisms to allow these parasites to develop unmolested in
the tissues but there is still uncertainty about whether molecular
mimicry plays an important role in these events and the rele-
vance of immune molecules such as phenoloxidase that produce
products that may not directly or indirectly kill these parasites.
While the histopathology of infections caused by genotypes I–III
are all remarkably similar, the dynamics and outcomes of infec-
tions appear to differ markedly. For instance, the aquarium-based
infection studies of edible crabs (C. pagurus) by Smith and Rowley
(2015) imply that natural infections in cool waters in northern
Europe by this genotype of H. perezi (genotype I?) may take sev-
eral months to establish themselves and that at least some of the
mortality observed is caused by other infections rather than from
this parasite alone. In contrast, crustaceans in warmer waters, such
as P. trituberculatus infected with H. perezi genotype II in China,
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succumb to rapidly developing infections (Li et al., 2021b) appar-
ently without the participation of other infectious agents. Indeed,
the same genotype of H. perezi (II), can cause death of mudflat
crabs (H. tientsinensis) in only 4weeks post-challenge (Zhang et al.,
2025b). It would be interesting to determine if the outcome of
such infections is attributable to differences in the 3 genotypes
of H. perezi. For instance, if susceptible crabs held in standard-
ized temperature conditions are artificially infected with each of
the different genotypes does the speed and outcome of such chal-
lenges differ? This would answer the relative importance of genetic
makeup of the parasite vs. environmental and/or host parameters
in determining the outcome of infections and interaction with the
host’s immune system.

Conclusions and future directions

In the ensuing century since the initial discovery ofHematodinium
in northern Europe, this endoparasite has been recognized as a
serious threat tomany species of decapod crustaceans as it has been
found to have resulted in high levels of prevalence in some popu-
lations. The recent observation of H. perezi genotype II in crabs
under cultivation in polyculture systems in parts of China, where
reservoirs of infection can occur in adjacent wild crabs, is of con-
cern because such systems have a poor prospect of applying any
of the principles of biosecurity to limit their spread. Commercially
fished populations, including Tanner and snow crabs in coldwaters
in north Americas, are also at future risk with changes in the sea
water temperature particularly in the winter months that can limit
the development of these parasites.

There have been significant advances in the understanding of
the effects of this parasite on its hosts and the methods that allow
the accurate identification ofHematodinium spp. but key questions
remain unanswered. These include:

1. Are all hosts killed by infections caused byHematodinium spp.?
(i.e. are there latent infections as considered by Eigmann et al.,
2010?).

2. Do the 3 genotypes ofH. perezi have differing infection dynam-
ics and severity resulting in varying rates of mortality? (i.e. are
some genotypes more virulent than others regardless of water
temperature?).

3. Why are some species of homarids (clawed lobsters) apparently
not naturally infected by Hematodinium spp.?

4. Do the 3 genotypes (I–III) of H. perezi each have distinct host
ranges that are independent of geographic location?

5. What risks will change in sea water temperature in the future
pose to the viability of some commercial fisheries in the pres-
ence of some parasites such as Hematodinium spp.?

6. Is molecular mimicry a driver of the success of these para-
sites facilitating their multiplication in the host’s tissues and an
explanation of their wide host range?

7. How important are parasite-derived exosomes in the develop-
ment of Hematodinium spp. in their hosts?

8. How do dinospores of Hematodinium spp. gain entry to the
tissues of their hosts? and

9. What are the triggers and mechanism(s) for parasite release
from the host?
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