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Abstract

A condition guaranteeing the stability of linear systems with time delays in the
interactions among elements is generalized to cover non-linear systems and
discontinuous, unbounded delays.

1. Introduction

In a recent paper [1], it was shown that a linear time-delayed system with bounded
coefficients is stable if its system matrix is column diagonally dominant. Sub-
sequently we proved [5] that, if the linearization of a non-linear time-delayed
system satisfies the same condition, then the non-linear system is stable. The
derivation in [5] is for the case when the time delays are constant and does not
readily generalize—it is particularly difficult to establish the boundedness of the
solutions when the delays are time varying (see [5], appendix 3).

Here we obtain stability results for the time-varying delay case by strengthening
the diagonal dominance condition; it should, however, be noted that for linear
systems the new and old conditions are identical. The stronger condition permits
more direct proofs than those given in [5]. The restrictions on the time delay
functions are quite weak; in fact, unbounded delays can be dealt with.

We noted in [5] that the column diagonal dominance condition used there
could be replaced by one of quasi-diagonal dominance and the same applies here.
We refer to [1], [4] and [5] and the references contained therein for wider dis-
cussions on the stability of time-delayed systems.
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[2] Stability of non-linear systems 453

2. System description

The systems considered are the same as in [5] but with time-varying delays (and
no inputs). They are described by the following «th order homogeneous differential
delay equations on the half line [0, oo):

*i(0 = - / , o ( * i ( 0 ) + I / u ( * / ' - r y ( 0 ) ) , i = i, ...,«• (2.1)

/ " \
( Here £ is an abbreviation of J±'x I The vector x{t) = [xt(t), ...,;cn(f)]

T is called

the instantaneous system state and the function x ( ) : [0, oo)->R", the system
trajectory. The complete system state

x,A {x(s): t - T(t) s$ s < t}, where T(i) = max,- j Ttj{t),

is infinite dimensional. System (2.1) is autonomous in the sense that

fiO>fij> hj = 1 > • • • > n>

are time independent. Non-autonomous systems are not considered here; some
results for the linear case with constant delays are given in [5].

The scalar functions TtJ(-) are called time delays and are required to satisfy,
for all j j = l,...,n, i # y :

ASSUMPTION 2.1

(a) Ttj(-) is a function of bounded variation and is right continuous on each
bounded interval [0, T] <= [0, oo),

(b) Ty(0^0 /ora / / /g [0 ,oo) ,
(c) t — TtJ(t) is monotone non-decreasing.

REMARKS, (i) (a) implies that T(t) = max;>s T,/f)< oo.
(ii) (b) is necessary if (2.1) is to represent a causal system,
(iii) (c) is the natural requirement that, if s ^ t, x(s) depends upon later values

of x(-) than does x(t).

The solution of (2.1) depends upon the specification of an initial condition,
x(s) = <l>(s), je[—T(0),0]. We shall assume that the given n vector function #(•)
is absolutely continuous and for simplicity take each component .*;(•) to be
specified on the same initial interval.

To discuss stability we must be sure that the solution to (2.1) exists on [0, oo)
and therefore assume that the functions/ / 0,/y, i,j = l,...,n, are such that
corresponding to any initial condition (2.1) has a unique absolutely continuous
solution on [0, oo). In particular we assume that fi0,ftJ are continuously
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454 R. M. Lewis [3]

differentiable, hence locally Lipschitz. Systems which admit trajectories with
finite escape times or trajectories which fail to exist beyond a certain point are
excluded (see [4]).

The results in this paper deal with the asymptotic stability of the equilibrium
point of (2.1). Without ambiguity we henceforth refer to this as stability. The
conditions imposed upon the functions fi0,fij will ensure that a unique equil-
ibrium point exists. Our approach involves the second derivative system obtained
from (2.1) but, because we admit delays with discontinuities, the second derivatives
are not absolutely continuous and do not satisfy a differential equation. Let
z(t) — x(t); then we can write:

dz,{t) = - a i 0 ( t ) z i ( t ) d t + £ a ^ i t ^ ^

i = l,...,n, (2.2)

where dTu{-) is a Borel measure on [0,T] for all T<OO, corresponding to the
function TtJ(-) of bounded variation. The coefficients ai0(") and ay(-) are
denned by

fl.-oW = dfi0(a-)/d(T, where a = xt(t)
and

ay(0 = dfijd^fda, where a = Xj(t).

Let fif/t) = t — Tu(t), ij = 1,.--,«, / 7^7; then (2.2) can be regarded as a formal
version of the integral equation

- aJ0(s) z.W ds + £ a,fyi,£
J0 j*iJ 0

i = l,...,n. (2.3)

In view of the fact that the measures ^o(') correspond to functions of bounded
variation, the solutions to (2.3) satisfy (2.2) almost everywhere with respect to
fi = t+ YJ= I Y,j*i^iM) anc* l^e properties of z(-) can be determined from either
(2.2) or (2.3) (see [3, Theorem 1]). We refer to both as the integral equation for
z( •). In the following section the stability of solutions to the integral equation is
analysed.

3. Stability of a linear integral equation

Here the methods introduced in [1] are extended to the integral equation (2.2).
First we define a positive system whose trajectories dominate those of (2.2) and
then, using a linear Lyapunov-like function, we show that the dominating system
is stable, under suitable conditions.
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LEMMA 1. lfz(t) solves (2.2) then \z(t)\ = [\zl(t)\,..., |zn(0|]T satisfies

d | zjt) | < - alo(01 zff) \ Y
J*i

i = l , . . . ,n, (3.1)

almost everywhere with respect to n defined above.

PROOF. A S each A * , / - ) is right continuous (Assumption 2.1(a)), each Z ; ( ) and

hence |z f ( -) l is right continuous (see [2, 3]). Consequently dzl{t)=zi{t) — zi(t~)

:

There are two cases to consider:

(i) zlt) > 0.
d | ^(01=2,(0-12,(0 |

< dzjfi
= -am(t)z{t)dt+ £

j *

< -a,0(01 z;(01 d*+
since, by Assumption 2.1(c), d/x^-it) ^ 0 for all / , /

(ii) 2,(0 <0 .

< -dztf)
= a,o(0

Let y(t) solve

/ 0 , i = 1, • •.. n, (3.2)

NOTE. AS (3.2) is linear it has a solution on [0, oo) (see [6]). The initial function
y{s) — | z(s) | = | <p(s) | is measurable.

LEMMA 2. / / z(t) and y{t) solve (2.2) and (3.2) respectively, then \ z{t) \ ̂  j>(0
/or all fe[O, oo). (7%e inequality z ^y denotes z, ̂  yt, i = 1,...,«.)

PROOF. AS in [1], Lemma 2, we replace (3.2) with

dy?(t)=-ai0(t)yT(t)dt+ £ \al{p^i))\MlkmdtoAt)+m~ldt>
i = l , . . . ,n , (3.3)

with >>m(j) =X*) on [ - r ( 0 ) , 0 ] , where w = 1,2,....
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Suppose \zi{t)\>y"{t) for some t,i; then, because of the right continuity of
z( •) and ym( •), there exists a minimal T such that | Zj(s) | ^ yj(s) for all j and s < T
and, for some i, for all £>0 sufficiently small, \z^T+e)\>y"{T+e). The con-
tinuity properties of zf and y™ imply that | zt(T) \ = y?(T), hence

dUz,<T)\-y7(T)-] <S -ai0{t){\ziT)\-y7{T)-]dt-m-'dt

= —m~ldt,

which implies that | z,(01 < yf(t) to the right of T, a contradiction.
The proof is completed by showing that ym-+y pointwise on every bounded

interval, as m-*co. Let y" denote the solution of (3.3) with a replacing m~l. The
result of Warga [6, Theorem II.6.9] proves that the map a->y: R^-L^AR"] is
continuous, for any compact interval /<=[0, oo). Thus, as m-*co, y"-*y in
I-1 [7, R"] and, since the functions are right continuous, y"-*y pointwise in 7. We
conclude that y"(t)-*y(t) for all t<co, hence \z(t)\ ^y(t) as claimed.

NOTE. TO apply [6, Theorem II.6.9] we have to write (3.3) in the form

dy7=f/Lt,yt
m,m)dtit).

This is done by writing
n

defining ^,/f) and rj{t) to be the Radon-Nikodym derivatives of ;uf/f) and t
respectively with respect to fi, and setting

COROLLARY 1. Stability of (3.2) implies stability of (2.2).

COROLLARY 2. 77ie solutions y(t) to (3.2) are non-negative, that is, yt(t) 2s 0 /or
a// f, i = 1,...,«.

Let us now consider the stability of the solutions y(t) of (3.2). It is sufficient to
show that cc(t)y{t) is bounded, for some scalar function a.(t) such that

If a ( ) is differentiable and positive then r(t) —a.(t)y(t) is non-negative and

drlt) = - bi0(t) rtf)dt+Y, 6u0*«/0) rfatf) d^/O, i = 1, ..., n, (3.4)

for fi almost all t, where

*io(0=«io(0-<*(07«(0. i = l , - , n 1
and (3.5)

= | fly(0 |o(r+T(/0)/«(0, i,7 = 1, • •., n.)
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Define

= t L(t)+ £ P b^s) r/5)ds). (3.6)

Then V(t) is of bounded variation on bounded intervals and, since each term in
(3.6) is non-negative, V(t) > 0 for all t.

For n almost all t,

dV(i)= t \-bm{t)r&t)dt+ £
i = l I j *

+ I

= t\~ bi0(t)+ I MO j rM dt. (3.7)

As t is absolutely continuous with respect to //, (3.7) implies that K(-) is absolutely
continuous and, for almost all t,

( = 1

Consequently, if, for all /, / = 1, ...,n,

M O - Z MO 2*0, (3.8)

then V(i) «$ 0, V(t) is bounded above by V(0), and /•(?) is bounded, as required.
Our main results are based upon showing that, subject to conditions stated

below, (3.8) is verified for a suitable choice of a(-).

THEOREM 1. If the coefficients of the integral equation (2.2) satisfy the strengthened
column dominance condition:

there exist 0 < E < 1 and (5>0 such that, for all t,\

£a,-o(0- I I MO I -<5>0, i = 1, ..., n, (3>9)

j ±i '

and if all the time delays are bounded, then (2.2) is exponentially stable.

PROOF. In terms of the coefficients of (2.2), (3.8) is

ai0(t)-d(t)/a(t)- £_| MO W+Tjii))Kt) > 0, i = 1, ..., n. (3.10)

Let a(t) =exp(&0 for some k>0 to be determined and let T be an upper bound
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for all the time delays Tt]{t). Then, subject to (3.9),

ai0(t)-d(t)Kt)- £ \ajii)\0L{t+T}i{t))Kt)

= a,o(0[l-eexp(ikr)]-fc+«exp(fcr)
5s 0 for all i = l, ...,n,

provided k ^ (l/J)log(l/e) and k ^ <5exp(A:r). These inequalities are satisfied by
k = min [(l/T) log (1/e), <5] > 0.

REMARKS, (i) (3.9) implies that ai0{t) > 0 for all i and /.
(ii) The standard column dominance condition is expressed as

that is, the e factor is absent. The above proof fails if this is used in place of (3.9),
unless the coefficients are a priori bounded, in which case the two conditions are
equivalent.

(iii) If some of the time delays are unbounded, we cannot construct an exponential
a(-) as in the above proof. Instead we have polynomial stability as indicated in
the following theorem.

THEOREM 2. If the coefficients of the integral equation (2.2) satisfy the strengthened
column dominance condition (3.9) and if the time delays Ttj{t) are bounded above by
t]t-\-k, then the solutions of (2.2) go asymptotically to zero at least as fast as t~p

provided (1 + r\)p < s ~1, for some p>0.

PROOF. Let a.(t) = t", p>0; then with the above assumptions the left hand side
of (3.10) can be written as

a , o ( 0 - - -t

a,o(0|l-U+»J+-Ye -y

for large / provided (l+n)p<E~i.

REMARKS, (i) Since we require / — Ty(f) to be monotone non-decreasing,
that is, dTij(t)^dt, we have Ttj{t) = T,/0)+ jW^i/s) < ' + ^ ( 0 ) and so, with
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the range 0 < r\ < 1, Theorem 2 covers the entire range of admissible delays.
(ii) For any rje[0,1], taking p>0 sufficiently small we can ensure that

(l+n)p < e"1 (as e< 1). In the following section we are interested only in p> 1:
given e, this restricts the range of r\ to rj<e~l — 1; given n, s is restricted to

4. Stability of non-linear systems

Recalling that the solutions x ( ) of (2.1) and z(-) of (2.2) are related by
x(t) = z(t) almost everywhere in [0, oo), we use Theorems 1 and 2 to prove
stability of (2.1). The coefficients ai0(t) and a^t) of (2.2) are defined by

= dfm{xM)l<b and an(t) = dfjlx

hence (3.9) is implied by

there exist 0 < e < l and <5>0 such that, for all aeR,

THEOREM 3. If the functions fi0(-) andf^-) defining the non-linear time-delayed
system (2.1) satisfy the strengthened dominance condition (4.1) for some e, 5, and
either

(a) the time delays are bounded,
or

(b) the delays satisfy Ty(?) < nt+k and (1 +n)p ^ e~' for somep>l,
then every trajectory of (2.1) converges asymptotically to an equilibrium point of
(2.1). Moreover, if (a) holds or (b) holds with ri<l, the equilibrium point is unique.

PROOF, (i) Stability. We have x(t) = x ( 0 ) + $'oz(s)ds. Now (4.1) and (a) yield,
from Theorem 1, that || z(t) || < mexp(—kt) for some m, k>0. Hence z(-) is
integrable on [0, oo) and

J o
lim x(t) = x(0)+ z(s)ds = xm exists.

' o

Similarly, (4.1) and (b) yield, from Theorem 2, that \\z(t)\\ ^mt~p for some
m>0, p> 1. Therefore z ( ) is integrable on [0, oo) and

1
Clearly xx is an equilibrium point of (2.1).

= x(0)+ z(s)ds = xm exists.
r-*co J 0
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(ii) Uniqueness of the equilibrium point. When (a) or (b) with rj < 1 holds, the set
of equilibrium points of (2.1) is given by {x: F(x) — 0}, where F: Rn->R" is given
by Fi(x) = —/;o(x,)+ Yjj*ifij(xj)- Satisfaction of (4.1) implies satisfaction of
the standard dominance condition with e = 1. In [5, Theorem 9] it is shown that
this implies that the equilibrium set comprises a single point.

NOTES, (i) The ease with which this result is obtained compared with the similar
one [5, Theorem 3] is noteworthy. The strengthening of the dominance condition
through the incorporation of the factor e enables us to prove stability directly,
without first hypothesizing trajectory boundedness. In [5] boundedness was
proved to be equivalent to the existence of an equilibrium point, which was then
demonstrated.

A further advantage of the present result is that a wide class of time-varying
delays is admitted.

(ii) When n = 1 in hypothesis (b) of the theorem, delays Tf;(r) = t are admitted.
Hence ftJ(Xj(t — Ty(f))) =/y(x/0)) and the equilibrium set is not given by
{x: F{x) = 0}. An illustrative example is given in the following section.

(iii) As mentioned in Section 1, a quasi-diagonal dominance condition is also
sufficient for the stability of (2.1). Suppose we replace V(t) in (3.6) by

1̂ (0+ £ [ ' 6,/s)r/s)dsl' = £ dArM+

for some collection of positive scalars dt. Then

(=1 I j *

and stability is ensured by

In the bounded delay case this is true with exponential a(-) provided the
stiengthened quasi-diagonal dominance condition holds: there exist £6(0,1) and
<5>0 such that, for all / and

idfm(a)lda- £ |djdfjfa)/do\-S>0. (4.2)

5. Examples

EXAMPLE 1.

*i(0 = -*i(0/2-x?(0/3+x2(t-l)+l,

x2(t) = -2x2(0+xf(t-2)-4/3.
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This system is neither column nor row diagonally dominant. However, taking
dy = 1, d2 = 3/5 and e = 9/10,

«/i dfl0{a)lda-d2 df2l{a)lda = 9/10[i+<r2]-6<r/5.

This has a minimum value of 1/20 at a =2/3.

erf2 df20(6)ldo - rft dfi2(a)/da = 27/50[2] - 1 = 2/25.

Therefore (4.2) is satisfied by choosing 0<<5< 1/20, and all the trajectories of the
system converge asymptotically to the equilibrium point (x1,x2)=(l, —1/6).

EXAMPLE 2.

*i(0 = -xi(t)+x2(t/2)/2,

The delays are T12(t) = T2l(t) = t/2, that is, f /= i in Theorem 3. For i < e < l ,
(4.1) holds and so, with 1 <p<log3/22, condition (b) of Theorem 3 can be
satisfied. The trajectories converge asymptotically to the equilibrium point (0,0).

The minimum rate of convergence is as

/- ( p-1 ) , where p-1 =log3/2 2 - 1 =0.5874....

It can be shown that the maximum rate of convergence is as Z"1.
Suppose x1(0)=x2(0)>0; then xi(t)=x2(t)>0 for all ?e[O,oo). (It is easily

verified that, for such initial conditions, x^to) = 0 for t0 < oo is impossible.) Let
y{t)=xl(e'); then y(t) =e'(-y(t)+iy(t-\oS2)). Let

J «-log2
V(i) = y(i) + | es y(s) ds>0 for all t.

-log 2

Then
V(t) = e'(-y(t)+iy{t-los2))+e'y(t)-ie'y(t-log2) = 0,

that is,
V(t)=k>0 foraUf.

As y{t)-*O for large t,

J (-i.-log 2

< log 2. c' max {y{s)}.
se[(-log2,(]

Thus X0 goes to zero at most as fast as e~* and x^i) =x2(i) = j(logr) at most
as fast as t~l. This shows that the estimate t~<p~1} is not overly conservative.
(Note: log above denotes log,,.)
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EXAMPLE 3.

x2(t) = - x2{t)+bxl{0\ b^O.

Here, Tl2(t) = T21(t) = t, that is, n = 1 and (4.1) holds for any l -
To guarantee convergence to an equilibrium point using Theorem 3 we must have,
for somep> I, (1 -b)'1 > 2P>2, that is, b<\. However,

The system trajectories converge for all values of b; we conclude that the
conditions of Theorem 3 are far from necessary. Note that the equilibrium point
depends upon the initial condition.

EXAMPLE 4. Sampled-data interactions. Consider the system denned by

x,(0 = -a i 0x,(0 + £ fllVxfijnT), te[mT,(m+\)T),\
(5.1)

m = l , 2 , . . . and i = l,...,n. )

This can be written in our standard form by taking

TtJ(t) = t-mT, te[mT,(m+l)T) for all i,j:= 1, ...,n, i*j.

Then Ty(/) < T and if the coefficients afi and au satisfy the strengthened diagonal
dominance condition, the trajectories of (5.1) converge exponentially to zero.

Note that the delays in the example are of bounded variation on bounded
intervals but are not continuous. Differing sample times and finite sample
processing delays can be incorporated into the model (for a processing delay k,
replace Xj(mT) by Xj(mT-k) in (5.1)).

6. Conclusions

A sufficient condition for the stability of the equilibrium points of differential
systems with time-varying delays has been derived. The resulting stability tests do
not depend strongly upon the forms of the time delay functions; indeed, if these
functions are all bounded, the tests are completely independent of them. This is
an important feature when determining the stability of models of real systems for
which the time delay parameters are difficult to estimate.
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