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Abstract

For a finite group G, let AD(G) denote the Fourier norm of the antidiagonal in G × G. The author showed
recently in [‘An explicit minorant for the amenability constant of the Fourier algebra’, Int. Math. Res. Not.
IMRN 2023 (2023), 19390–19430] that AD(G) coincides with the amenability constant of the Fourier
algebra of G and is equal to the normalized sum of the cubes of the character degrees of G. Motivated
by a gap result for amenability constants from Johnson [‘Non-amenability of the Fourier algebra of a
compact group’, J. Lond. Math. Soc. (2) 50 (1994), 361–374], we determine exactly which numbers in
the interval [1, 2] arise as values of AD(G). As a by-product, we show that the set of values of AD(G)
does not contain all its limit points. Some other calculations or bounds for AD(G) are given for familiar
classes of finite groups. We also indicate a connection between AD(G) and the commuting probability of
G, and use this to show that every finite group G satisfying AD(G) < 61/15 must be solvable; here, the
value 61/15 is the best possible.

2020 Mathematics subject classification: primary 20C15; secondary 20D99, 43A30.
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constant.

1. Introduction

1.1. Background context. Given a finite group G, the algebra of complex-valued
functions on G (equipped with the pointwise product) only depends on the cardinality
of G and does not detect the group structure. However, there is a canonical submul-
tiplicative norm on this algebra, the Fourier norm, such that the resulting normed
algebra A(G) characterizes the starting group G up to isomorphism. (More precisely:
given finite groups G and H, there is an isometric algebra isomorphism between A(G)
and A(H) if and only if G and H are isomorphic groups; this is a special case of a
result of Walter [14].)

By identifying a subset of G with its indicator function, one can speak of the Fourier
norm of a subset of G. Calculating Fourier norms of arbitrary subsets is hard (see [12]
for a systematic approach), but there is one case where an exact calculation is possible
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and gives interesting answers. Consider the set {(g, g−1) : g ∈ G}. The Fourier norm
of this subset of G × G, denoted by AD(G) in this paper, is the Fourier anti-diagonal
constant mentioned in the title. It was recently shown by the author [3, Theorem 1.4]
that we have the following explicit formula for AD(G):

AD(G) =
1
|G|
∑

ϕ∈Irr(G)

ϕ(1)3, (1-1)

where Irr(G) is the set of irreducible complex characters of G and ϕ(1) is the degree
of ϕ.

Equation (1-1) implies that AD(G × H) = AD(G) AD(H) and that AD is invariant
under isoclinism. Additionally, AD(H) ≤ AD(G) whenever H ≤ G (see Proposition 3.5
below). These hereditary properties suggest that AD(G), viewed as a numerical
invariant of G, deserves further study. Furthermore, the sum on the right-hand side
of (1-1) already arose in earlier work of Johnson [8] on Fourier algebras of compact
groups. The results in [8, Section 4] provide an attractive application of the character
theory of finite groups to obtain new (counter-)examples in functional analysis. (For a
fuller discussion, see [3, Section 1].)

The following observations, taken from [8, Proposition 4.3], are easy consequences
of (1-1):

• if G is abelian, then AD(G) = 1;
• if G is nonabelian, then AD(G) ≥ 3

2 .

Since AD(Gn) = AD(G)n, this shows that AD(G) can take arbitrarily large values.
However, to the author’s knowledge, nothing further has been done to study the
possible values of AD(G) as G ranges over all nonabelian finite groups. The purpose
of the present paper is to make a start on filling this gap.

1.2. Our main new results. The following result has probably been noticed inde-
pendently by many readers of Johnson’s paper, although it is not stated explicitly there.
(A proof is given in Section 2 for the sake of completeness.)

PROPOSITION 1.1 (Implicitly folklore). Let G be a finite group and suppose that
ϕ(1) ≤ 2 for all ϕ ∈ Irr(G). Then, AD(G) ∈ {2 − n−1 : n ∈ N}.

Moreover, every number in {2 − n−1 : n ∈ N} is realized as the AD-constant of some
(nonunique) finite group: this can be seen by considering cyclic groups and dihedral
groups. Our first main result is that these are the only values of AD attained by finite
groups in the interval [1, 2]. To be precise, we state the following theorem.

THEOREM 1.2 (Possible values of AD(G) in [1, 2]). Let G be a finite group and
suppose that AD(G) ≤ 2. Then, AD(G) ∈ {2 − n−1 : n ∈ N}.
COROLLARY 1.3. The set {AD(G) : G a finite group} is not a closed subset of [1,∞).

Theorem 1.2 is an immediate consequence of combining Proposition 1.1 with the
following lower bound for AD(G), which appears to be new.
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PROPOSITION 1.4. Let G be a finite group. If there exists ϕ ∈ Irr(G) with ϕ(1) ≥ 3,
then AD(G) ≥ 2 + |G′|−1.

The proof of Proposition 1.4 requires some basic character theory, but nothing
harder than Frobenius reciprocity. Perhaps surprisingly, while we do need character
theory for finite groups, we do not rely on any structure theory (we do not even need
the Sylow theorems). In contrast, our other main result requires the classification of
finite simple groups with characters of small degree.

THEOREM 1.5 (A threshold ensuring solvability). Let G be a finite group. If AD(G) <
61/15, then G is solvable.

A direct calculation shows that AD(A5) = 61/15 and so, in this sense, Theorem 1.5
is sharp. Particular properties of A5, such as its subgroup structure and its Schur
multiplier, play an important role in the proof of Theorem 1.5, since we need to analyse
perfect groups that quotient onto A5.

One difficulty in proving Theorem 1.5 is that AD is not monotone (in either
direction) with respect to taking quotients, and so knowing that a group H quotients
onto A5 does not immediately imply that AD(H) ≥ AD(A5). Instead, we require a
detour through the commuting probability cp(G) (see the start of Section 5 for its
definition). Our strategy is inspired by an argument of Tong-Viet in [13] and, indeed,
the main work needed to prove Theorem 1.5 lies in establishing the following stronger
version of [13, Lemma 2.4].

PROPOSITION 1.6. Let H be a finite nontrivial perfect group satisfying cp(H) > 1/20.
Then, H � A5 or H � SL(2, 5).

1.3. Outline of this paper. After some preliminary results in Section 2, the proof
of Proposition 1.4 is given in Section 3. Since the paper is intended for a general
audience, we spell things out in more detail than specialists in group theory would
require. In Section 4.1, we calculate the values of AD(G) for some particular families
of groups, some of which are related to calculations in earlier sections; and in Section
4.2, we present some partial results on the general theme that ‘small values’ of AD(G)
imply that G is close to abelian in some sense. Section 5 is dedicated to the proof of
Proposition 1.6 and Theorem 1.5; this is the only part of the paper that makes use of the
theory of the cp invariant. In the appendix, we collect some proofs of results that are
used in the main body of the paper; these results are special cases or weaker versions
of known results, but we take the opportunity to provide some extra details and give
more elementary arguments.

We finish this introduction by establishing some conventions and fixing notation.
To reduce unnecessary repetition, we adopt the following convention: henceforth, all
groups are assumed to be finite unless explicitly stated otherwise. The identity element
of a group G is denoted by 1, or 1G if we wish to avoid ambiguity, and the derived
subgroup of G (also known as its commutator subgroup) is denoted by G′.
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Throughout this article, all representations and characters are taken over the
complex field. The basic representation theory and character theory that we need can
be found in several introductory texts, such as [7]. We denote the degree of a character
ϕ by ϕ(1); note that this is equal to the dimension of any representation whose trace
is ϕ.

The set of irreducible characters of G is denoted by Irr(G) and we write cd(G) for
the set {ϕ(1) : ϕ ∈ Irr(G)} (note that here, we are not counting the multiplicities of the
irreducible character degrees). We write Irrn(G) for the set of all ϕ ∈ Irr(G) that have
degree n. If G is nonabelian, we define

mindeg(G) := min{d ≥ 2: Irrd(G) is nonempty}.

For any G (possibly abelian), we define

maxdeg(G) := max{ϕ(1) : ϕ ∈ Irr(G)}.

Finally, given a group G, we equip CG with the following inner product:

〈ϕ,ψ〉 :=
1
|G|
∑
x∈G

ϕ(x)ψ(x).

If ψ is a character of G, then it is irreducible if and only if 〈ψ,ψ〉 = 1 [7, Theorem
14.20].

2. Some easy lower bounds on AD

We start by giving a proof of Proposition 1.1, since it also serves as a prototype for
later arguments. No novelty is claimed.

PROOF OF PROPOSITION 1.1. Since cd(G) ⊆ {1, 2},

AD(G) =
1
|G| (|Irr1(G)| + 8|Irr2(G)|).

On the other hand, basic character theory tells us that

1 =
1
|G|
∑

ϕ∈Irr(G)

ϕ(1)2 =
1
|G| (|Irr1(G)| + 4|Irr2(G)|),

and therefore AD(G) − 2 = −|Irr1(G)| |G|−1.
It is also standard (see for example [7, Theorem 17.11]) that, since Irr1(G) can be

identified with the (Pontrjagin) dual of the abelian group G/G′, we have |Irr1(G)| =
|G : G′|. Hence, AD(G) = 2 − |G′|−1 and since |G′| ∈ N, the result follows. �

EXAMPLE 2.1 (Dihedral groups). Let G be a dihedral group of order 2k, so that
cd(G) = {1, 2}. If k is odd, then |G′| = k, and if k is even, then |G′| = k/2. By repeating
the calculation in the proof of Proposition 1.1, we see that AD(G) = 2 − (1/k) when k
is odd and AD(G) = 2 − (2/k) when k is even.
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For general nonabelian G, the proof of Proposition 1.1 still suggests a way to
proceed. Informally, since ϕ(1)3 ≥ mindeg(G)ϕ(1)2 for all ϕ ∈ Irr(G) \ Irr1(G), we can
add a correction factor to AD(G) to obtain something bounded below by mindeg(G),
and the size of the correction factor is controlled by the size of |G′|. Making this precise
leads us to the following lemma, which provides a convenient tool for dealing with
‘generic’ cases.

LEMMA 2.2 (An all-purpose lower bound). Let G be nonabelian, and let m, n ∈ N
satisfy mindeg(G) ≥ m and |G′| ≥ n. Then,

AD(G) ≥ 1 + (m − 1)
(
1 − 1

n

)
.

PROOF. Since Irrj(G) is empty whenever 2 ≤ j ≤ m − 1,

AD(G) − |Irr1(G)|
|G| =

1
|G|
∑
n≥m

n3|Irrn(G)|

and

1 − |Irr1(G)|
|G| =

1
|G|
∑
n≥m

n2|Irrn(G)|.

Hence,

AD(G) − |Irr1(G)|
|G| ≥ m

(
1 − |Irr1(G)|

|G|

)
.

As in the proof of Proposition 1.1, |Irr1(G)| = |G : G′|. Hence, |Irr1(G)||G|−1 ≤ n−1.
Plugging this into the previous inequality gives

AD(G) ≥ m − (m − 1)
|Irr1(G)|
|G| ≥ m − m − 1

n
,

which completes the proof. �

COROLLARY 2.3 (A sharper form of [8, Proposition 4.3]). Let G be nonabelian. Then,
either AD(G) ≥ 5

3 , or cd(G) = {1, 2} and |G′| = 2; in the latter case, AD(G) = 3
2 .

PROOF. Note that mindeg(G) ≥ 2⇐⇒ G is nonabelian⇐⇒ |G′| ≥ 2. Therefore, if
either mindeg(G) ≥ 3 or |G′| ≥ 3, applying Lemma 2.2 with (m, n) = (3, 2) and
(m, n) = (2, 3) yields AD(G) ≥ 5

3 . Otherwise, we must have cd(G) = {1, 2} and |G′| = 2,
and following the steps in the proof of Lemma 2.2 yields AD(G) = 3

2 . �

REMARK 2.4. In [3], the present author studied a generalization of AD(G) to the
setting of virtually abelian groups, and showed that AD(G) = 3

2 if and only if
|G : Z(G)| = 4. The proof goes via a version of Corollary 2.3, but substantial work
is required since G may be infinite. It is therefore worth noting that when G is finite,
there is a much simpler proof of this equivalence; details are given in Appendix A.1.
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We saw in the proof of Corollary 2.3 that if AD(G) > 3
2 , then either mindeg(G) ≥ 3

or |G′| ≥ 3. The example of S3 shows that we can have mindeg(G) = 2 and |G′| = 3. In
contrast, the next result shows that we can never have mindeg(G) = 3 and |G′| = 2.

LEMMA 2.5. Let G be a group with |G′| = 2. If ϕ ∈ Irr(G) and ϕ(1) > 1, then ϕ(1) is
even.

Lemma 2.5 follows from more precise results of Miller, stated in [11, Section 1]. His
presentation is rather terse and uses the finiteness of G in an essential way. We provide
a direct proof of Lemma 2.5 in Appendix A.2, which also works for (irreducible,
finite-dimensional, unitary) representations of infinite groups.

PROPOSITION 2.6. Let G be nonabelian. If 2 � cd(G), then AD(G) ≥ 7
3 .

PROOF. We split into two cases. If |G′| ≥ 3, then using Lemma 2.2 with m = 2
and n = 3 gives AD(G) ≥ 7

3 . If |G′| = 2, then 3 � cd(G) by Lemma 2.5 and so
mindeg(G) ≥ 4; using Lemma 2.2 with m = 4 and n = 2 gives AD(G) ≥ 5

2 >
7
3 . �

In both cases of the proof, the lower bounds are sharp; see Example 4.1 below for
details.

3. The proof of Proposition 1.4

For a finite set X and a function f : X → C, we write supp( f ) for the support of f,
that is, the set {x ∈ X : f (x) � 0}.

LEMMA 3.1 (The ‘L-orbit method’ for lower bounds). Let ϕ ∈ Irr(G) and let n = ϕ(1).
Let K be the normal subgroup of G generated by supp(ϕ). Then,

|Irrn(G)| ≥ |Irr1(G)| |G : K|−1.

PROOF. To simplify notation, let L = Irr1(G). Then, L is a group with respect
to the pointwise product, and multiplication of characters defines a group action
L × Irrn(G)→ Irrn(G) for each n. The L-orbit of ϕ is a subset of Irrn(G) and it has
size |L| |StabL(ϕ)|−1.

Let T denote the set of complex numbers of unit modulus, viewed as a group with
respect to multiplication. Observe that each γ ∈ L is T-valued and that

StabL(ϕ) = {γ ∈ L : γϕ = ϕ} = {γ ∈ L : γ(x) = 1 for all x ∈ supp(ϕ)},

which is the set of group homomorphisms G→ T that factor through G→ G/K.
Therefore, writing A for the abelianization of G/K,

|StabL(ϕ)| = |A| ≤ |G/K| = |G : K|,

and so the L-orbit of ϕ has at least |L| |G : K|−1 elements. The result now follows. �

COROLLARY 3.2. Let n ∈ N. If Irrn(G) is nonempty, then |Irrn(G)| ≥ n−2 |Irr1(G)|.
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PROOF. Pick some ϕ ∈ Irrn(G) and let K be the normal subgroup of G generated by
supp(ϕ). Since ϕ is irreducible, 〈ϕ,ϕ〉 = 1. Therefore, since |ϕ(x)| ≤ ϕ(1) = n for all
x ∈ G,

n2|supp(ϕ)| ≥
∑
x∈G
|ϕ(x)|2 = |G|.

Hence, |G : K| ≤ |G| |supp(ϕ)|−1 ≤ n2. Applying Lemma 3.1, the result follows. �

REMARK 3.3. Although the estimates in the proof of Lemma 3.1 are potentially
wasteful, the resulting lower bound in Corollary 3.2 is sharp. For if G is an extraspecial
group of order 22k+1, it has exactly 22k characters of degree 1 and a single irreducible
character of degree 2k. However, it is important later that in certain situations, we can
do significantly better (Lemma 3.10 below).

PROPOSITION 3.4. If G is nonabelian, then AD(G) ≥ 2 + (maxdeg(G) − 3)|G′|−1.

PROOF. Let d = maxdeg(G). Since |G| = ∑d
n=1 n2|Irrn(G)|,

AD(G) − 2 =
1
|G|

d∑
n=1

(n3 − 2n2)|Irrn(G)|

≥ − |Irr1(G)|
|G| + (d3 − 2d2)

|Irrd(G)|
|G| .

Since Irrd(G) is nonempty, applying Corollary 3.2 gives the desired inequality. �

The rest of this section deals with cases where cd(G) = {1, 2, 3}. We require a
property of AD that is not obvious from the definition, but which seems to be crucial
to understanding its behaviour.

PROPOSITION 3.5 (Johnson). AD is monotone with respect to subgroup inclusion.
That is, if H ≤ G, then AD(H) ≤ AD(G).

REMARK 3.6. Proposition 3.5 follows from results in [8, Section 4] concerning
‘amenability constants’ of Fourier algebras, or from the general theory in
[3, Section 2]. One can give a direct proof, based on considering the induction of
characters from H to G: see the author’s MathOverflow question [4] and the comments
and answers. It is quite possible that a direct proof along these lines was already
known to Johnson.

PROPOSITION 3.7. Let G be a group such that AD(G) < 7
3 and let H ≤ G. If

|G : H| = 2 and cd(G) = {1, 2, 3}, then cd(H) = {1, 2, 3}.

The proof of Proposition 3.7 requires some general facts, which we state in a
separate lemma for convenience.

LEMMA 3.8 (Character degrees of subgroups of index 2). Let H ≤ G with |G : H| = 2.
Then, maxdeg(H) ≤ maxdeg(G) and cd(G) ⊆ cd(H) ∪ 2 cd(H).
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Both parts of the lemma are standard results. For completeness, we quickly sketch
their proofs.

PROOF. Given ψ ∈ Irr(H), let ϕ ∈ Irr(G) be one of the irreducible summands of
IndG

Hψ. By Frobenius reciprocity, ψ is contained in ϕ|H , so ψ(1) ≤ ϕ|H(1) = ϕ(1) ≤
maxdeg(G). This proves the first claim.

For the second claim, let ϕ ∈ Irr(G). If ϕ|H is irreducible, then ϕ(1) ∈ cd(H). If not,
then it follows from Clifford theory (or direct arguments using Frobenius reciprocity)
that ϕ|H splits as the sum of two irreducible characters, say β1 and β2, which satisfy
ϕ = IndG

Hβ1 = IndG
Hβ2. In particular, ϕ(1) = 2β1(1) ∈ 2 cd(H). �

PROOF OF PROPOSITION 3.7. By monotonicity of AD (Proposition 3.5), AD(H) ≤
AD(G) < 7

3 . Hence, by Lemma 3.8, maxdeg(H) ≤ 3 and 3 ∈ cd(H). Since H is
nonabelian and AD(H) < 7

3 , the contrapositive of Proposition 2.6 implies that
2 ∈ cd(H). �

We now observe that two-dimensional irreducible representations of G can be used
to produce three-dimensional representations with useful properties. In what follows,
ε denotes the constant function 1, regarded as the trivial representation of the group.

LEMMA 3.9. Let π be a two-dimensional irreducible representation of G and let π∗

denote its contragredient.

(i) The representation ε occurs in π ⊗ π∗ with multiplicity 1.
(ii) Let ρ be the summand in π ⊗ π∗ complementary to ε. Suppose that ρ is reducible.

Then, G has a subgroup of index 2.

This is surely not a new observation, but since we are unaware of a precise reference,
a full proof is given below.

PROOF. Part (i) follows from Schur’s lemma. (Alternatively, let ψ = Tr π; then the
multiplicity of ε in π ⊗ π∗ is equal to 〈ψψ, ε〉 = |G|−1∑

x∈G ψ(x)ψ(x) = 1.)
For part (ii), let ϕ = Tr ρ; by part (i), ϕ is real-valued and 〈ϕ, ε〉 = 0. We claim

that there exists a real-valued character on G of degree 1 occurring as a summand
of ϕ. Assuming such a character exists, it may be viewed as a group homomorphism
σ : G→ {±1}. Since ε is not a summand of ϕ, we know that σ � ε and so kerσ has
index 2 in G, as required.

To prove the claim, note that since ϕ has degree 3 and is reducible, its decomposition
into irreducible characters includes at least one γ ∈ Irr1(G). If γ is real-valued, we
are done. If not, then γ � γ and 〈ϕ, γ〉 = 〈ϕ, γ〉 ≥ 1. Hence, γ and γ occur in ϕ with
multiplicity 1, and ϕ = γ + γ + σ, where σ ∈ Irr1(G) is real-valued. �

If G has no subgroups of index 2 and 2 ∈ cd(G), then by Lemma 3.9, for each
ψ ∈ Irr2(G), the character β := ψψ − ε must be irreducible; and because β is a ‘small
perturbation’ of a nonnegative character, we can obtain improved lower bounds on
|supp(β)|, allowing us to apply Lemma 3.1 more effectively. It turns out that the relevant
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estimates have nothing to do with group structure, so we present them as a separate
lemma.

LEMMA 3.10. Let X be a finite nonempty set and let d ≥ 1. Suppose that f : X →
[−1, d] has mean 0 and variance 1, that is,∑

x∈X
f (x) = 0 and

∑
x∈X

f (x)2 = |X|.

Then, |supp( f )| ≥ d−1|X|.

PROOF. Fix some ‘threshold value’ c ∈ [0, d], to be determined later, and partition
supp( f ) as N ∪ P ∪ R where:

• N := {x ∈ X : − 1 ≤ f (x) < 0};
• P := {x ∈ X : 0 < f (x) ≤ c};
• R := {x ∈ X : c < f ≤ d}.

Then, since
∑

x∈supp( f ) f (x)2 = |X|,

|X| =
∑
x∈N

f (x)2 +
∑
x∈P

f (x)2 +
∑
x∈R

f (x)2

≤
∑
x∈N
| f (x)| + c

∑
x∈P

f (x) + d
∑
x∈R

f (x). (∗)

On the other hand, since
∑

x∈supp( f ) f (x) = 0,∑
x∈P

f (x) =
∑
x∈N
| f (x)| −

∑
x∈R

f (x),

and substituting this into (*) yields

|X| ≤ (c + 1)
∑
x∈N
| f (x)| + (d − c)

∑
x∈R

f (x) ≤ (c + 1)|N | + d(d − c)|R|

≤ max(c + 1, d(d − c)) |supp( f )|.

Taking c = d − 1 gives |X| ≤ d|supp( f )| as required. �

PROPOSITION 3.11. Suppose that G has no subgroups of index 2, but has an
irreducible representation of degree 2. Then, |Irr3(G)| ≥ 1

3 |Irr1(G)|.

PROOF. Let ψ ∈ Irr2(G) and let β = ψψ − ε. We observe that:

• β takes values in [−1, 3], since 0 ≤ |ψ(x)|2 ≤ 4 for all x ∈ G;
• 〈β, ε〉 = 0, by Lemma 3.9(i);
• 〈β, β〉 = 1, since β is irreducible by Lemma 3.9(ii).

Hence, by Lemma 3.10, |supp(β)| ≥ 1
3 |G|, and applying Lemma 3.1 completes the

proof. �
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REMARK 3.12. In general, the bound in Proposition 3.11 cannot be improved. To
see this, take G = SL(2, 3). Then, cd(G) = {1, 2, 3} and |Irr1(G)| = 3 = 3|Irr3(G)|, while
|G : G′| = 3 (so that G cannot quotient onto the two-element group).

PROOF OF PROPOSITION 1.4. Let G be a group with maxdeg(G) ≥ 3. If
maxdeg(G) ≥ 4, then AD(G) ≥ 2 + |G′|−1 by Proposition 3.4. So we assume
henceforth that maxdeg(G) = 3. Note that this implies |G′| ≥ 3, by Lemma 2.5.
Moreover, if cd(G) = {1, 3}, then by Proposition 2.6, AD(G) ≥ 7

3 ≥ 2 + |G′|−1.
It only remains to deal with the cases where cd(G) = {1, 2, 3}. If AD(G) ≥ 7

3 , then
we are done, as before. So we may assume that cd(G) = {1, 2, 3} and AD(G) < 7

3 . Put
H0 = G and apply the following recursive procedure: if n ∈ N and Hn−1 has a subgroup
of index 2, choose Hn to be such a subgroup; otherwise, stop. Note that at each stage,
Proposition 3.7 ensures that cd(Hn) = {1, 2, 3}.

Since G is finite, this procedure must terminate; let H be the last subgroup in this
sequence. Since cd(H) = {1, 2, 3},

AD(H) =
1
|H| (|Irr1(H)| + 8|Irr2(H)| + 27|Irr3(H)|) and

1 =
1
|H| (|Irr1(H)| + 4|Irr2(H)| + 9|Irr3(H)|).

Hence, AD(H) = 2 − |H|−1|Irr1(H)| + 9|H|−1|Irr3(H)|. Since H has no subgroups of
index 2, it satisfies the hypotheses of Proposition 3.11, and so

AD(H) ≥ 2 +
2|Irr1(H)|
|H| = 2 +

2
|H′| .

As AD(G) ≥ AD(H) (Proposition 3.5) and |G′| ≥ |H′|, we conclude that AD(G) ≥ 2 +
2|G′|−1, which completes the proof of Proposition 1.4. �

4. Further examples and implications of small values

4.1. Values of AD for particular groups. We present three families of groups with
rather different properties (nilpotent, solvable with trivial centre and quasi-simple),
where one obtains rather simple formulae for the AD-constants in each family. In each
case, the ratio AD(G) maxdeg(G)−1 converges to 1 as |G| → ∞.

EXAMPLE 4.1 (Extraspecial p-groups). Let p be a prime and let n ∈ N. If G is an
extraspecial p-group of order p2n+1, then the degrees of its irreducible characters
and their multiplicities are well documented. Namely, G has exactly p2n characters
of degree 1 and exactly p − 1 irreducible characters of degree pn. Hence,

AD(G) =
p2n · 13 + (p − 1)p3n

p2n+1 = pn−1(p − 1) +
1
p

.

We note two particular cases, relevant to Proposition 2.6. If p = 2 and n = 2, then
cd(G) = {1, 4} and AD(G) = 5

2 . If p = 3 and n = 1, then cd(G) = {1, 3} and AD(G) = 7
3 .
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EXAMPLE 4.2 (Affine groups of finite fields). For q a prime power ≥ 3, let Fq denote
the finite field with q elements and consider the natural semidirect product Fq � F

×
q

(sometimes referred to as the affine group or ‘ax + b group’ of Fq). This group has
exactly q − 1 characters of degree 1 and a single irreducible character of degree q − 1.
Hence,

AD(Fq � F
×
q ) =

(q − 1) · 13 + (q − 1)3

q(q − 1)
= q − 2 +

2
q

.

Note that when q = 3, this group is isomorphic to the dihedral group of order 6, and
its AD-constant is 5

3 ; this matches the calculation in Example 2.1.

EXAMPLE 4.3 (Special linear groups of degree 2). Let q be a prime power and
let SL(2, q) denote the special linear group of degree 2 over the finite field with q
elements; this has order q3 − q.

For q even, put q = 2r; then Irr(SL(2, q)) is the union of four pairwise disjoint sets
X1, Xq−1, Xq and Xq+1, where each member of Xj has degree j, and

|X1| = 1; |X2r−1| = r; |X2r | = 1; |X2r+1| = r − 1.

For q odd, put q = 2r + 1; then Irr(SL(2, q)) is the union of six pairwise disjoint sets
X1, Xr, Xr+1, Xq and Xq+1, where each member of Xj has degree j, and

|X1| = 1; |Xr | = 2; |Xr+1| = 2; |X2r | = r; |X2r+1| = 1; |X2r+2| = r − 1.

By brute-force calculation, we eventually obtain

AD(SL(2, q)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

q3 − 3
q2 − 1

= q − 1
q − 1

+
2

q + 1
for q even,

2q3 − q2 − 9
2(q2 − 1)

= q − 1
2
− 2

q − 1
+

3
q + 1

for q odd.

The next set of examples was suggested to the author by P. Levy.

EXAMPLE 4.4 (Finite subgroups of SO(3) and SU(2)). We ignore the cyclic groups
and dihedral groups, and their double covers inside SU(2), since these are covered by
previous results. So there are only three new examples to consider. In the following
list, when we refer to the ‘character degrees’ of a group H, we mean ‘the degrees of its
irreducible characters, listed with multiplicity’.

(a) The alternating group A4 has character degrees 1, 1, 1, 3. Its double cover
is the binary tetrahedral group 2T � SL(2, 3), whose character degrees are
1, 1, 1, 2, 2, 2, 3. Thus,

AD(A4) = 30
12 =

5
2 and AD(2T) = 54

24 =
9
4 < AD(A4).

(b) The symmetric group S4 has character degrees 1, 1, 2, 3, 3. Its double cover is
the binary octahedral group 2O, whose character degrees are 1, 1, 2, 2, 2, 3, 3, 4.
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Thus,

AD(S4) = 64
24 =

8
3 and AD(2O) = 144

48 = 3 > AD(S4).

(c) The alternating group A5 has character degrees 1, 3, 3, 4, 5. Its double cover
is the binary icosahedral group 2I � SL(2, 5), whose character degrees are
1, 2, 2, 3, 3, 4, 4, 5, 6. Thus,

AD(A5) = 244
60 =

61
15 and AD(2I) = 540

120 =
9
2 > AD(A5).

REMARK 4.5. It is already known that although AD cannot increase when passing to
subgroups, it can increase when passing to a quotient. For instance, in a ‘note added
in proof’ in [10], it is observed that the Schur cover of A6 has an AD-constant strictly
smaller than that of the triple cover of A6. However, Example 4.4(a) shows that there
exists a much smaller example.

4.2. Structural consequences for G of upper bounds on AD.

PROPOSITION 4.6 (A cheap lower bound for p-groups). Let p be a prime. If G
is a nonabelian p-group, then AD(G) ≥ p − 1 + 1/p. Equality is attained by an
extraspecial p-group of order p3.

PROOF. Since G is a p-group, both mindeg(G) and |G′| are powers of p. Therefore, both
are ≥ p, since G is nonabelian. The rest follows from Lemma 2.2 and the calculation
in Example 4.1. �

A similar idea can be used to control (sub)groups of odd order whose AD-constants
are small. The next result is a slightly stronger version of an observation by
G. Robinson (personal communication).

LEMMA 4.7. If AD(G) < 7
3 , then every odd order subgroup of G is abelian.

PROOF. We prove the contrapositive. Suppose that G has a nonabelian subgroup H
that has odd order. Since ϕ(1) divides |H| for each ϕ ∈ Irr(H), we have mindeg(H) ≥ 3;
since |H′| divides |H|, we have |H′| ≥ 3. Therefore, by monotonicity (Proposition 3.5)
and Lemma 2.2,

AD(G) ≥ AD(H) ≥ 1 + (3 − 1) 2
3 =

7
3 ,

as required. �

COROLLARY 4.8. If G is nilpotent and AD(G) < 7
3 , then G is the product of a 2-group

and an abelian group of odd order.

PROOF. If p is an odd prime, then by Lemma 4.7, each p-Sylow subgroup of G is
abelian. However, since G is finite and nilpotent, it factorizes as the direct product of
its Sylow subgroups. �

REMARK 4.9. We can show by relatively elementary arguments that AD(G) > 4
whenever G is nonabelian and simple; since AD(A5) = 61/15, this is already quite
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close to the optimal result. Although we obtain a stronger result in Section 5, we
include the proof of the weaker result here as an illustration of our earlier method.

The main idea is similar to the proof of Lemma 2.2. Let m = mindeg(G). Since m
divides |G| = ∑ϕ∈Irr(G) ϕ(1)2 and since |Irr1(G)| = 1,

∑
ϕ∈Irr(G),ϕ(1)>m

ϕ(1)2 ≡ −1(mod m).

Hence, there is at least one σ ∈ Irr(G) with σ(1) ≥ m + 1. Therefore,

AD(G) − m =
∑

ϕ∈Irr(G)

(ϕ(1) − m)ϕ(1)2

|G|

≥ −m − 1
|G| +

(σ(1) − m)σ(1)2

|G| ≥ −m − 1
|G| +

(m + 1)2

|G| > 0.

If m ≥ 4, this immediately gives AD(G) > 4. So, it only remains to deal with cases
where m = 3. The finite simple subgroups of PGL(3,C) were determined by Blichfeldt
in [2] and, using his classification, one can show that the only simple groups with
m = 3 are A5 and PSL(2, 7) (some further explanation is given in Appendix A.3). We
see in Example 4.4(c) that AD(A5) = 61/15 > 4, and since PSL(2, 7) has character
degrees 1, 3, 3, 6, 7, 8, we find that AD(PSL(2, 7)) = 563/84 > 6.

5. A sharp lower bound on AD for nonsolvable groups

Our aim in this section is to prove Theorem 1.5: if G is nonsolvable, then AD(G) ≥
61/15. One difficulty, if we rely on our existing tools, is that although AD behaves
well with respect to taking subgroups, it does not behave well with respect to taking
quotients (see Remark 4.5).

Instead, our proof is inspired by techniques used in [13] to prove an analogous
‘threshold’ result for the quantity

f (G) :=
1
|G|
∑

ϕ∈Irr(G)

ϕ(1).

The key in [13] is to exploit the inequality f (G)2 ≤ cp(G), where the commuting
probability cp(G) is equal to |G|−1|Irr(G)|. (Strictly speaking, this is not the original
definition of cp, but its equivalence with the original definition is well known.) The
inequality relating f with cp is immediate from the Cauchy–Schwarz inequality; in our
setting, we can use Hölder’s inequality to obtain an analogous relationship between
AD and cp, but in the opposite direction.

PROPOSITION 5.1. For every G, we have 1 ≤ AD(G)2 cp(G). Equality is strict if G is
nonabelian.
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PROOF. Applying Hölder’s inequality with conjugate exponents 3
2 and 3 gives

|G| =
∑

ϕ∈Irr(G)

ϕ(1)2 · 1 ≤
( ∑
ϕ∈Irr(G)

ϕ(1)3
)2/3( ∑

ϕ∈Irr(G)

13
)1/3

,

and the inequality is strict unless every ϕ ∈ Irr(G) has the same degree, that is, unless
G is abelian. The result now follows by dividing both sides by |G| and then cubing. �

REMARK 5.2. The invariant cp has been intensively studied and, in particular, it is
shown in [6, Theorem 11] that if 1/12 > cp(G) > 3/40, then G is solvable. Although
this result itself is not strong enough to imply Theorem 1.5, the ideas in its proof can
be seen (refracted through the prism of [13]) in what follows.

The key advantage of working with cp, compared with either f or AD, is that it
behaves well with respect to both taking subgroups and taking quotients. In particular,
we make crucial use of the following result.

LEMMA 5.3 (Gallagher, [5]). Suppose that N � G. Then,

min(cp(G/N), cp(N)) ≥ cp(G/N) cp(N) ≥ cp(G).

It was observed by Dixon that the largest value of cp on simple nonabelian groups is
attained at A5. We need some information about the second largest value attained by cp
on this class of groups. The following is a slightly stronger version of [13, Lemma 2.3].

LEMMA 5.4. There exists 1/28 ≤ δ0 ≤ 1/20 with the following property: if S is a finite
nonabelian simple group and cp(S) > δ0, then S � A5 (and cp(S) = 1/12).

By consulting the classification of finite simple groups (CFSG) and considering the
minimal degrees of nontrivial irreducible characters, it can be shown that one can take
δ0 = 1/28. (This is best possible since cp(PSL(2, 7)) = 1/28.) We can show without
resorting to the full CFSG that δ0 = 1/20 works. Details are given in Appendix A.3:
our approach invokes parts of the classification of finite subgroups of PGL(3,C) and
PGL(4,C), given by Blichfeldt in the 1900s [1, 2].

The following lemma is presumably standard knowledge, but it seems quicker to
give an explanation than to look up a reference.

LEMMA 5.5. Let H be a perfect group.

(a) If W is a solvable group and θ : H → W is a homomorphism, then θ(H) = {1W}.
(b) If X is any set on which H acts, then each H-orbit in X either has size 1 or size ≥ 5.

PROOF. Part (a) follows by induction on the derived series of W. For part (b), observe
that an H-orbit of size n defines a homomorphism α : H → Sn whose image acts
transitively on the original orbit. If n ≤ 4, then Sn is solvable and so α(H) is trivial
by part (a); this is only possible if n = 1. �

We now turn to the proof that the only perfect groups with commuting probability
greater than 1/20 are A5 and SL(2, 5) (Proposition 1.6). Our argument is patterned
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on the proof of [13, Lemma 2.4], but since we need better bounds than those in
Tong-Viet’s paper, we take the opportunity to make some simplifications and give a
more streamlined approach.

PROOF OF PROPOSITION 1.6. Let S be the quotient of H by any maximal proper
normal subgroup. Then, S is simple (by maximality), nontrivial (by properness)
and nonabelian (since H is perfect). By Lemma 5.3, cp(S) ≥ cp(H) > 1/20, so by
Lemma 5.4, S � A5.

Thus, we have a surjective homomorphism H → A5, with kernel N, say. If N is
trivial, there is nothing to prove; so henceforth, we assume |N | ≥ 2 and aim to prove
that H � SL(2, 5).

By definition, H is an extension of A5 by the group N. Suppose that we can show it
is a central extension; then, since H is perfect, it must be a quotient of the Schur cover
of A5, which is isomorphic to SL(2, 5). Since |SL(2, 5)| = 2|A5| ≤ |H|, the quotient map
from SL(2, 5) onto H must be injective, and we are done.

Therefore, it suffices to prove that N ⊆ Z(H). Let kH(N) denote the number of
H-conjugacy classes contained in N. As in the proof of [13, Lemma 2.4], we have
the inequality

12 cp(H) ≤ kH(N)
|N | . (5-1)

(We briefly sketch how this works. If M is any finite group and N �M, then
[6, Lemma 1(iii)], which is actually proved in [9, Remark A2’], tells us that

|Irr(M)| ≤ kM(N) sup
B≤M/N

|Irr(B)|.

We then apply this inequality with M = H, noting that |H : N | = 60, and appeal to the
fact that each subgroup of A5 has at most five distinct irreducible characters.)

Since cp(H) > 1/20, it follows from (5-1) that kH(N) > 3
5 |N |. By definition kH(N)

counts the number of orbits for the conjugation action of H on N. By Lemma 5.5, the
size of each nonsingleton orbit is at least 5. Therefore, if F denotes the set of fixed
points of the action,

|N | ≥ 5(kH(N) − |F|) + |F| = 5kH(N) − 4|F|,

and combining this with the previous lower bound on kH(N) gives

|F| ≥ 1
4 (5kH(N) − |N |) > 1

2 |N |.

Now observe that F = Z(H) ∩ N. So by the previous inequality, |N : Z(H) ∩ N | < 2,
which is only possible if Z(H) ∩ N = N, and this completes the proof. �

We can now show that on the class of finite perfect groups, the AD-constant is
minimized at A5. In fact, a more precise statement can be made.

COROLLARY 5.6. Let H be a nontrivial perfect group which satisfies AD(H) ≤ 2
√

5 �
4.47. Then, H � A5 and AD(H) = 61/15 � 4.07.
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PROOF. By Proposition 5.1, cp(H) > AD(H)−2 ≥ 1/20. Hence, by Proposition 1.6, H
is isomorphic to either A5 or SL(2, 5). However, the second possibility is excluded,
since we saw in Example 4.4(c) that AD(SL(2, 5)) = 9

2 > 2
√

5. �

PROOF OF THEOREM 1.5. Since G is not solvable, its derived series stabilizes at some
subgroup H ≤ G that is perfect and nontrivial. By monotonicity, AD(G) ≥ AD(H); and
by Corollary 5.6, we have AD(H) ≥ min(2

√
5, 61/15) = 61/15. �
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Appendix. Easier proofs of some known results

A.1. Finite groups with two character degrees and derived subgroup of order 2.
The groups described in the title are, by Corollary 2.3, those finite nonabelian groups
where AD attains its minimum value. In this section, we give a quick proof that these
groups are precisely those in which the centre has index 4.

Let G be a finite group with cd(G) = {1, 2} and |G′| = 2. We have Irr(G) = Irr1(G) ∪
Irr2(G); let l = |Irr1(G)| and m = |Irr2(G)|. Also, since every conjugacy class injects
into G′ and |G′| = 2, each conjugacy class in G has size 1 or 2. Let s = |Z(G)| and let n
be the number of conjugacy classes of size 2.

Note that |G| = ∑ϕ∈Irr(G) ϕ(1)2 = l + 4m. Since |G′| = 2, we have |G| = 2l, and so
l = 4m. Moreover, |G| = s + 2n, while s + n = l + m since the character table is square.
Therefore,

s + 2n = 8m, s + n = 5m.

Solving for s and n yields s = 2m and n = 3m. In particular, we conclude that

|G : Z(G)| = 8m
2m
= 4.

Conversely, suppose that |G : Z(G)| = 4. The argument that follows is essentially
the same as in [3], but we include the details for the sake of completeness.
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Note that G/Z(G) cannot be cyclic (otherwise, by lifting the generator, we would
find that G is abelian) and hence it is isomorphic to C2 × C2. Pick two generators for
G/Z(G) and lift them to x, y ∈ G. Then, x2, y2 and [x, y] all belong to Z(G). Since
G = Z(G) ∪ xZ(G) ∪ yZ(G) ∪ xyZ(G), a short case-by-case analysis shows that every
commutator in G equals either 1 or [x, y]. In particular, |G′| = 2.

Moreover, A = Z(G) ∪ xZ(G) is an abelian subgroup of G with index 2. Hence, as
shown in the proof of Lemma 3.8, cd(G) ⊆ {1, 2}. Since G is nonabelian, this inclusion
of sets is an equality.

A.2. A self-contained proof of Lemma 2.5. We give a proof of Lemma 2.5,
which works even for infinite groups. Thus, for this subsection only, we let G be a
not-necessarily-finite group and we suppose that |G′| = 2.

Let π be a finite-dimensional, unitary, irreducible representation of G with dimen-
sion d ≥ 2. (When G is finite, every irreducible representation of G is automatically
finite-dimensional and is equivalent to a unitary representation.) Our aim is to show
that d is even.

LEMMA A.1. Let G′ = {1, z}. Then, z ∈ Z(G).

PROOF. If α ∈ Aut(G), then α(G′) = G′ and α′(1) = 1, and hence α(z) = z. Now take
α to be an arbitrary inner automorphism of G. �

LEMMA A.2. Let g ∈ G. Then, g2 ∈ Z(G).

PROOF. Let g, x ∈ G. Then, gxg−1 = [g, x]x. Since [g, x] is central (by Lemma A.1) and
[g, x]2 = 1,

g2xg−2 = g
(
[g, x]x

)
g−1 = [g, x](gxg−1) = [g, x][g, x]x = x.

Thus, g2 is central. �

PROOF THAT d IS EVEN. Recall that every nontrivial commutator in G is equal
to z. Since π is irreducible and d ≥ 2, π(G) is not abelian, and hence π(z) � Iπ. By
Lemma A.1 and Schur’s lemma, π(z) is a scalar multiple of Iπ; since z2 = 1, it follows
that π(z) = −Iπ.

Since G is nonabelian, there exist x, y ∈ G that do not commute. Since xyx−1 = zy,
we have π(x)π(y)π(x)−1 = −π(y). However, by Lemma A.2 and Schur’s lemma, π(y2)
is a scalar multiple of Iπ. Pick λ ∈ T such that π(y)2 = λ2Iπ; then U := λ−1π(y) is an
involution in Lin(Hπ) and U is conjugate to −U.

Since U is an involution, it has exactly d eigenvalues counted with multiplicity,
and these eigenvalues belong to {−1, 1}; moreover, since U is conjugate to −U,
the eigenvalues −1 and 1 must occur with equal multiplicity, m say. Thus, d = 2m.
(Alternatively, observe that 1

2 (Id + U) is an idempotent that has trace equal to d/2,
which again forces d to be even.) �

A.3. A proof of Lemma 5.4 with δ0 = 1/20. We follow the general strategy seen
in the proofs of [13, Lemma 2.3] and [6, Theorem 11]. Suppose that S is simple and
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nonabelian. Writing m for mindeg(S),

|S| − 1 ≥
∑

ϕ∈Irr(G),ϕ(1)>1

ϕ(1)2 ≥ (|Irr(S)| − 1)m2 = m2 cp(S)|S| − m2,

and rearranging gives m2 − 1 ≥ (m2 cp(S) − 1)|S|. If we are given an explicit δ0 > 0
such that cp(S) > δ0, it follows that

1
|S| ≥

m2 cp(S) − 1
m2 − 1

>
m2δ0 − 1
m2 − 1

. (A.1)

Provided that m2δ0 > 1, the inequality (A.1) gives an explicit upper bound on |S|.
Thus, in cases where m is sufficiently large, S belongs to some small list of known

examples and, in each case, we can see by inspection that m is actually small (giving
a contradiction). Separate ad hoc arguments are then needed to deal with the cases
where m is ‘small’.

In [13, Lemma 2.3], this strategy is used with δ0 = 16/225 and so the easy part of
the argument works for all m ≥ 4; the only remaining cases are those with m = 3, and
these are covered by the following result.

THEOREM A.3 (Blichfeldt, implicitly). Let S be a finite simple group with an
irreducible representation of degree 3. Then, S � A5 or S � PSL(2, 7).

Inspecting the proof of [13, Lemma 2.3], the ‘threshold value’ stated there can
be improved from 16/225 to 1/15, provided that we know the simple groups of
order ≤ 225. However, the methods in that paper cannot reach 1/16 (since we require
m2δ0 > 1), and for our eventual application to Proposition 1.6, we require δ0 ≤ 1/20.
We therefore need the following additional result.

THEOREM A.4 (Blichfeldt, implicitly). Let S be a finite simple group with an
irreducible representation of degree 4. Then, S � A5.

For the reader who wishes to consult the original papers, we provide some details
of how the theorems stated above are derived from the results stated in [1, 2].

PROOFS OF THEOREM A.3 AND A.4. Let d ∈ {3, 4} and let S be a finite simple
group with an irreducible representation of degree d. Then, the image of S under this
representation can be identified with a finite subgroup S̃ ≤ SU(d) that acts irreducibly
on Cd. Let S0 be the image of S̃ in PGLd(C). Of course, S � S̃ � S0.

In the language of [2, page 553] and [1, page 205], S0 is primitive: this follows from
the fact that simple groups cannot act nontrivially on sets of size ≤ 4, see Lemma 5.5.

The case d = 3. The primitive simple finite subgroups of PGL3(C) are determined
up to isomorphism in [2, Section 24] (relying on previous work of Maschke): any
such subgroup must be isomorphic to A5, PSL(2, 7) or A6. Moreover, it is observed
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that in the last case, A6 cannot be lifted from PGL3(C) up to GL3(C); thus S̃ must be
isomorphic to either A5 or PSL(2, 7), and this completes the proof of Theorem A.3.

The case d = 4. The primitive simple finite subgroups of PGL4(C) are determined up
to isomorphism in [1, Section III]; the list appears as items 22◦–27◦ on pages 225–226
of that paper, and consists (in modern notation) of A5, A6, A7, PSL(2, 7) and PSp(4, 3).
Blichfeldt does not state for which of these S0 the corresponding ‘lift’ in GL(4,C) is
simple, but if we invoke known character tables for these groups, then we see that
the only possibility for S̃ is A5 (none of the others have irreducible representations of
degree 4), and this completes the proof of Theorem A.4. �

PROOF OF LEMMA 5.4 WITH δ0 = 1/20. Let S be nonabelian and simple, and let
m = mindeg(S). Suppose that cp(S) > 1/20. We start by showing that this forces m ≤ 4.
For, if m ≥ 5, taking δ0 = 1/20 in (A.1) gives

1
|S| >

(m2

20
− 1
) 1
m2 − 1

≥
(25
20
− 1
) 1
24
=

1
96

.

However, up to isomorphism, the only nonabelian simple group of order < 96 is A5,
which we know has m = 3, and this gives a contradiction.

Therefore, m ∈ {2, 3, 4}. It is well documented that finite simple groups have no
irreducible representations of degree 2 (see for example [7, Corollary 22.13] for an
elementary proof), and it follows from Theorem A.4 that m � 4. The only remaining
possibility is that m = 3. By Theorem A.3, this implies that S � A5 or S � PSL(2, 7);
and since cp(PSL(2, 7)) = 1/28 < 1/20, the second case is ruled out. We conclude that
S � A5, as required. �
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