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Abstract

We consider a discrete-time risk process driven by proportional reinsurance and an interest
rate process. We assume that the interest rate process behaves as a Markov chain. To
reduce the risk of ruin, we may reinsure a part or even all of the reserve. Recursive and
integral equations for ruin probabilities are given. Generalized Lundberg inequalities for
the ruin probabilities are derived given a stationary policy. To illustrate these results, a
numerical example is included.
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1. Introduction

In this paper we study the ruin probability in a generalized discrete-time risk process with
a Markov chain interest model. Moreover, the risk model can be controlled by proportional
reinsurance. Controlling a risk process is a very active area of research, particularly in the last
decade; see, for instance, [6, pp. 2–21], [7], [9], and [10, pp. 1–26]. Nevertheless, obtaining
explicit optimal solutions is a difficult task in a general setting. Hence, an alternative method
commonly used in ruin theory is to derive inequalities or bounds for ruin probabilities (see
[1, pp. 97–129], [4, pp. 1–32], [10, pp. 147–194], and [11, pp. 7–34]). Following Cai [2] and
Cai and Dickson [3], we model the interest rate process as a denumerable state Markov chain.
Inequalities for the ruin probabilities are derived by martingale and inductive techniques. The
inequalities can be used to obtain upper bounds for the ruin probabilities. Our aim is to choose
reinsurance control strategies to bound the ruin probability. For the sake of simplicity, we
restrict ourselves to using stationary control policies.

The outline of the paper is as follows. In Section 2 the risk model is formulated. Some
important special cases of this model are briefly discussed. In Section 3 we derive recursive
equations for finite-horizon ruin probabilities and integral equations for the ultimate ruin
probability. In Section 4 we obtain upper bounds for the ultimate probability of ruin. An
analysis of the new bounds and a comparison with Lundberg’s inequality is also included.
Finally, in Section 5 we illustrate our results on the ruin probability in a risk process with a heavy
tail claims distribution under proportional reinsurance and a Markov interest rate process. We
conclude in Section 6 with some general comments and some suggestions for further research.
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2. The model

We consider a discrete-time insurance risk process in which the surplusXn varies according
to the equation

Xn = Xn−1(1 + In)+ C(bn−1)− h(bn−1, Yn) for n ≥ 1 (1)

with X0 = x ≥ 0. Following Schmidli [10, p. 21] we introduce an absorbing (cemetery) state
�, such that if Xn < 0 or Xn = � then Xn+1 = �. We denote the state space by X = R ∪ �.
Let Yn be the total claims during the nth period (from time n− 1 to time n), which we assume
to form a sequence of independent and identically distributed random variables with common
probability distribution function (PDF) F . The process can be controlled by reinsurance, that
is, by choosing the retention level (or proportionality factor or risk exposure) b ∈ B of a
reinsurance contract for one period, where B := [bmin, 1] and bmin ∈ (0, 1] will be introduced
below. Let {In}n≥0 be the interest rate process; we suppose that In evolves as a Markov chain
with a denumerable (possibly finite) state space I consisting of nonnegative integers.

The function h(b, y) with values in [0, y] specifies the fraction of the claim y paid by the
insurer, and it also depends on the retention level b at the beginning of the period. Hence,
y − h(b, y) is the part paid by the reinsurer. The retention level b = 1 stands for the control
action no reinsurance. In this paper we consider the case of proportional reinsurance, which
means that

h(b, y) := by with retention level b ∈ B. (2)

The premium (income) rate c is fixed. Since the insurer pays to the reinsurer a premium rate,
which depends on the retention level b, we denote by C(b) the premium left for the insurer if
the retention level b is chosen, where

0 ≤ C(b) ≤ c, b ∈ B.

We define bmin := min{b ∈ (0, 1] | C(b) ≥ 0}. Moreover, C(b) is an increasing function that
we will calculate according to the expected value principle with added safety loading θ from
the reinsurer:

C(b) = c − (1 + θ)(1 − b)E[Y ], (3)

where Y is a generic random variable with PDF F .
We consider Markovian control policies π = {an}n≥1, which at each time n depend only

on the current state, that is, an(Xn) := bn for n ≥ 0. Abusing the notation, we will identify
functions a : X → B with stationary strategies, where B = [bmin, 1], the decision space.
Consider an arbitrary initial state X0 = x ≥ 0 (note that the initial value is not stochastic) and
a control policy π = {an}n≥1. Then, by iteration of (1), and assuming that (2) and (3) hold, it
follows that, for n ≥ 1, Xn satisfies

Xn = x

n∏
l=1

(1 + Il)+
n∑
l=1

(
C(bl−1)− bl−1Yl

n∏
m=l+1

(1 + Im)

)
. (4)

Let (pij ) be the matrix of transition probabilities of {In}, i.e.

pij := P(In+1 = j | In = i), (5)
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where pij ≥ 0 and
∑
j pij = 1 for all i, j ∈ I. The ruin probability when using the policy π ,

given the initial surplus x, and the initial interest rate I0 = i is defined as

ψπ(x, i) := Pπ
( ∞⋃
k=1

{Xk < 0}
∣∣∣∣ X0 = x, I0 = i

)
,

which we can also express as

ψπ(x, i) = Pπ (Xk < 0 for some k ≥ 1 | X0 = x, I0 = i). (6)

Similarly, the ruin probabilities in the finite-horizon case are given by

ψπn (x, i) := Pπ
( n⋃
k=1

{Xk < 0}
∣∣∣∣ X0 = x, I0 = i

)
. (7)

Thus,
ψπ1 (x, i) ≤ ψπ2 (x, i) ≤ · · · ≤ ψπn (x, i) ≤ · · ·

and
lim
n→∞ψ

π
n (x, i) = ψπ(x, i).

The following lemma is used below to simplify some calculations.

Lemma 1. For any given policy π , there is a function ψπ(x) such that

ψπ(x, i) ≤ ψπ(x)

for every initial state x > 0 and initial interest rate I0 = i.

Proof. By (1) and (2), the risk model is given by

Xn = Xn−1(1 + In)+ C(bn−1)− bn−1Yn.

Since In ≥ 0, we have

Xn = Xn−1(1 + In)+ C(bn−1)− bn−1Yn ≥ Xn−1 + C(bn−1)− bn−1Yn.

Define recursively
X̃n := X̃n−1 + C(bn−1)− bn−1Yn

with X0 = X̃0 = x. Hence, Xn ≥ X̃n for all n ∈ N. Clearly, if Xn < 0 then X̃n < 0. Let

E1 :=
{
ω ∈ �

∣∣∣∣
∞⋃
n=1

{Xn(ω) < 0}
}

and E2 :=
{
ω ∈ �

∣∣∣∣
∞⋃
n=1

{X̃n(ω) < 0}
}
, (8)

and note that E1 ⊂ E2. Therefore,

Pπ
( ∞⋃
n=1

{Xn < 0}
∣∣∣∣ I0 = i

)
≤ Pπ

( ∞⋃
n=1

{X̃n < 0}
∣∣∣∣ I0 = i

)
,

and since the X̃n do not depend on In, we obtain, from (6),

ψπ(x, i) = Pπ
( ∞⋃
n=1

{Xn < 0}
∣∣∣∣ I0 = i

)
≤ Pπ

( ∞⋃
n=1

{X̃n < 0}
)

=: ψπ(x).

This completes the proof.
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We denote by� the policy space. A control policy π∗ is said to be optimal if, for any initial
values (X0, I0) = (x, i), we have

ψπ
∗
(x, i) ≤ ψπ(x, i) for all π ∈ �.

Schmidli [10, pp. 9–26] and Schäl [9] showed the existence of an optimal control policy for
some special cases of the risk model (1). However, even in these special cases, it is extremely
difficult to obtain closed expressions for ψπ

∗
(x, i). We are thus led to consider bounds for the

ruin probabilities, which we do in Sections 3, 4, and 5, below. First, we note that (1) includes
some interesting ruin models.

2.1. Special cases

To conclude this section we note the following subcases of the risk model (1).

• If In = 0 and bn = 1 for all n ≥ 1, then (1) reduces to the classical discrete-time risk
model without investment and reinsurance:

Xk = x −
k∑
t=1

(Yt − c).

This is the well-known Cramér–Lundberg model, for which there are several bounds for
the ruin probability [1, pp. 69–79], [4, pp. 1–8], [11, pp. 37–51].

• If In = 0 and bn ∈ B for n ≥ 1, then the risk model (1) reduces to the discrete-time risk
model with proportional reinsurance:

Xk = x −
k∑
t=1

(bt−1Yt − C(bt−1)). (9)

Let ψπ(x) := Pπ (
⋃∞
k=1{Xk < 0} | X0 = x) be the corresponding ruin probability.

More explicitly, by (9),

ψπ(x) = Pπ
( ∞⋃
k=1

{ k∑
t=1

[bt−1Yt − C(bt−1)] > x

} ∣∣∣∣ X0 = x

)
.

If we assume constant stationary strategies, say bn = b0 for all n ≥ 1, and, in addition,
that E[b0Y ] < C(b0), then there exists a constant R0 > 0 satisfying

exp(−R0C(b0))E[exp(R0(b0Y ))] = 1. (10)

Therefore, by the classical Lundberg inequality for ruin probabilities (see [1], [4], and
[11]),

ψπ(x) ≤ exp(−R0x) for x ≥ 0. (11)

• Let dn be the constant, short-term dividend rate in the nth period (the dividends are
payments made by a corporation to its shareholder members). Then the discrete-time
risk model with stochastic interest rate and dividends is given by

Xn = Xn−1(1 + In)+ C(bn−1)− h(bn−1, Yn)− dnXn,
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where h(b, y) is as in (2). Thus, rearranging terms,

Xn = Xn−1

(
1 + In

1 + dn

)
+ C(bn−1)

(1 + dn)
− h(bn−1, Yn)

(1 + dn)
.

LetY ′
n := Yn/(1+dn) and In′ := (In−dn)/(1+dn). Since {In} and {Yn} are independent,

then so are {In′} and {Y ′
n}. Let C′(bn−1) := C(bn−1)/(1+dn). Then the model becomes

Xn = Xn−1(1 + In
′)+ C′(bn−1)− h(bn−1, Y

′
n),

which from a statistical viewpoint is essentially the same as the model without dividends
(1) and can be analyzed in a similar way.

• As an extension of the latter case, some companies have dividend reinvestment plans.
These plans allow shareholders to use dividends to systematically buy small amounts of
stock. Let d̃n be the short-term dividend reinvestment rate in the nth period, d̃n ∈ [0, 1).
Then, the discrete-time risk model with stochastic interest rate and dividends reinvestment
is given by

Xn = Xn−1(1 + In)+ C(bn−1)− h(bn−1, Yn)+ d̃nXn.

Hence, rearranging terms, we obtain

Xn = Xn−1

(
1 + In

1 − d̃n

)
+ C(bn−1)

(1 − d̃n)
− h(bn−1, Yn)

(1 − d̃n)
.

Let Y ′′
n := Yn/(1 − d̃n), In′′ := (In− d̃n)/(1 − d̃n), and C′′(bn−1) := C(bn−1)/(1 − d̃n).

It follows that

Xn = Xn−1(1 + In
′′)+ C′′(bn−1)− h(bn−1, Y

′′
n ),

which, again, is essentially the same as model (1).

Let us go back to the original risk model (1). Since determining ruin probabilities is
essentially an infinite-horizon problem, it suffices to consider stationary strategies [10, pp. 154–
199]. In the next section we will derive recursive equations for the ruin probabilities and integral
equations for the ultimate ruin probability associated to model (1).

Remark 1. Given a PDF G, we denote the tail of G by Ḡ, that is, Ḡ(x) := 1 −G(x).

3. Recursive and integral equations for ruin probabilities

In this section we first derive a recursive equation forψπn (x, i). Secondly, we give an integral
equation forψπ(x, i). Finally, we obtain an equation for the ruin probability with horizonn = 1
given I0 = i, X0 = x, and a stationary policy π . These results, which are valid for any initial
interest rate, are summarized in the following lemma.

Lemma 2. Let u(y) := b0y−C(b0), where b0 is the initial retention level. Let τj := (x(1+j)
+ C(b0))/b0, let X0 = x ≥ 0, and let pij be as in (5). Then

ψπ1 (x, i) =
∑
j∈I

pij F̄ (τj ), (12)
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and, for n = 1, 2, . . . ,

ψπn+1(x, i) =
∑
j∈I

pij

∫ τj

0
ψπn (x(1 + j)− u(y), j) dF(y)+

∑
j∈I

pij F̄ (τj ). (13)

Moreover,

ψπ(x, i) =
∑
j∈I

pij

∫ τj

0
ψπ(x(1 + j)− u(y), j) dF(y)+

∑
j∈I

pij F̄ (τj ). (14)

Proof. LetUk := u(Yk) = b0Yk−C(b0). Given Y1 = y, the control strategy π , and I1 = j ,
from (4) we have U1 = u(y). Therefore,

X1 = x(1 + I1)− U1 = h1 − u(y), (15)

where h1 = x(1 + j). Thus, if u(y) > h1 then

Pπ (X1 < 0 | Y1 = y, I1 = j, X0 = x, I0 = i) = 1.

This implies that, for u(y) > h1,

Pπ
(n+1⋃
k=1

{Xk < 0}
∣∣∣∣ Y1 = y, I1 = j, X0 = x, I0 = i

)
= 1,

while if 0 ≤ u(y) ≤ h1 then

Pπ (X1 < 0 | Y1 = y, I1 = j, X0 = x, I0 = i) = 0. (16)

Let {Ỹn}n≥1 and {Ĩn}n≥0 be independent copies of {Yn}n≥1 and {In}n≥0, respectively. Let Ũk :=
b0Ỹk − C(b0). Thus, (4) and (16) yield, for 0 ≤ u(y) ≤ h1,

Pπ
(n+1⋃
k=1

{Xk < 0}
∣∣∣∣ Y1 = y, I1 = j, X0 = x, I0 = i

)

= Pπ
(n+1⋃
k=2

{Xk < 0}
∣∣∣∣ Y1 = y, I1 = j, X0 = x, I0 = i

)

= Pπ
(n+1⋃
k=2

{
(h1 − u(y))

k∏
l=1

(1 + Il)−
k∑
l=1

Ul

k∏
m=l+1

(1 + Im) < 0

} ∣∣∣∣ X0 = x, I1 = j

)

= Pπ
( n⋃
k=1

{
(h1 − u(y))

k∏
l=1

(1 + Ĩl )−
k∑
l=1

Ũl

k∏
m=l+1

(1 + Ĩm) < 0

} ∣∣∣∣ X0 = x, Ĩ0 = j

)

= ψπn (h1 − u(y), j)

= ψπn (x(1 + j)− u(y), j),

where the second equality follows from the Markov property of {In}n≥0, and the independence
of {Yn}n≥1 and {In}n≥0.
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Let us now consider the event A = {Y1 = y, I1 = j, X0 = x, I0 = i}, and recall that
F(y) = P(Y ≤ y). From (4) and (7), we obtain

ψπn+1(x, i) = Pπ
(n+1⋃
k=1

{Xk < 0}
∣∣∣∣ X0 = x, I0 = i

)

=
∑
j∈I

pij

∫ ∞

0
Pπ

(n+1⋃
k=1

{Xk < 0}
∣∣∣∣ A

)
dF(y).

Then, recalling that τj = (x(1 + j)+ C(b0))/b0,

ψπn+1(x, i) =
∑
j∈I

pij

{∫ τj

0
Pπ

(n+1⋃
k=1

{Xk < 0}
∣∣∣∣ A

)
dF(y)

+
∫ ∞

τj

Pπ
(n+1⋃
k=1

{Xk < 0}
∣∣∣∣ A

)
dF(y)

}

=
∑
j∈I

pij

{∫ τj

0
ψπn (x(1 + j)− u(y), j) dF(y)+

∫ ∞

τj

dF(y)

}

=
∑
j∈I

pij

{∫ τj

0
ψπn (x(1 + j)− u(y), j) dF(y)+ F̄ (τj )

}
. (17)

This gives (13). In particular,

ψπ1 (x, i) =
∑
j∈I

pij F̄ (τj ).

Finally, letting n → ∞ in (17) and using dominated convergence, we obtain

lim
n→∞ψ

π
n+1(x, i) = ψπ(x, i),

and (14) follows.

Remark 2. If we consider the risk model without reinsurance, that is, b = 1, we obtain similar
results to those in [3].

4. Bounds for ruin probabilities

We will use the results obtained in Section 3 to find upper bounds for the ruin probabilities
with an infinite horizon, taking into account the information contributed by the Markov chain of
the interest rate process. We derive a functional for the ultimate ruin probability in terms of the
new worse than used in convex ordering; see Remark 3, below. This idea was first introduced
by Willmot and Lin [11] and has been generalized by other authors.

We will present two upper bounds for the ruin probabilities. The first bound is obtained by
an inductive approach and the second by a martingale approach. These bounds are discussed
in Remark 4, at the end of this section.
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4.1. Bounds obtained by the inductive approach

Theorem 1. Let R0 > 0 be the constant satisfying (10). Then, for all x ≥ 0 and i ∈ I,

ψπ(x, i) ≤ β
∑
j∈I

pij Eπ [exp(−R0x(1 + j))]

= β Eπ [exp(−R0[x(1 + I1)]) | I0 = i], (18)

where β ≡ β(b0) and is given by

β−1 = inf
t≥0

∫ ∞
t

exp(R0b0y) dF(y)

exp(R0b0t)F̄ (t)
.

Proof. It suffices to show that the rightmost term in (18) is an upper bound for ψπn (x, i) for
all n ≥ 1. We will prove this by induction. First note that

F̄ (θ) =
(∫ ∞

θ
exp(R0b0y) dF(y)

exp(R0b0θ)F̄ (θ)

)−1

exp(−R0b0θ)

∫ ∞

θ

exp(R0b0y) dF(y)

≤ β exp(−R0b0θ)

∫ ∞

θ

exp(R0b0y) dF(y)

≤ β exp(−R0b0θ)Eπ [exp(R0bY1)] for any θ ≥ 0. (19)

This implies that, for every x ≥ 0, i ≥ 0, and b0 ∈ B, by (12) and (19), we have

ψπ1 (x, i) =
∑
j∈I

pij F̄ (τj )

≤
∑
j∈I

pij

(
β Eπ [exp(R0bY1)] exp

(
−R0b0

(
x(1 + j)+ C(b0)

b0

)))

= β Eπ [exp(R0bY1)]
∑
j∈I

pij exp(−R0[x(1 + j)+ C(b0)])

= β Eπ [exp(R0bY1)] Eπ [exp(−R0[x(1 + I1)+ C(b)]) | I0 = i]
= β Eπ [exp(R0bY1)] Eπ [exp(−R0C(b))] Eπ [exp(−R0x(1 + I1)) | I0 = i]
= β Eπ [exp(−R0[C(b)− bY1])] Eπ [exp(−R0x(1 + I1)) | I0 = i]
= β Eπ [exp(−R0x(1 + I1)) | I0 = i] (by (10)).

This shows that the desired result holds for n = 1. To prove the result for general n ≥ 1, the
induction hypothesis is that, for some n ≥ 1, and every x ≥ 0 and i ∈ I,

ψπn (x, i) ≤ β Eπ [exp(−R0x(1 + I1)) | I0 = i]. (20)

Now, let 0 ≤ y ≤ τj , where τj is as defined in Lemma 2. Furthermore, in (20), replace x and
i by x(1 + j)+ C(b0)− b0y and j , respectively, to obtain

ψπn (x(1 + j)+ C(b0)− b0y, j)

≤ β Eπ [exp(−R0[x(1 + j)+ C(b)− by](1 + I1)) | I0 = j ]
≤ β exp(−R0[x(1 + j)+ C(b0)− b0y]). (21)
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Therefore, substituting (21) into (13), we obtain

ψπn+1(x, i) ≤
∑
j∈I

pij

(
β exp(−R0[x(1 + j)+ C(b0)])

∫ ∞

τj

exp(R0b0y) dF(y)

)

+
∑
j∈I

pij

(
β exp(−R0[x(1 + j)+ C(b0)])

∫ τj

0
exp(R0b0y) dF(y)

)

=
∑
j∈I

pij

(
β exp(−R0[x(1 + j)+ C(b0)])

∫ ∞

0
exp(R0b0y) dF(y)

)

= β Eπ [exp(R0bY1)]
∑
j∈I

pij exp(−R0[x(1 + j)+ C(b0)])

= β Eπ [exp(R0bY1)] Eπ [exp(−R0C(b))] Eπ [exp(−R0x(1 + I1)) | I0 = i]
= β Eπ [exp(−R0x(1 + I1)) | I0 = i].

Hence, (20) holds for any n = 1, 2, . . . , and letting n → ∞ in (20) we obtain (18). This
completes the proof.

As an application of Theorem 1, we now consider the special case in which the claim
distribution is in the class of NWUC distributions [11, p. 25], which are defined as follows.

Remark 3. A distribution F concentrated on (0,∞) is said to be new worse than used in
convex (NWUC) ordering if, for all x, y ≥ 0,∫ ∞

x+y
F̄ (z) dz ≥ F̄ (y)

∫ ∞

x

F̄ (z) dz.

Corollary 1. Under the hypotheses of Theorem 1, and assuming that Eπ [exp(R0bY1)] < ∞
for all b ∈ B and that, in addition, F is an NWUC distribution, we have

ψπ(x, i) ≤ (Eπ [exp(R0bY1)])−1 Eπ [exp(−R0x(1 + I1)) | I0 = i]. (22)

Proof. Following Willmot and Lin [11, pp. 96–97], let r := R0b > 0. Therefore,

β−1 := inf
t≥0

∫ ∞
t

ery dF(y)

ert F̄ (t)
=

∫ ∞

0
ery dF(y),

that is, β−1 = Eπ [exp(R0bY1)]. Finally, substituting this equality into (18), we obtain (22).

4.2. Bounds by the martingale approach

Another way of deriving upper bounds for ruin probabilities is the martingale approach. To
this end, let Vn := Xn

∏n
l=1(1 + Il)

−1 with n ≥ 1 be the so-called discounted risk process.
The ruin probabilities ψπn in (7) associated to the process {Vn, n = 1, 2 . . .} are

ψπn (x, i) = Pπ
( n⋃
k=1

(Vk < 0)

∣∣∣∣ X0 = x, I0 = i

)
.

In the classical risk model, {exp(−R0Xn)}n≥1 is a martingale. However, for our model (4),
there is no constant r > 0 such that {exp(−rXn)}n≥1 is a martingale. Still, there exists a
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constant r > 0 such that {exp(−rVn)}n≥1 is a supermartingale, which allows us to derive
probability inequalities by the optional stopping theorem. Such a constant is defined in the
following proposition.

Proposition 1. Assume that Eπ [C(b)−bY1] > 0. In addition, we suppose that, for each i ∈ I,
there exists ρi > 0 satisfying

Eπ [exp(−ρi[C(b)− bY1](1 + I1)
−1) | I0 = i] = 1.

Then
R1 := min

i∈I

ρi ≥ R0, (23)

and, furthermore, for all i ∈ I,

Eπ [exp(−R1[C(b)− bY1](1 + I1)
−1) | I0 = i] ≤ 1. (24)

Proof. For each i ∈ I, let

li (r) := Eπ [exp(−r[C(b)− bY ](1 + I1)
−1) | I0 = i] − 1 for r > 0.

Then the first derivative of li (r) at r = 0 is

l
′
i (0) = Eπ [−(C(b)− bY )] Eπ [(1 + I1)

−1 | I0 = i] < 0 (by independence)

and the second derivative is

l
′′
i (r) = Eπ [((C(b)− bY )(1 + I1)

−1)2 exp(−r[C(b)− bY ](1 + I1)
−1) | I0 = i] > 0.

This shows that li (r) is a convex function. Let ρi be the unique positive root of the equation
li (r) = 0 on (0,∞). Furthermore, if 0 < ρ ≤ ρi then li (ρ) ≤ 0. However,

Eπ [exp(−R0[C(b)− bY ](1 + I1)
−1) | I0 = i]

=
∑
j∈I

pij E[exp(−R0[C(b0)− b0Y ](1 + j)−1)] (by Jensen’s inequality)

≤
∑
j∈I

pij E[exp(−R0[C(b0)− b0Y1])](1+j)−1
.

Consequently, by (10) we have E[exp(−R0[C(b0)− b0Y1])] = 1. Hence, since
∑
j∈I
pij = 1,

Eπ [exp(−R0[C(b)− bY ](1 + I1)
−1) | I0 = i] ≤ 1.

This implies that li (R0) ≤ 0. Moreover, R0 ≤ ρi for all i, and so

R1 := min
i∈I

ρi ≥ R0.

Thus, (23) holds. In addition, R1 ≤ ρi for all i ∈ I, which implies that li (R1) ≤ 0. This
yields (24).

Theorem 2. Under the hypotheses of Proposition 1, for all i ∈ I and x ≥ 0,

ψπ(x, i) ≤ exp(−R1x). (25)
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Proof. By (4), the discounted risk process Vk := Xk
∏k
l=1(1 + Il)

−1 satisfies

Vk := x +
k∑
l=1

(
(C(b0)− b0Yl)

l∏
t=1

(1 + It )
−1

)
. (26)

Let Sn = exp(−R1Vn). Then

Sn+1 = Sn exp

(
−R1(C(b0)− b0Yn+1)

n+1∏
t=1

(1 + It )
−1

)
. (27)

Thus, for any n ≥ 1,

Eπ [Sn+1 | Y1, . . . Yn, I1, . . . In]

= Sn E

[
exp

(
−R1(C(b0)− b0Yn+1)

n+1∏
t=1

(1 + It )
−1

) ∣∣∣∣ Y1, . . . Yn, I1, . . . In

]

= Sn E

[
exp

(
−R1(C(b0)− b0Yn+1)(1 + In+1)

−1
n∏
t=1

(1 + It )
−1

) ∣∣∣∣ I1, . . . In

]

≤ Sn E([exp(−R1(C(b0)− b0Yn+1)(1 + In+1)
−1) | I1, . . . In])

∏n
t=1(1+It )−1

≤ Sn.

This implies that {Sn}n≥1 is a supermartingale.
Let Ti = min{n : Vn < 0 | I0 = i}, where Vn is given by (26). Then Ti is a stopping time

and n ∧ Ti := min{n, Ti} is a finite stopping time. Thus, by the optional stopping theorem for
martingales we obtain

Eπ [Sn∧Ti ] ≤ Eπ [S0] = exp(−R1x).

Hence,
exp(−R1x) ≥ Eπ [Sn∧Ti ]

≥ Eπ [(Sn∧Ti ) 1{Ti≤n}]
≥ Eπ [(STi ) 1{Ti≤n}]
= Eπ [exp(−R1VTi ) 1{Ti≤n}]
≥ Eπ [1{Ti≤n}]
= ψπn (x, i), (28)

where (28) follows because VTi < 0. Thus, by letting n → ∞ in (28) we obtain (25).

Remark 4. Summarizing, we have three upper bounds for the ruin probabilities with infinite
horizon. First, the Lundberg bound, which depends only on R0, the Lundberg exponential in
(10) and (11). Second, the inductive bound (18), which depends on R0 and also on the interest
rate process. Third, the martingale bound in (25), which depends on R1. Note that the last two
bounds are sharper than the Lundberg bound. Observe also that the number of operations to
obtain R1 in (25) is higher than that to obtain R0 in (18).

In the next section we present some numerical results.
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5. Numerical results

To illustrate the bounds obtained in Theorems 1 and 2, we present a numerical example that
uses MATLAB® and MAPLE® implementations for different values of the retention level b.

We assume that the claim amount in year k is Yk , which has a gamma density gamma( 1
2 , 2).

Since this distribution is NWUC, we will use (22).
The annual premium is c = 1.1; namely, there is a loading of 10% given by the reinsurer.

In this example,
C(b) = 1.1 − (1.1)(1 − b) > 0 if b ∈ (0, 1].

Consider an interest model with three possible interest rates:

I = {6%, 8%, 10%}.
The transition matrix (see (5)) is given by⎛

⎝ 0.2 0.8 0
0.15 0.7 0.15

0 0.8 0.2

⎞
⎠ .

Thus, our interest rate model incorporates mean reversion to a level of 8%. In this example,
B = (0, 1].

In Figure 1 we show that the relation between Rl and b, with l ∈ {0, 1}, is inversely
proportional. Remember that b = 1 means no reinsurance, and so we will hope to have a
small value of Rl . Analogously, when b is close to 0 (reinsure almost everything), Rl becomes
extremely large.

The numerical results in Table 1 show that the upper bound in (18) can be tighter than that in
(25). This suggests that the upper bounds derived by the inductive approach are tighter than the
upper bounds obtained by supermartingales. In addition, Table 1 shows that the upper bounds
derived in this paper are sharper than the Lundberg upper bound.

Remark 5. In the case in which b = 1, our results are the same as in [3].
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0

1

2

3
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0.0 0.2 0.4 0.6 0.8 1.0
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2

3

4

5

6

7

b

R1

Figure 1: Left: the relation between R0 and b. Right: the relation between R1 and b.
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Table 1: Table of upper bounds for ruin probabilities with x = 5 and i = 8%.

Retention level b Lundberg Induction Martingale R0 R1

0.01 0.752×10−19 0.226×10−20 0.224×10−20 8.8067 9.5091
0.25 0.171 0.135 0.149 0.352 0.380
0.50 0.414 0.350 0.386 0.176 0.190
0.75 0.555 0.481 0.530 0.117 0.126
1.00 0.643 0.564 0.621 0.0880 0.0950

6. Concluding remarks

Our main results in this paper, Theorem 1 and Theorem 2, give upper bounds for the
probability of ruin of a certain risk process, which (as shown in Section 2) includes as special
cases several important models. To obtain Theorem 1 and Theorem 2, first, we obtained an
important preliminary result, Lemma 2, which gave recursive equations for finite-horizon ruin
probabilities and an integral equation for the ultimate ruin probability. We illustrated our results
with an application to the ruin probability in a risk process with a heavy tail claims distribution,
under proportional reinsurance, and a Markov interest rate process. This application suggests
that the upper bounds derived by the inductive approach (Theorem 1) are tighter than the upper
bounds obtained by supermartingales (Theorem 2). In either case, the upper bounds derived in
this paper are sharper than the Lundberg upper bound.

Our paper leaves, of course, many open issues.

(a) Is it possible to obtain bounds tighter than those in Theorems 1 and 2?

(b) Actually, what do we need to obtain the ruin probabilities in closed form? Can we estimate
these probabilities using Markov chain techniques (as in [8, pp. 21–39], for instance)?

(c) Can we calculate or estimate quantities such as E[τ ] or P(τ ≤ T ) for given T > 0, where
τ := inf{k ≥ 1 | Xk < 0} is the time of ruin?

These are just a few of the many questions that we can ask ourselves. But two immediate
queries are as follows.

(i) Since {In} in (1) is supposed to be a Markov chain, can we rewrite the minimization of
the ruin probability as a Markov decision problem? (See, for instance, [6, pp. 13–42]
and [10, pp. VII–XI].) This issue can be settled using the recent results in [5]. We will
consider this extension in a forthcoming paper.

(ii) Suppose that in (1) we include an investment process. What can we say about these
models?
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