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Abstract

In this short communication, I analyze cases of failed predictions for protein–protein com-
plexes with Alphafold2, and show that they either point to erroneous annotation in the
PDB or correct binding site regions.

The Alphafold2 method (Jumper et al., 2021a) has unquestionably revolutionized the field of
protein structure prediction, achieving very high accuracy for most targets during the CASP14
initiative (Jumper et al., 2021b). Recently, the Alphafold2 strategy has been extended to predict
protein–protein complexes (Evans et al., 2021). In the article presenting the multimer version
of Alphafold2, a set of 17 complexes obtained after the network training date was considered to
compare with previous strategies based on the initial Alphafold2 system (Ghani et al., 2021).
Out of these 17 complexes, Alphafold2 multimer achieved correct predictions for 14 cases, as
assessed by the DockQ score (Basu and Wallner, 2016).

I looked at the three cases where Alphafold2 produced models with low DockQ scores
(Evans et al., 2021). In the first version of the study (Evans et al., 2021), the three failed
cases were 5ZNG (DockQ = 0.02), 6A6I (DockQ = 0.05), and 7NLJ (DockQ = 0.06).1 I repro-
duced Alphafold2 predictions with a local installation of the ParaFold pipeline (Zhong et al.,
2022), installed in November 2021, excluding the templates newer than April 2018
(--max_template_date = 2018-04-30, which is the network training date). Each prediction run
generates five models and I considered the model with the highest confidence value as the
final prediction. Overall, I am able to replicate published results, as shown in Table S1.

For 5ZNG, the predicted models are indeed very distant from the complex annotated as
biological assembly in the PDB (DockQ score = 0.02). However, the five models are almost
identical, and have good confidence value (around 0.7). They are very similar to the complex
annotated as asymmetric unit (DockQ score = 0.7), see Fig. 1. The complex reported in the
article accompanying the 5ZNG structure is indeed the one annotated as asymmetric unit
in the PDB entry (Guo et al., 2018), not the one annotated as biological assembly and gener-
ated by PISA (Krissinel and Henrick, 2007). Thus, also in this case, the Alphafold2 prediction
was indeed accurate: the predicted model was indeed the one described as biologically relevant.

For 6A6I and 7NLJ, I performed triplicate runs of Alphafold2 and I obtained models with
highest DockQ scores than previously reported (Evans et al., 2021): DockQ = 0.39/0.24/0.18
for 6A6I and DockQ = 0.21/0.16/0.16 for 7NLJ, with low confidence values (0.2–0.3). In
these cases, the asymmetric units and biological assemblies of the PDB entries are identical,
and I found no obvious reason for such discrepancy.

It is worth noting that, even if these models are far from the high quality threshold (DockQ
> 0.8), they indeed provide an approximate prediction of the true binding site regions, as
shown in Fig. 2.

In conclusion, even in the cases where Alphafold2 did not achieve correct predictions for
multimers, the examination of failed cases in this very small data set suggests that the predic-
tions could detect errors in PDB annotation (like 5ZNG) or, more interestingly, determine
approximate binding sites (like 6A6I and 7NLJ). In the last case, the models could provide
a good starting point for conventional docking tools with restraints to these binding sites.
In addition, since Alphafold2 achieves the very difficult task of predicting both the subunit
folds and their binding mode, one could wonder what accuracy it could attain in a classical
docking context when the monomer structures are known. This indicates that Alphafold2
could revolutionize the field of protein–protein docking as it has done for protein structure
prediction.

1A second version of the article was posted on the 10th of March, with improved prediction for 5ZNG (DockQ = 0.69) and
worst prediction for 7P8K (DockQ = 0.05), thanks to new networks trained with modified loss measures. I do not discuss these
results here because the local installation I used is anterior to these new networks.
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Fig. 1. Comparison between the structural information available for 5ZNG and the Alphafold2 models. The biological assembly discussed in the article introducing
the structure is the one annotated as asymmetric unit in the PDB (top right).
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Fig. 2. Comparison between PDB structures and Alphafold2 predictions for 6A6I and 7NLJ.
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