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Abstract. Let M be a real hypersurface of the complex projective space Pn(C).
The Ricci tensor S of M is recurrent if there exists a 1-form � such that rS � S
 �.
In this paper we show that there are no real hypersurfaces with recurrent Ricci ten-
sor of Pn(C) under the condition that � is a principal curvature vector.

1991 Mathematics Subject Classi®cation 53C40 (53C25).

0. Introduction. Let M be a connected real hypersurface of a complex projec-
tive space Pn�C�, n � 2 with the Fubini-Study metric of constant holomorphic sec-
tional curvature 4. Then M has an almost contact metric structure ��; �; �; g�
induced from the KaÈ hler structure of Pn�C�. It is well-known that there does not
exist a real hypersurface M of Pn�C� satisfying the condition that the second funda-
mental tensor A of M is parallel. We estimated it from another point of view. In [2],
we considered the condition that the second fundamental tensor A is recurrent, i.e.,
there exists a 1-form � such that rA � A
 �. We may regard the parallel condition
as a special case. We know that the recurrent condition has a close relation to hol-
onomy group ([8] and [14]). This condition means that the eigenspaces of the shape
operator A of M are parallel along any curve 
 in M. Here, the eigenspaces of the
shape operator A are said to be parallel along 
 if they are invariant with respect to
parallel translation along 
. We proved the nonexistence of real hypersurfaces with
recurrent second fundamental tensor of Pn�C� [11]. On the other hand, many di�er-
ential geometers evaluated the real hypersurfaces of Pn�C� paying attention to the
Ricci tensor. Cecil and Ryan proved that there are no Einstein real hypersurfaces of
Pn�C� [1]. Ki showed that the nonexistence of real hypersurfaces of a non¯at com-
plex space form with parallel Ricci tensor [4]. In this paper, we investigate the con-
dition that the Ricci tensor S is recurrent, i.e., there exists a 1-form � such that
rS � S
 �. We prove the following theorem.

Theorem. There are no real hypersurfaces with recurrent Ricci tensor of Pn�C�
under the condition that � is a principal curvature vector.
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1. Preliminaries. Let M be a real hypersurface of Pn�C�. In a neighborhood of
each point, we take a unit normal vector ®eld N in Pn�C�. The Riemannian connec-
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tions er in Pn�C� and r in M are related by the following formulas for arbitrary
vector ®elds X and Y on M.

erXY � rXY� g�AX;Y�N; �1:1�erXN � ÿAX; �1:2�
where g denotes the Riemannian metric of M induced from the Fubini-Study metric
G of Pn�C� and A is the second fundamental tensor of M in Pn�C�. We denote by
TM the tangent bundle of M. An eigenvector X of the second fundamental tensor A
is called a principal curvature vector. Also an eigenvalue � of A is called a principal
curvature. We know that M has an almost contact metric structure induced from the
KaÈ hler structure J on Pn�C�: We de®ne a �1; 1�-tensor ®eld �, a vector ®eld � and a 1-
form � on M by g��X;Y� � G�JX;Y� and g��;X� � ��X� � G�JX;N�. Then we have

�2X � ÿX� ��X��; ���� � 1; �� � 0: �1:3�

It follows from (1.1) that

rX� � �AX: �1:4�

Let eR and R be the curvature tensors of Pn�C� and M, respectively. From the
expression of the curvature tensor eR of Pn�C�, we have the following equations of
Gauss and Codazzi:

R�X;Y�Z � g�Y;Z�Xÿ g�X;Z�Y� g��Y;Z��Xÿ g��X;Z��Y
ÿ 2g��X;Y��Z� g�AY;Z�AXÿ g�AX;Z�AY; �1:5�

�rXA�Yÿ �rYA�X � ��X��Yÿ ��Y��Xÿ 2g��X;Y��: �1:6�
By the Gauss equation, the Ricci tensor of �1; 1� type of M is given by

SX � �2n� 1�Xÿ 3��X�� � hAXÿ A2X; �1:7�
where h denotes the trace of the shape operator A. We have the di�erential of the
Ricci tensor,

�rXS�Y � ÿ3g��AX;Y�� ÿ 3��Y��AX� �Xh�AY� h�rXA�Y
ÿ A�rXA�Yÿ �rXA�AY:

�1:8�

Now we prepare without proof the following in order to prove our results.

Lemma 1.1 ([9]) If � is a principal curvature vector, then the corresponding prin-
cipal curvature a is locally constant.

Lemma 1.2 ([9]) Assume that � is a principal curvature vector and the corre-
sponding principal curvature is a. If AX � �X for X ? �, then we have A�X � ��X,
where � � �a�� 2�=�2�ÿ a�.

Theorem C-R. ([1]) Let M be a connected real hypersurface of Pn�C�, n � 3,
whose Ricci tensor S is pseudo-Einstein, i.e. SX � aX� b��X�� for any tangent vector
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X on M, where a and b are functions on M. Then M is an open subset of one of the
following:

(a) a geodesic hypersphere
(b) a tube of radius r over a totally geodesic Pk�C�, 0 < k < nÿ 1, where

0 < r < �=2 and cot2r � k=�nÿ kÿ 1�,
(c) a tube of radius r over a complex quadric Qnÿ1 where 0 < r < �=4 and

cot2r � nÿ 2.

Theorem T. ([13]) Let M be a homogeneous real hypersurface of Pn�C�. Then M
is a tube of some radius r over one of the following KaÈhler submanifolds:

(A1) hyperplane Pnÿ1�C�, where 0 < r < �=2,
(A2) totally geodesic Pk�C� �1 k nÿ 2�, where 0 < r < �=2,
(B) complex quadric Qnÿ1, where 0 < r < �=4,
(C) P1�C� � P�nÿ1�=2�C�, where 0 < r < �=4, and n�� 5� is odd,
(D) complex Grassmann G2;5�C�, where 0 < r < �=4 and n � 9,
(E) Hermitian symmetric space SO�10�=U�5�, where 0 < r < �=4 and n � 15.

Theorem K. ([6]) Let M be a real hypersurface of Pn�C�. Then M has constant
principal curvatures and � is a principal curvature vector if and only if M is locally
congruent to a homogeneous real hypersurface.

Theorem Ki. ([4]) There are no real hypersurfaces with parallel Ricci tensor of a
complex space form Mn�c�; c 6� 0.

2. The Ricci tensors of real hypersurfaces of a complex projective space. At ®rst, to
prove our theorem, we prepare the following lemma.

Lemma 2.1. Let M be a connected real hypersurface of Pn�C� with recurrent Ricci
tensor S. If all eigenvalues of S are constant, then the Ricci tensor S of M is parallel.

Proof. We choose a unit eigenvector Y of S with an eigenvalue �. Then we have

g��rXS�Y;Y� � g�rX�SY�;Y� ÿ g�SrXY;Y�
� X�

for any X 2 TM. On the other hand, from the assumption we obtain

g��rXS�Y;Y� � ��X�g�SY;Y�
� ��X��:

Since all eigenvalues of S are constant we get ��X�� � 0 for any X 2 TM. So the
Ricci tensor S of M is parallel.

In light of �1:7� and the fact that � is principal, the principal curvature vectors
will also be eigenvectors of S. Thus Ricci tensor of a homogeneous real hypersurface
has constant eigenvalues. On the other hand, the hypersurfaces listed in Theorem T
do not have parallel Ricci tensor (see for example, [11], Corollary 6.6, p.273).
Therefore from Lemma 2.1 and Theorem K, we have the following result.
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Proposition 2.2. The Ricci tensor of a homogeneous real hypersurface of Pn�C�
cannot be recurrent.

By Theorem C-R, any pseudo-Einstein real hypersurface is homogeneous one,
therefore we check the following:

Corollary 2.3. The Ricci tensor of a pseudo-Einstein real hypersurface of Pn�C�,
where n � 3, cannot be recurrent.

Proof of the Theorem. We have the following equation by the assumption that

g��rXS�Y;Z� � ��X�g�SY;Z� � �2n� 1���X�g�Y;Z� ÿ 3��X���Y���Z�
� h��X�g�AY;Z� ÿ ��X�g�A2Y;Z�:

Using �1:8�, we obtain

�2n� 1���X�g�Y;Z� ÿ 3��X���Y���Z� � h��X�g�AY;Z� ÿ ��X�g�A2Y;Z�
�3��Z�g��AX;Y� � 3��Y�g��AX;Z� ÿ �Xh�g�AY;Z� ÿ hg��rXA�Y;Z�

� g�A�rXA�Y;Z� � g��rXA�AY;Z� � 0;

�2:1�

for arbitrary tangent vectors X;Y and Z.
If we put Y � � and Z � �X in �2:1�, then we have

h��X�g�A�; �X� ÿ ��X�g�A2�; �X� � 3g�AX;X� ÿ 3��AX���X�
ÿ �Xh�g�A�; �X� ÿ hg��rXA��; �X� � g�A�rXA��; �X� � g��rXA�A�; �X� � 0

�2:2�

We may assume that A� � a�. Then by Lemma 1.1, a is constant. We get

�rXA�� � a�AXÿ A�AX: �2:3�

Using �2:3� in the equation �2:2�, we have

3g�AX;X� ÿ 3a���X��2 ÿ hag��AX; �X� � hg�A�AX; �X�
ÿg�A�AX;A�X� � a2g��AX; �X� � 0;

for any tangent vector X on M. We choose X as a unit principal curvature vector
orthogonal to � and by the Lemma 1.2, we have

AX � �X and A�X � �X;

where � � �a�� 2�=�2�ÿ a�. Therefore we obtain the following equation:

���2 ÿ h�ÿ �a2 ÿ ha� 3�� � 0: �2:4�

This formula also holds with � and � exchanged, so we get

300 TATSUYOSHI HAMADA

https://doi.org/10.1017/S0017089599000130 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089599000130


��ÿ ������ �a2 ÿ ha� 3�� � 0: �2:5�

On the other hand, from Lemma 1.2, the relationship between � and � can be written

�� � �� �
2

a� 1: �2:6�

If � � �, this becomes

�2 � a�� 1: �2:7�

If 0 occurs as a principal curvature (for a principal vector orthogonal to �), then
�2:6� shows that all principal curvatures must be constant.

Next assuming that 0 is not a principal curvature (again we consider only
directions orthogonal to �), formula �2:4� shows that there are at most two distinct
principal curvatures. If � and � are distinct, we have

�� � � h and �� � ÿ�a2 ÿ ha� 3�

which yields

ÿ�a2 ÿ ha� 3� � ha

2
� 1;

i.e.

a2 ÿ ha

2
� 4 � 0:

Thus the coe�cients in �2:4� are constant and hence so are � and �. The ®nal possi-
bility is that all principal curvatures (with principal vectors orthogonal to �) satisfy
�2:7� and are again constant.

By Theorem K and Proposition 2.2, the proof is concluded.
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