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On Certain Finitely Generated Subgroups
of Groups Which Split

Myoungho Moon

Abstract. Define a group G to be in the class S if for any finitely generated subgroup K of G having the

property that there is a positive integer n such that gn ∈ K for all g ∈ G, K has finite index in G. We

show that a free product with amalgamation A ∗C B and an HNN group A∗C belong to S, if C is in S

and every subgroup of C is finitely generated.

Introduction

An easy consequence of K being a finite index subgroup of a group G is that there is

a non-zero integer n such that gn ∈ K for all g ∈ G. The converse is obviously not

true in general. In fact, it is not true even in the case where G is a free group of finite

rank, if we do not require that K be finitely generated (see Burnside’s problem in [8]).

But the converse turns out to be true for certain classes of groups with the additional

assumption that K be finitely generated. For convenience, define a group G to be in

the class S if for any finitely generated subgroup K of G having the property that there

is a positive integer nK such that gnK ∈ K for all g ∈ G, K has finite index in G.

Free groups are in the class S by the result obtained by Karrass and Solitar in

[7], which states that any finitely generated subgroup K of a free group G is of finite

index in G, if K contains a non-trivial normal subgroup of G. Karrass and Solitar’s

result is an extension of a result that O. Schreier obtained in [9], according to which

any non-trivial finitely generated normal subgroup N of G is of finite index. In [5],

H. B. Griffiths showed that the fundamental group of any surface is in the class S (see

Theorem 6.2 in [5]). Since every free group is the fundamental group of a surface,

Griffiths’ result is an extension of the particular case of Karrass and Solitar’s result

where the normal subgroup is Gn, which denotes the subgroup of G generated by all

n-th powers of elements of G.

In this paper, we will show that a free product with amalgamation A ∗C B and an

HNN extension A∗C are also in the class S, if C is in S and every subgroup of C is

finitely generated. Note that the infinite cyclic group is in the class S and every sub-

group of it is finitely generated. This provides another proof of Theorem 6.2 in [5],

since the fundamental group of a surface is either a free product with amalgamation

or an HNN extension of free groups along an infinite cyclic group. Using the fact

that the fundamental group of a surface is in the class S, and the short exact sequence
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associated to a Seifert fibered space, it can then be proved that the fundamental group

of a Seifert fibered space is in the class S (see Corollary 3.2).

Kleinian 3-manifolds give rise to other examples of groups in the class S. Re-

call that a 3-manifold whose interior has hyperbolic structure is called a Kleinian

3-manifold. It has been proved that for the fundamental group G of a compact

Kleinian manifold M with a non-toroidal boundary component, a finitely generated

subgroup K of G has finite index in G, if for each g ∈ G, there is a non-zero integer

ng such that gng ∈ K (see Proposition 8.2 in [2]). This result immediately implies

that the fundamental group of a compact Kleinian 3-manifold with a non-toroidal

boundary component is in the class S. Many compact 3-manifolds can be obtained by

taking a torus sum of Seifert fibered spaces and compact Kleinian 3-manifolds. Thus

the main result of this paper implies that the fundamental groups of many compact

3-manifolds are in the class S.

When I submitted this paper, the referee informed me of a result of R. G. Burns

which is obviously stronger than Griffiths’ result (Corollary 3.1). In [1], Burns

showed that if G = A ∗C B with A free and C ∼= Z, and if C 6= A and C is iso-

lated in A, then any finitely generated subgroup of G containing a non-trivial sub-

normal subgroup of G has finite index. Considering this result, it seems appropriate

to mention the more general question as to when a non-trivial amalgamated free

product can have an infinite index, finitely generated subgroup containing a non-

trivial (sub)normal subgroup. I would like to thank the referee for many valuable

comments.

In Section 1, we prove a few technical lemmas on graphs of groups. In Section 2,

we prove the main theorem of this paper (Theorem 2.1). In Section 3, as an applica-

tion we give another proof of Theorem 6.2 in [5] and give examples of 3-manifolds

whose fundamental groups are in the class S.

1 Preliminaries

A graph of groups (G, Γ) is defined to be a connected graph Γ together with

(a) a vertex group Gv and an edge group Ge = Gē corresponding to each vertex v

of Γ and edge e of Γ, where ē is the inverse edge of e, and

(b) monomorphisms φ0 : Ge → Gv and φ1 : Ge → Gw for each edge e of Γ, where

v and w are the vertices of e.

Let (G, Γ) be a graph of groups and T be a maximal tree in Γ. Let GT be the free

product of all vertex groups Gv with the two images of Ge in the corresponding vertex

groups amalgamated for each edge e of T. If Γ = T, the fundamental group of (G, Γ)

is defined to be GT . If Γ 6= T, the fundamental group of (G, Γ) relative to T is defined

to be the HNN group with base GT , with free part having basis {te} where e runs over

the edges of Γ not in T, and with the subgroups associated to te being the two images

of Ge. It can be shown that the fundamental group of (G, Γ) is independent of the

choice of T. We will denote the fundamental group of (G, Γ) by GΓ.

For example, the free product with amalgamation A∗C B is the fundamental group

of the graph of groups whose underlying graph consists of two vertices, an edge con-

necting the two vertices and its inverse edge. If G = A ∗C B with A 6= C 6= B, we say

that G has nontrivial amalgamation.
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The HNN group A∗C is considered as the fundamental group of the graph of

groups whose underlying graph consists of one vertex, an edge from the vertex to

itself and its inverse edge.

Let a group G act on a graph X. G is said to act without inversions if:

(1) X has no loops;

(2) ge 6= ē for any edge e of X and element g of G.

Let a group G act on a tree X without inversions with quotient graph Γ. Then

there is a graph of groups (G, Γ) whose fundamental group is G and vertex groups

and edge groups are Gv’s and Ge’s, where Gv is the stabilizer of a vertex v and Ge is the

stabilizer of an edge e. We call this graph of groups the graph of groups associated to

the action of G on X.

Conversely, if (G, Γ) is a graph of groups with fundamental group G and with

maximal tree T, then construct a graph X whose vertices are the cosets gGv of Gv in

G and edges are the cosets gGe of Ge in G, where v and e range over all vertices and

edges of Γ, respectively. For e in T with vertices v and w, the vertices of gGe are gGv

and gGw. For e not in T with vertices v and w, the vertices of gGe are gGv and gteGw.

It can be shown that X is a tree on which G acts without inversions and the associated

graph of groups is (G, Γ) (see [3] or [4]).

If H is a subgroup of G, H acts on X without inversions. Since the H-stabilizer of

gGv is H ∩ gGvg−1, we obtain the following lemma (see [3], [4] or [11]).

Lemma 1.1 If G is the fundamental group of a graph of groups (G, Γ) and H < G,

then H is the fundamental group of a graph of groups, where each vertex group is the

intersection of H and a conjugate of a vertex group of (G, Γ) and each edge group is the

intersection of H and a conjugate of an edge group of (G, Γ).

The following lemma is well known (see [4]).

Lemma 1.2 Let (H, Γ1) be a graph of groups with fundamental group H which is

finitely generated. Then there is a finite subgraph of groups of (H, Γ1) whose fundamen-

tal group is H.

Recall that a vertex v in a graph is of valence 1 if v has only one edge whose initial

vertex is v.

Lemma 1.3 Let G = A ∗C B with A 6= C 6= B or G = A∗C . (Thus the corresponding

graph of groups (G, Γ) consists of either two vertices, an edge connecting the two vertices

and its inverse edge, or one vertex, an edge from the vertex to itself and its inverse edge.)

If H is a finitely generated subgroup of G and its corresponding graph of groups (H, Γ1)

has finite diameter, then it is a finite graph of groups.

Proof Let T1 be a maximal tree of Γ1, and let E be the set of edges not in T1. Then

E is finite, since the free group on E is a quotient of the finitely generated group H.

Lemma 1.2 guarantees the existence of a finite subtree S of T1 such that S contains all

the vertices of edges in E and the restriction of the graph of groups (H, Γ1) to S ∪ E

has the whole of H as its fundamental group, as H is finitely generated. It suffices to

show that T1 = S.

https://doi.org/10.4153/CMB-2003-012-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2003-012-7


Certain Finitely Generated Subgroups 125

Suppose not. Since T1 has finite diameter, it has a vertex v0 at maximal distance

from S in T1, and this vertex must have valence 1 in both Γ1 and T1, since the vertex

is not in S. We show this is impossible.

Let X be the tree on which G acts with quotient Γ and H acts with quotient Γ1.

For the HNN case, consider Γ as a graph with one vertex and one edge-pair (an edge

and its inverse edge), with both edges of the pair starting at the vertex. Hence, at each

vertex in X, there are two edges starting at that vertex which are in different G-orbits,

and so in different H-orbits. Thus no vertex of Γ1 can have valence 1.

Now for the amalgamated free product case, at each vertex of X there are at least

two edges, as A 6= C 6= B. If the H-stabilizer of a vertex of X equals the H-stabilizer

of some edge at that vertex, then each of the other edges at that vertex will be in a

different H-orbit from that edge; hence the corresponding vertex of Γ1 does not have

valence 1. It follows that H is a nontrivial amalgamated free product of the vertex

group Hv0
and the fundamental group of the remainder of the graph of groups. But,

by construction, the latter is the whole of H, giving a contradiction.

2 Main Theorem

A group G is said to split over a subgroup C if either G = A ∗C B with A 6= C 6= B or

G = A∗C . If G splits over some subgroup, we say that G is splittable. For example, Z

is splittable as Z = {1}∗{1}.

Let G be a group which splits over a group C , where every subgroup of C is finitely

generated, and let K be a finitely generated subgroup of G. Suppose there is a non-

zero integer nK such that gnK ∈ K for all g ∈ G. Then we will show that K has finite

index in G, which is the main result of this paper.

Let N be the subgroup of G generated by all the elements of the form gnK with

g ∈ G. It can be easily checked that N is a normal subgroup of G and is contained in

K. Since G splits over C , there is a graph of groups (G, Γ) whose underlying graph Γ

consists of either two vertices, an edge connecting the two vertices and its inverse edge

(amalgamated free product case), or one vertex, an edge from the vertex to itself and

its inverse edge (HNN extension case). Let X be the tree described in the previous

section so that G, K and N act on X with quotients Γ, ΓK and ΓN , respectively. We

have the following lemma.

Lemma 2.1 Let G = A ∗C B or G = A∗C with a finitely generated subgroup K which

contains a non-trivial normal subgroup N of G. If the graph ΓK corresponding to K is of

infinite diameter, then N is contained in C.

Proof Since K is finitely generated, there is a finite subgraph Γ1 of ΓK such that the

restriction of the graph of groups (K, ΓK) to Γ1 has fundamental group the whole of

K by Lemma 1.2. Hence every component of the complement of Γ1 in ΓK is a tree

and intersects Γ1 at only one vertex. Let S be a component of infinite diameter in the

complement of Γ1 in ΓK . Then S is a subtree of infinite diameter which meets Γ1 in

a single vertex v0 and the fundamental group of (K, S) is just the vertex group at v0.

Let p : ΓN → ΓK and q : X → ΓN be the projections. Orient X so that every edge

is directed towards a fixed vertex a of (p ◦ q)−1(Γ1). Let TN and TK be fixed maximal
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trees of ΓN and ΓK , respectively. Give an orientation on each of TN and TK so that

every edge in TN and TK is directed towards q(a) and p
(

q(a)
)

, respectively. Let S ′

be a component of the preimage of S under the projection of ΓN to ΓK . Then we will

show that S ′ is a tree.

On the contrary, suppose that there is a circuit in S ′. Then there is an edge e ′ in

S ′ which is not in TN . In the orbit above e ′, there is an edge e such that the initial

vertex of e lies in a fixed representative tree T ′
N for the action of N , i.e. a lift of TN

to X, but the terminal vertex does not. Since TN is a maximal tree of ΓN , there is an

element α ∈ N which sends the terminal vertex of e to a vertex of T ′
N , and thus the

initial vertex of e to a vertex not in T ′
N . This implies that both e and αē point away

from a, and so the orbit Ne in X is a reversing N-orbit. Since N ⊂ K, the K-orbit Ke

is also reversing. According to the proof of Lemma 31 on page 217 of the book [4], it

can be shown that the image of the reversing K-orbit Ke under the projection of X to

ΓK is either an edge of ΓK with a maximal tree removed or an edge in Γ1. However

neither case can happen, as the image e ′ of Ke is an edge of S. Therefore S ′ must be a

tree. Further, S ′ is of infinite diameter, as S is of infinite diameter.

Since the quotient group G/N acts transitively on the set of edge-pairs of ΓN , there

would be a circuit in the tree S ′, if there were a circuit in ΓN . It follows that ΓN is a

tree.

Consider all the edges adjacent to the vertex q(a). Let L be the subtree of ΓN

consisting of such edges with their vertices. Since G/N acts transitively on the set of

edge-pairs of ΓN and S ′ is of infinite diameter, there is an element ḡ ∈ G/N such that

ḡL ⊂ S ′. From the fact that the vertex group at v0 carries the fundamental group of

(K, S), we deduce the following:

(1) For each vertex v in S other than v0, there is only one edge which has v as its

initial vertex.

(2) If e is the edge having v as its initial vertex and w is the other vertex of e, then

Kw ≥ Ke = Kv.

(3) If e is an edge having v as its terminal vertex and w is the other vertex of e,

then Kv ≥ Ke = Kw.

Hence for the only edge ea having p
(

ḡq(a)
)

as its initial vertex, Kw ≥ Kea
=

Kp(ḡq(a)), where w is the terminal vertex of ea. For each edge e having p
(

ḡq(a)
)

as its

terminal vertex, Kp(ḡq(a)) ≥ Ke = Kw, if w is the initial vertex of e. We will show that

there is only one edge e ′a in ḡL such that p(e ′a) = ea.

Suppose there is another edge e ′ ′a in ḡL such that p(e ′ ′a ) = ea. Then there is an

element k̄ ∈ K/N such that k̄e ′a = e ′ ′a , and then k̄ fixes the vertex ḡq(a). It follows

that any element k representing k̄ belongs to the vertex group Nḡq(a). But, in view of

Lemma 1.1, Ne ′a
= Nḡq(a) and Ne ′′a

= Nḡq(a), as Kea
= Kp(ḡq(a)). Thus k ∈ Ne ′a

, and so

k̄ fixes the edge e ′a, giving a contradiction.

In the amalgamated free product case, consider an edge e ′ which has ḡq(a) as its

terminal vertex. If u ′ is the initial vertex of e ′ and w ′ is the terminal vertex of e ′a,

Nw ′ ≥ Ne ′a
= Nḡq(a) ≥ Ne ′ = Nu ′ .

Since G/N acts transitively on the set of edge-pairs of ΓN , there is an element h̄ ∈
G/N such that h̄e ′ = e ′a. Note that h̄ḡq(a) = ḡq(a) and h̄u ′

= w ′, as two adjacent
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vertices should be in different orbits in the amalgamated free product case. It follows

that

Nw ′ = Ne ′a
= Nḡq(a) = Ne ′ = Nu ′ .

Since G/N acts transitively on the edge-pairs, every edge group equals the vertex

group at each of its vertices. Thus N equals any edge group, and therefore N = N∩C .

In the HNN case, suppose that there is no edge group of ΓN which equals the

vertex group at both of its vertices. Note that every vertex group equals the edge

group at one of the edges adjacent to the vertex and contains the edge group at each of

the other edges adjacent to the vertex, as G/N acts transitively on the set of vertices of

ΓN . Let v ′ be an arbitrary vertex of ΓN , and let e ′v be the only adjacent edge to v ′ such

that the vertex group at v ′ equals the edge group at e ′v. Since the edge groups at other

edges adjacent to v ′ than e ′v is contained in the vertex group at v ′, the group N can be

described as the union of such edge groups Ne ′v
. Recall that A∗C has a presentation

of the form 〈A, t : t−1ct = φ(c)〉, where φ : C → C is a group automorphism. Since

tn ∈ N , tn should be in one of the edge groups Ne ′v
, which lies in a conjugate of C . But

this is impossible. Therefore there is an edge group which equals the vertex group at

each of its vertices. Since G/N acts transitively on the edges of ΓN , every edge group

equals the vertex group at each of its vertices, and so N is contained in C .

Theorem 2.1 Let G = A ∗C B or G = A∗C , where C is in the class S and every

subgroup of C is finitely generated. Let K be a finitely generated subgroup of G. If there

is an integer n such that gn ∈ K for all g ∈ G, then the index |G : K| is finite.

Proof Let N be the normal subgroup generated by all the elements of the form gn

with g ∈ G as described earlier. Let X be the tree on which G, K and N act with

quotients Γ, ΓK , and ΓN , respectively. If ΓK is a graph of infinite diameter, N is

contained in C according to Lemma 2.1. However since G splits non-trivially, there

is no integer r such that gr ∈ C for all g ∈ G, and so N can not be contained in

C . Therefore ΓK is a graph of finite diameter. By Lemma 1.3, ΓK is a finite graph of

groups.

Let g ∈ G. Since ΓK is a finite graph, there is a finite number of edges, say

g1e, . . . , gme in the fundamental domain for the action of K on X. There is an element

h ∈ K such that hge = gie for some i = 1, . . . , m. Since g−1
i hge = e, g−1

i hg ∈ Ge.

We may assume without loss of generality that Ge = C . Since C is in S and C ∩ N

is finitely generated, the index |C : C ∩ N| is finite. Let c1(C ∩ N), . . . , cl(C ∩ N)

be the cosets of C ∩ N in C . Then g−1
i hg ∈ c j(C ∩ N) for some j = 1, . . . , l. Since

c j(C ∩ N) ⊂ c jN , g−1
i h−1g ∈ c jN . It follows that

g ∈ hgic jN = Nhgic j ⊂ Kgic j ,

as N is normal in G and h ∈ K, N ⊂ K. Therefore there are at most ml right cosets

of K in G, which implies that K is of finite index in G.

3 3-Manifold Groups

One can easily see that the infinite cyclic group satisfies the hypotheses on C in The-

orem 2.1. This gives rise to the following result which Griffiths obtained in [5].
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Corollary 3.1 Let G be the fundamental group of a surface, and let K be a finitely

generated subgroup of G. If there is a positive integer n such that gn ∈ K for all g ∈ G,

then K has finite index in G. In other words, surface groups are in the class S.

Now we will discuss which 3-manifold groups are in the class S. See [6] or [10] for

3-manifold terminologies and basic facts. Let M be a compact, orientable, irreducible

3-manifold. If the fundamental group of M is finite, then obviously the fundamental

group is in the class S. Suppose that the fundamental group of M is infinite. If the

boundary is not empty and compressible, M can be split along a disk to obtain a new

3-manifold. Thus the fundamental group of M is of the form A ∗C B or A∗C , where

C is a trivial group. In this case, the fundamental group of M is in the class S, as the

trivial group satisfies the hypotheses on C in Theorem 2.1.

Suppose that M is a compact, orientable, irreducible with incompressible bound-

ary (possibly empty boundary). It is known that M is a torus sum of 3-manifolds,

or a compact 3-manifold whose interior has hyperbolic structure, or a Seifert fibered

space. In the case where M is a torus sum of 3-manifolds, the fundamental group of

M is of the type A ∗C B or A∗C , where C is Z × Z, the free abelian group of rank 2.

Since Z × Z satisfies the hypotheses on C in Theorem 2.1, the fundamental group of

M is in the class S.

Consider the case of a compact Kleinian manifold M with a non-toroidal bound-

ary component. R. Canary’s result in [2] implies that the fundamental group of M

is in the class S, as pointed out in the introduction. We do not know whether the

fundamental group of a Kleinian manifold with only toroidal boundaries is in the

class S. However the fundamental group of a Seifert fibered space is in the class S.

Corollary 3.2 Let G be the fundamental group of a Seifert fibered space M, and let K

be a finitely generated subgroup of G. If there is a positive integer n such that gn ∈ K for

all g ∈ G, then K has finite index in G.

Proof Since G is the fundamental group of a Seifert fibered space, there is a short

exact sequence

1 −→ Z −→ G
p

−→ Q −→ 1,

where Z denotes the cyclic subgroup of G generated by the regular fiber and Q is an

2-dimensional orbifold group. The group Z is infinite except in the case where M is

covered by the 3-dimensional sphere S3 (see Lemma 3.2 in [10]). If M is covered by

S3, then G is a finite group, in which case the conclusion follows easily. Suppose M

is not covered by S3. It is well-known that the orbifold group Q contains a surface

group S as its finite index subgroup. For any g ∈ S, gn ∈ p(K) ∩ S. Since surface

groups are in the class S, p(K)∩S is of finite index in S. It follows that p−1
(

p(K)
)

has

finite index in G. It can be easily seen that p−1
(

p(K)
)

= 〈t, K〉, where Z is generated

by t and 〈t, K〉 is the subgroup of G generated by t and K. Each element x in 〈t, K〉
can be written as tm · k for some integer m and k ∈ K. Since tn ∈ K, there are less

than n + 1 left cosets of K in 〈t, K〉. Hence K has finite index in p−1
(

p(K)
)

, and so

K has finite index in G.

If we combine the results obtained above, we obtain the following theorem.
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Theorem 3.1 Let M be a compact, orientable, irreducible 3-manifold which is not a

Kleinian manifold having toroidal boundary components only (possibly empty bound-

ary). Let G be the fundamental group of M, and K be a finitely generated subgroup of

G. If there is a positive integer n such that gn ∈ K for all g ∈ G, then K has finite index

in G.

References

[1] R. G. Burns, On the finitely generated subgroups of amalgamated product of two groups. Trans. Amer.
Math. Soc. 169(1972), 293–306.

[2] R. Canary, A covering theorem for hyperbolic 3-manifolds and its applications. Topology 35(1996),
751–778.

[3] D. E. Cohen, Subgroups of HNN groups. J. Austral. Math. Soc. 17(1974), 394–405.
[4] , Combinatorial group theory: a topological approach. London Math. Society Student Texts

14, Cambridge Univ. Press, 1989.
[5] H. B. Griffiths, The fundamental group of a surface, and a theorem of Schreier. Acta Math.

110(1963), 1–17.
[6] J. Hempel, 3-manifolds. Ann. of Math. Stud. 86, Princeton University Press, 1976.
[7] A. Karrass and D. Solitar, Note on a theorem of Schreier. Proc. Amer. Math. Soc. 8(1957), 696.
[8] W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory. Dover Publications, 1976.
[9] O. Schreier, Die untergruppen der freien gruppen. Abh. Math. Sem. Univ. Hamburg 5(1928),

161–183.
[10] P. Scott, The geometry of 3-manifolds. Bull. London Math. Soc. 15(1983), 401–487.
[11] P. Scott and T. Wall, Topological methods in group theory. Homological group theory, London

Math. Soc. Lecture Notes 36, Cambridge Univ. Press 1979, 137–203.
[12] J.-P. Serre, Trees. Springer-Verlag, 1980.

Department of Mathematics Education

Konkuk University

Seoul 143-701

Korea

e-mail: mhmoon@kkucc.konkuk.ac.kr

https://doi.org/10.4153/CMB-2003-012-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2003-012-7

