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Abstract

Traditional psychological research has often treated inter-subject variability as statistical noise
(even, nuisance variance), focusing instead on averages rather than individual differences. This
approach has limited our understanding of the substantial heterogeneity observed in
neuropsychiatric disorders, particularly autism spectrum disorder (ASD). In this introduction
to a special issue on this theme, we discuss recent advances in cognitive computational
neuroscience that can lead to a more systematic notion of core symptom dimensions that
differentiate between ASD subtypes. These advances include large participant databases and
data-sharing initiatives to increase sample sizes of autistic individuals across a wider range of
cultural and socioeconomic backgrounds. Our perspective helps to build bridges between
autism symptomatology and individual differences in autistic traits in the non-autistic
population and introduces finer-grained dynamic methods to capture behavioral dynamics at
the individual level. We specifically focus on how cognitive computational models have
emerged as powerful tools to better characterize autistic traits in the general population and
autistic population, particularly with respect to social decision-making. We finally outline how
we can combine and harness these recent advances, on the one hand, big data initiatives, and on
the other hand, cognitive computational models, to achieve a more systematic and nuanced
understanding of autism that can lead to improved diagnostic accuracy and personalized
interventions.

For most of the past century, psychological research has viewed inter-subject variability in
behavior as mere statistical noise around a true value, focusing primarily on central tendencies
like averages or medians of distributions (Molenaar, 2004; Nesselroade, 2004; Rozin, 2001) –
highlighting its problematic status, sometimes this variation is termed a nuisance. Traditional
statistical models aimed to predict differences in the average population based on specific
experimental manipulations (Molenaar, 2004; Nesselroade, 2004; Rozin, 2001). While these
experimental designs and methods have helped to develop important theories across
psychological domains, they have significant drawbacks. As noted by Wundt much earlier,
experimental manipulations typically explain only a small amount of variance in the data and,
relatedly, often lack reproducibility, contributing to a replication crisis across the field (Hedge
et al., 2018; Kravitz & Mitroff, 2023; Siritzky et al., 2023). This apparent crisis has led to calls for
better characterization of behavior through larger sample sizes, robust measures guided by
theoretical assumptions formulated as a priori hypotheses, and increased transparency in the
design and conduct of studies. Open science initiatives have contributed to making these
changes by supporting data sharing and study preregistration (Collaboration, 2012, 2015;
Kravitz & Mitroff, 2023; Siritzky et al., 2023).

Individual differences research, on the other hand, relies on large sample sizes and data-
driven analysis of variability. Its broad, unconstrained study design enhances our ability to
capture behavioral diversity and can produce more replicable findings compared to
experimental studies with constrained homogeneous samples. Along with advancements in
data science, particularly the big data approach (Adjerid & Kelley, 2018; Gomez-Marin et al.,
2014; Harlow & Oswald, 2016), there have been calls for better characterization of
interindividual differences across cognitive domains (Adjerid & Kelley, 2018; Eisenberg
et al., 2019; Gomez-Marin et al., 2014; Harlow & Oswald, 2016). Researchers have long
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suspected that deviations from the mean are not random noise but
systematic variation. However, small sample sizes in most
in-person psychological research have hindered the systematic
investigation of these interindividual differences. Over the past
couple of decades, individual differences have become a growing
interest in psychological research. Personality psychology has
spearheaded this movement, developing models of personality
types (Ilmini & Fernando, 2017; Patzelt et al., 2018; Phan &
Rauthmann, 2021), creativity (Lloyd-Cox et al., 2023; Mejia et al.,
2021; Minai et al., 2021; Saunders & Bown, 2015), and cognitive
styles (Riding & Rayner, 2013; Zhang, 2002) that could explain
differences in perception (Haehner et al., 2023; Zhu et al., 2018),
attention (Subramanian et al., 2013), and decision-making
(Frolichs et al., 2022; King-Casas et al., 2008; Subramanian
et al., 2013). While this field has provided evidence for
interindividual variation in nonclinical groups, much less is
known about the role of interindividual variability in neuropsy-
chiatric disorders.

Across neuropsychiatric disorders, there is larger variability or
greater interindividual differences in self-reported or observed
behaviors such as personality traits and social skills (Jauk &
Kanske, 2019) compared to control groups (Lochner & Stein, 2003;
Steinhausen, 2009; Wolfers et al., 2019). These differences,
combined (almost inevitably) with smaller sample sizes in clinical
studies, present significant hurdles for improving diagnosis and
treatment decisions (Beauchaine & Cicchetti, 2016; Jacob et al.,
2019; Wolff et al., 2018). This issue is particularly pronounced in
autism spectrum disorder (ASD), where formalizing heterogeneity
is seen as critical for linking genetic profiles to neural and
behavioral phenotypes (Pelphrey et al., 2011; Wolfers et al., 2019).
Autism is marked by significant challenges in social interaction
and communication, linked to differences in social perceptual and
cognitive abilities across the diagnostic spectrum. The complex and
diverse neurodevelopmental characteristics of autism are further
compounded by interindividual variability observed inmany other
neuropsychiatric disorders (Jacob et al., 2019). This has led to a
shift from viewing autism as unidimensional to one seeing it as an
overall term including multiple syndromes, each resulting from
different etiological pathways (Amaral et al., 2008; Geschwind &
Levitt, 2007; Insel et al., 2010).

Addressing the heterogeneity in autism is imperative for two
reasons. First, it can enhance diagnostic accuracy, which currently
relies heavily on clinical observations only (Geschwind & Levitt,
2007; Insel et al., 2010; Wolff et al., 2018). Second, it can facilitate
the development of more targeted cognitive-behavioral interven-
tions for core autism symptoms, which remain elusive and rarely
based on individual symptoms. However, in order to characterize
and formalize the heterogeneity within ASD, several significant
obstacles must be overcome. These include (1) increasing sample
sizes of autistic individuals from a wider range of cultural and
socioeconomic backgrounds, (2) building bridges between autism
symptomatology and individual differences in autistic traits in the
non-autistic population, and (3) introducing finer-grained
dynamic methods to capture behavioral dynamics at the individual
level. Here, we briefly describe emerging literature on the first two
obstacles, before providing our perspective on how to overcome
the third and more challenging one of developing finer-grained
assessments and cognitive models of autism symptoms.

With respect to increasing sample sizes of autism research,
there have been several initiatives spearheaded by the National
Institute of Mental Health to support interdisciplinary research
aimed at advancing the understanding of ASD and developing new

interventions. The Autism Cluster of Excellence (ACE) initiative
brings multiple research sites together jointly to investigate the
underlying causes of ASD, including genetic, environmental, and
developmental factors. ACE centers foster collaboration among
researchers from diverse disciplines, including neuroscience,
genetics, psychology, and education. The commitment to data
sharing in the ACE program has led to large databases of
behavioral and neural data such as the National Database for
Autism Research and the Autism Brain Imaging Data Exchange.
These data-sharing efforts encompass various types of data,
including genetics, genomics, brain imaging, and behavioral
assessments. This rich and diverse dataset is invaluable for testing
the replicability of findings from smaller, single-site studies,
enhancing the robustness and generalizability of research findings
in the field of autism (Heinsfeld et al., 2018; Nielsen et al., 2013;
Payakachat et al., 2016).

To address the second point, building bridges between autism
symptomatology in individuals diagnosed with autism and autistic
traits in the non-autistic population, there is a need to investigate
autistic traits in larger and more diverse samples of individuals
with an autism diagnosis alongside individuals without a diagnosis.
Measuring self-reported autistic traits alongside objective mea-
sures of autistic symptom domains across diagnosed and
undiagnosed individuals would shed light on the convergence of
autism symptomatology and autistic traits in the general
population. Initiatives like the Simons Foundation Autism
Research Initiative provide an important resource for recruiting
larger and heterogeneous groups of individuals with an autism
diagnosis for behavioral studies. This initiative provides a valuable
resource for researchers aiming to investigate ASD across different
stages of life, from infancy through adulthood. The Simons
Foundation Powering Autism Research for Knowledge (SPARK)
initiative has aggregated a cohort of over 50,000 individuals with
ASD and their families, who are interested in contributing to
research. Researchers can access this large and diverse pool of
participants nationwide for online behavioral studies. They can
additionally apply to utilize existing phenotypic and genetic data
on their recruited participants. SPARK has become increasingly
popular for recruiting participants across developmental stages
and levels of functioning, allowing studies to investigate variability
in autism symptoms, including the co-occurrence of certain autism
risk genes in phenotypes (Gaugler et al., 2014; Grove et al., 2019;
Matoba et al., 2020; Myers et al., 2020; Wilfert et al., 2021), as well
as a more thorough investigation of the influence of sex and gender
differences in autism (Dillon et al., 2023; Fombonne et al., 2020;
Saré & Smith, 2020). Large online studies leveraging such databases
are beginning to shed light on the similarities and differences in
autistic traits between people with autism or their family members
and those without a close relative diagnosed with autism (Bora
et al., 2017; Ruzich et al., 2016).

The third and most challenging obstacle is developing finer-
grained assessments and cognitive models of autism symptoms
that can help bridge the gap to animal models and genetics, on the
one hand, and to real-world behavioral outcomes, on the other
hand. This need is not unique to studying autism but is much
needed across neuropsychiatric domains. Indeed, researchers have
acknowledged the need for a computational psychiatry approach
to precision phenotyping, increasing the precision with which we
characterize certain sub-phenotypes of the autism spectrum (Tiego
et al., 2023). A more nuanced approach to characterizing and
quantifying the observed behavioral differences and their
biological correlates can deepen our understanding of

2 Wenda Liu et al.

https://doi.org/10.1017/pen.2025.2 Published online by Cambridge University Press

https://doi.org/10.1017/pen.2025.2


neuropsychiatric disorders and their symptoms (Friston et al.,
2014; Hitchcock et al., 2022; Huys et al., 2016; Montague et al.,
2012; Wang & Krystal, 2014). In this respect, computational
psychiatry describes mathematical approaches to quantitatively
analyze the complex interactions across biobehavioral system
levels within and between neuropsychiatric disorders (Frässle et al.,
2018; Karvelis et al., 2023; Petzschner et al., 2017; Stephan &
Mathys, 2014; Wiecki et al., 2015). The hope of computational
psychiatry is to identify nuanced patterns of behavior as well as
their underlying cognitive mechanisms and neural implementa-
tion. This latter goal can be achieved through cognitive computa-
tional modeling.

Computational modeling can reveal clinically meaningful
individual differences

Cognitive computational models have been widely used in the field
of cognitive neuroscience (Castelfranchi & Falcone, 2010; Farrell &
Lewandowsky, 2018; Kriegeskorte & Douglas, 2018; Lewandowsky
& Farrell, 2010; Pitt et al., 2002; Sun, 2008). These models can be
conceptualized as formal mathematical translations of theoretical
assumptions. These mathematical models can reveal internal,
unobservable states that govern behavioral output (Baker et al.,
2009; Baker & Tenenbaum, 2014; Gluck et al., 2010; Just et al.,
1999; Wolpert et al., 2003). By translating cognitive processes into
mathematical terms and testing them on an individual level,
cognitive computational models have revealed individual
differences in a wide array of decision-making contexts.
Previous studies have differentiated decision-making of more risk
averse and risk seeking individuals (Daw et al., 2011; Jacob et al.,
2019; Levy, 2017; Pushkarskaya et al., 2017, 2018), impulsive versus
more deliberate individuals who plan ahead (Blankenstein et al.,
2017; Kable &Glimcher, 2007, 2010; Kurzban et al., 2013), or those
that learn from environmental feedback itself or through imitation
of others, versus individuals that are more likely to engage in
metacognition and represent the task structure (Charpentier et al.,
2016, 2017, 2020; Feher da Silva et al., 2023; Ramsey et al., 2021;
Vélez & Gweon, 2021). Cognitive computational models can
enhance our understanding of behavioral dynamics over time,
enabling a more nuanced characterization of individual differences
and providing a fundamentally dynamic perspective on cognitive
variability within individuals (Schurr et al., 2024).

Computational modeling can inform the links between
autistic traits and social functioning

With respect to autism specifically, recent research has highlighted
the utility of computational modeling in studying autistic traits
within the general population. This is especially important because
autistic traits are known to exist on a continuumwithin the general
population (Robinson et al., 2011). Some studies suggest that
clinically relevant autistic traits are an extension (or end point) of
that continuum (Constantino & Todd, 2003; Ronald & Hoekstra,
2011; Skuse et al., 2005), while other studies suggest a discontinuity
between autistic traits in the general population and those of
individuals with an autism diagnosis (Abu-Akel et al., 2019; Frazier
et al., 2009; Peralta & Cuesta, 2007). Irrespective of these two
opposing positions, exploring autistic traits in the general
population provides several advantages and can critically inform
research on ASD. This claim is warranted by the observation that
nonclinical groups with high autistic traits exhibit a higher degree
of social functioning (De Groot & Van Strien, 2017) than

individuals with ASD. It is, therefore, possible to examine the
cognitive profiles or behavioral strategies that contribute to greater
social functioning despite high autistic traits. Exploring autistic
traits in neurotypical individuals also makes it possible to avoid the
confounding effects of comorbid conditions that co-occur with
ASD. Furthermore, it enables researchers to study larger cohorts
(De Groot & Van Strien, 2017), making it possible to control
confounding effects or specifically examine their interaction with
autistic traits as a question of interest. The Broad Autism
Phenotype questionnaire (Hurley et al., 2007), for instance,
describes behavioral and cognitive tendencies that are less severe
but rather stable characteristics, similar in nature to those found in
individuals with an ASD. Importantly, autistic traits seem to scale
with the genetic risk for ASD. Relatives of individuals with ASD
without a diagnosis have been shown to exhibit more autistic traits
than those without a close relative with an ASD diagnosis (Piven
et al., 1997).

Recent studies that have leveraged computational modeling
better to define cognitive mechanisms that co-occur with high
autistic traits have produced promising avenues for autism
research. For example, one study used a hierarchical Bayesian
modeling framework to examine the integration of nonsocial and
social cues through a reward-based learning task. They found that
more pronounced autistic traits in a group of healthy control
subjects were related to less integration of social cues in decision-
making. Computational modeling further demonstrated that
performance differences between individuals with low versus high
autistic traits were not due to an inability to process the social
stimuli (gaze direction) and their causes, but rather to the extent to
which participants relied on social information to infer the
nonsocial cue (Sevgi et al., 2020). Another recent large-scale study
found that high autistic traits were associated with reduced goal
emulation during observational learning. This means that
participants with higher autistic traits were more prone to imitate
the observer but showed a reduced tendency to represent the
overall goal of the observed person, which corresponded to the
reward structure of the task (Wu et al., 2024). This emerging
literature on social decision-making and autistic traits suggests that
high autistic traits do not amount to a general inability to process
social cues (Sevgi et al., 2020). They do, however, have a nuanced
influence on the extent to which different types of social
information are used, which may result in less adaptive outcomes.

Computational modeling can help to specify differences in
the cognitive mechanisms underlying behavioral
phenotypes

Cognitive computational models have also revealed differences in
the cognitive mechanisms of individuals with an ASD diagnosis. In
line with previous theories (Baron-Cohen et al., 1985), some
studies have shown that individuals with ASD have difficulties in
representing their partners’ intentions. Yoshida and colleagues
(Yoshida et al., 2010), for instance, employed a stag-hunt game to
characterize unobservable computational processes implicit in
social interactions and to measure whether individuals prefer
smaller individual versus larger joint rewards. They found that the
decisions of autistic individuals were less guided by inferring their
partners’ beliefs and instead were guided by a fixed strategy
compared to non-autistic control participants. Autistic individuals
who showed less mental state inference had greater symptom load.
Similarly, a study on social learning showed that autistic
adolescents relied less on social knowledge and feedback to learn
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about peers’ preferences (Rosenblau et al., 2021). However, this
study specifically tested whether autistic teens could learn about
the preferences of non-autistic peers. Given that autistic and non-
autistic adolescents may have differing preferences, these
disparities could contribute to the “double empathy problem” –
a phenomenon where misunderstandings between autistic and
non-autistic individuals arise from mutual challenges in under-
standing each other’s perspectives (Milton, 2012).

Other studies using economic exchange tasks have shownmore
nuanced differences in autistic individuals, which result in more
adaptive behavior. For instance, autistic individuals have been
shown to assess their partner’s cooperation historymore accurately
and reciprocate less when partners are untrustworthy (Maurer
et al., 2018). In accordance with this finding, a study on
information sampling for cooperation showed that autistic
adolescents had lower overall expectations (i.e., priors) about
their partner’s reciprocation tendencies (Liu et al., 2024). Given the
range of trustworthy and untrustworthy agents, the autistic priors
more accurately reflected the overall trustworthiness distribution
of their potential partners. Moreover, autistic adolescents shared
less often with untrustworthy agents than the non-autistic sample,
which suggests that they are less prosocial than non-autistic
adolescents. Moreover, this type of strategic interaction was less
related to social skills in the autism group. Participants’ task
behaviors were less strongly associated with social skills as
measured by the social responsiveness scale (SRS) compared to the
non-autistic group, in which the SRS was the strongest predictor of
cooperation tendencies. These findings suggest differences
between strategic decision-making in economic exchange and
non-economic social interactions in autistic individuals. In non-
autistic groups, individuals’ strategic choices may be more
reflective of their mentalizing abilities and prosocial tendencies.

In conclusion, computational approaches offer a promising way
to identify nuanced behavioral patterns and their underlying
cognitive mechanisms. Studies leveraging both advances in
building big data platforms and computational modeling hold
promise for better characterizing autism phenotypes. This could
pave the way for defining autism subtypes more clearly and
examining their etiology, developmental trajectories, and
comorbidities. Moreover, these advances can predict responses
to therapeutic interventions, leading to more personalized and
effective treatment plans (Collin et al., 2022; Johnson et al., 2021).
Finally, we can combine insights from larger studies on autistic
traits in the general population and those that investigate
variability in symptoms in individuals diagnosed with ASD to
inform commonalities and differences between populations with
high autistic traits and no ASD diagnosis and those with a
diagnosis. It could also help to systematically investigate the roles
of sex, gender, and gender diversity in populations with high
autistic traits and ASD diagnoses, given emerging evidence of the
importance of examining sex differences in autism (Bölte et al.,
2023; Loomes et al., 2017). This special issue focuses on how an
individual differences approach, rather than the focus on central
tendencies, can deepen our understanding of autistic traits and
symptoms. It emphasizes the importance of investigating
variability in autistic traits and phenotypes to refine autism
classification. The issue highlights cutting-edge methods suited to
capturing heterogeneity in behavioral and brain function and
showcases big data approaches for analyzing large samples as well
as computational modeling approaches that can expose how
differences in cognitive mechanisms underlie meaningful behav-
ioral variability.
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