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Abstract
We study the energy-critical half-wave maps equation:

𝜕𝑡u = u × |𝐷 |u

for u : [0, 𝑇) ×R→ S2. Our main result establishes the global existence and uniqueness of solutions for all rational
initial data u0 : R → S2. This demonstrates global well-posedness for a dense subset within the scaling-critical
energy space �𝐻1/2 (R;S2). Furthermore, we prove soliton resolution for a dense subset of initial data in the energy
space with uniform bounds for all higher Sobolev norms �𝐻𝑠 for 𝑠 > 0.

Our analysis utilizes the Lax pair structure of the half-wave maps equation on Hardy spaces in combination with
an explicit flow formula. Extending these results, we establish global well-posedness for rational initial data (along
with a soliton resolution result) for a generalized class of matrix-valued half-wave maps equations with target spaces
in the complex Grassmannians Gr𝑘 (C𝑑). Notably, this includes the complex projective spaces CP𝑑−1 � Gr1 (C𝑑)
thereby extending the classical case of the target S2 � CP1.
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2 P. Gérard and E. Lenzmann

1. Introduction and main results

This paper is devoted to the half-wave maps equation posed on the real line, which reads

𝜕𝑡u = u × |𝐷 |u (HWM)

with u : [0, 𝑇) × R → S2. Here S2 denotes the standard unit two-sphere embedded in R3 and ×
stands for the vector/cross product in R3. Formally, the operator |𝐷 | is given by its Fourier multiplier
|𝜉 | corresponding to the half-Laplacian |𝐷 | =

√
−Δ on R. Equivalently in our setting, we can write

|𝐷 | = H𝜕𝑥 where

(H 𝑓 ) (𝑥) = 1
𝜋

p.v.
∫
R

𝑓 (𝑦)
𝑥 − 𝑦 𝑑𝑦 (1.1)

denotes the Hilbert transform on the real line. The main physical motivation for studying (HWM) stems
from the fact that it can be seen as a continuum version of discrete completely integrable so-called spin
Calogero–Moser models; see [37, 27]. See also [26] for a complete classification of traveling solitary
waves of (HWM) in relation to (nonfree) minimal surfaces of disk type, as well as the studies [3, 29] of
the dynamics of rational solutions of (HWM) in the applied math literature.

As shown in [14], the half-wave maps equation is a completely integrable Hamiltonian PDE in the
sense of having a Lax pair structure that yields an infinite set of conserved quantities and also shows
that rationality is preserved by the flow of (HWM). We remark that its Hamiltonian energy functional
is easily found to be

𝐸 (u) = 1
2

∫
R

u · |𝐷 |u 𝑑𝑥 = 1
4𝜋

∫
R

∫
R

|u(𝑥) − u(𝑦) |2

|𝑥 − 𝑦 |2
𝑑𝑥 𝑑𝑦 . (1.2)

Note that the scaling u(𝑡, 𝑥) ↦→ u(𝜆𝑡, 𝜆𝑥) with some constant 𝜆 > 0 preserves solutions of (HWM) as
well as the energy 𝐸 (u). Thus we see that (HWM) is energy-critical.

However, the question of existence (or nonexistence) of global-in-time solutions for (HWM) – even
for smooth and sufficiently small data – has been left completely open so far. Here one of the major
obstacles lies in the nondispersive nature of the half-wave operator |𝐷 | in one space dimension occurring
in the quasi-linear evolution problem (HWM). In fact, this situation prevents us from adapting known
tools developed to prove global well-posedness results for other dispersive geometric PDEs such as the
Schrödinger maps and wave maps equations; see, for example, [35, 22] and references therein. We refer
also to [23, 20, 28] for small data global existence for (HWM) in the nonintegrable case with space
dimensions at least 𝑁 ≥ 3, where dispersive estimates can be used which are not available for our setting
here.

In the present paper, we shall develop an entirely different approach that will lead to global well-
posedness for all rational initial data, which are shown to form a dense subset in the scaling-critical
energy space �𝐻 1

2 (R;S2) for (HWM). Our proof will be based on the Lax pair structure on suitable
Hardy spaces together with an explicit flow formula for (HWM) akin to the explicit formulae recently
found by the first author for the Benjamin–Ono equation. Furthermore, as a byproduct of our analysis,
we will also study the long-time behavior of rational solutions, leading to a general result on soliton
resolution in this setting. In particular, this result yields a rigorous proof of the numerical findings for
(HWM) that have been recently presented in [3].

Global well-posedness for rational data

We consider (HWM) with initial data that are given by rational functions. To this end, we define the set

R𝑎𝑡 (R;S2) :=
{
u : R→ S2 | u(𝑥) is rational in 𝑥 ∈ R

}
.
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Explicit examples of rational maps u : R → S2 are easily constructed by means of the (inverse)
stereographic projection from the extended complex plane C ∪ {∞} to S2; see Section 8 below for
details.

In fact, rational maps play a distinguished role in the analysis of (HWM), as they occur in the complete
classification of traveling solitary waves. Furthermore, due to its Lax pair structure (detailed below)
and a Kronecker-type theorem for Hankel operators (see Section 4 below), another essential feature of
(HWM) is that rationality is preserved by the flow, see [14]. For any u ∈ R𝑎𝑡 (R;S2), we readily verify
the following properties:
◦ Limit: lim

𝑥→±∞
u(𝑥) = p for some unit vector p ∈ S2.

◦ Smoothness: u ∈ �𝐻∞ =
⋂

𝑠>0 �𝐻𝑠 .
In addition, we can derive with the following nontrivial fact.

Theorem 1.1. R𝑎𝑡 (R;S2) is a dense subset in �𝐻 1
2 (R;S2).

Remark. Due to the nonlinear constraint of taking values in the unit sphere S2, this density result is far
from obvious. For the proof of Theorem 1.1, we refer to Appendix A below.

Our first main result shows that rational data always lead to unique global-in-time solutions of
(HWM).
Theorem 1.2 (GWP for Rational Data). For every u0 ∈ R𝑎𝑡 (R;S2), there exists a unique global-in-time
solution u ∈ 𝐶 (R;𝐻∞

• (R;S2)) of (HWM) with initial datum u(0) = u0.
Remarks. 1) The global solutions u : R × R→ S2 constructed above are of the form

u(𝑡) = u∞ + v(𝑡) ∈ S2 + 𝐶 (R;𝐻∞(R;R3))

with the point u∞ = lim |𝑥 |→∞ u0 (𝑥) ∈ S2 given by the initial datum u0 ∈ R𝑎𝑡 (R;S2). See also below,
for the definition of the space 𝐻∞

• (R;S2).
2) Our result establishes global well-posedness of (HWM) for initial data belonging to a dense subset

in the scaling-critical energy space �𝐻 1
2 (R;S2). Hence any finite-time blowup solution for (HWM) in

the energy space – provided such solutions exist at all – must be highly unstable.
3) The solutions of Theorem 1.2 exhibit an infinite set of conserved quantities

𝐼𝑝 (u(𝑡)) = 𝐼𝑝 (u0) for 𝑝 ≥ 1

due to the Lax structure for (HWM). In particular, we obtain conservation of energy 𝐸 (u(𝑡)) = 𝐸 (u0) ∼
𝐼2(𝑢0). As a consequence of Peller’s theorem, we obtain the infinite family of a priori bounds

‖u(𝑡)‖ �𝐵1/𝑝
𝑝
�𝑝 ‖u0‖ �𝐵1/𝑝

𝑝
for 𝑝 ≥ 1

with the homogeneous Besov semi-norms ‖ · ‖ �𝐵1/𝑝
𝑝

; see Section 3 for details. However, these bounds
do not seem to provide strong enough control to deduce global existence. In this paper, we thus use an
entirely different approach based on an explicit flow formula for (HWM).

4) In [3], the authors study the dynamics for rational initial data u0 : R → S2 with simple poles
and derive a self-consistent system of ordinary differential equations of spin Calogero–Moser type.
However, by following this approach, it still remains unclear whether such rational solutions can be
extended globally in time, since a possible loss of simplicity of poles could arise at finite time, rendering
the simple pole ansatz invalid in finite time.

Soliton resolution and nonturbulence

As our next main result, we discuss the long-time behavior of rational solutions provided by Theorem
1.2 above. Here a suitable spectral condition will enter the scene as follows. For u ∈ R𝑎𝑡 (R;S2), we
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4 P. Gérard and E. Lenzmann

define the Toeplitz operator by

𝑇U 𝑓 = Π+(U 𝑓 ) for 𝑓 ∈ 𝐿2
+(R;C2) .

Here Π+ : 𝐿2 (R;C2) → 𝐿2
+(R;C2) is the Cauchy–Szegő projection onto the vector-valued Hardy space

defined as

𝐿2
+(R;C2) :=

{
𝑓 ∈ 𝐿2 (R;C2) | supp 𝑓̂𝑘 ⊂ [0,∞) for 𝑘 = 1, 2

}
.

The symbol in 𝑇U is given by the matrix-valued function U : R→ C2×2 with

U = u · 𝝈 =
3∑
𝑘=1
𝑢𝑘𝜎𝑘 =

(
𝑢3 𝑢1 − i𝑢2

𝑢1 + i𝑢2 −𝑢3

)
, (1.3)

where 𝝈 = (𝜎1, 𝜎2, 𝜎3) contains the standard Pauli matrices. For later use, we also remark that, by
introducing the matrix-valued function U = u · 𝝈, we can equivalently rewrite (HWM) as

𝜕𝑡U = − i
2
[U, |𝐷 |U] , (1.4)

where [𝑋,𝑌 ] ≡ 𝑋𝑌 − 𝑌𝑋 is the commutator of matrices; see also [14] for more details on this.
In fact, by recasting (HWM) in terms of the matrix-valued function U, we will be able to fully exploit

the Lax structure initially found in [14]. Also, we note that U(𝑥) = U(𝑥)∗ ∈ C2×2 takes values in the
Hermitian matrices subject to the algebraic constraint that U(𝑥)2 = 12. As a consequence, the Toeplitz
operator 𝑇U = 𝑇∗

U is self-adjoint with operator norm ‖𝑇U‖ ≤ 1. Moreover, it turns out that 𝑇U will be a
Lax operator along the flow. Hence its spectrum 𝜎(𝑇U(𝑡) ) will be preserved in time for solutions u(𝑡)
of (HWM). As another key fact, we mention that the discrete spectrum

𝜎d(𝑇U) = {𝜆 ∈ 𝜎(𝑇U) | 𝜆 is isolated and has finite multiplicity}

is finite if and only if the function u : R→ S2 is rational; see Section 4 for a detailed discussion of the
spectral properties of 𝑇U for general u ∈ �𝐻 1

2 (R;S2).
Our next main result will prove that simplicity of the discrete spectrum 𝜎d(𝑇U) implies scattering of

the corresponding global rational solution u ∈ 𝐶 (R;𝐻∞
• (R;S2)) into a sum of traveling ground state

solitary waves receding from each other, that is, we obtain soliton resolution in this case. From [26] we
recall that traveling solitary waves for (HWM) are, by definition, finite-energy solutions of the form

u𝑣 (𝑡, 𝑥) = q𝑣 (𝑥 − 𝑣𝑡) (1.5)

with some profile q ∈ �𝐻 1
2 (R;S2) and where 𝑣 ∈ R corresponds to the traveling velocity. From the

complete classification result in [26] we recall that the any such profile q𝑣 can be expressed in terms
of a finite Blaschke product, whence it follows that q𝑣 ∈ R𝑎𝑡 (R;S2) holds. Moreover, the energy is
quantized according to

𝐸 (q𝑣 ) = (1 − 𝑣2) · 𝑚𝜋 with some 𝑚 = 0, 1, 2, . . . (1.6)

where the integer m corresponds to the degree of the Blaschke product. The case 𝑚 = 0 corresponds to
the trivial case of constant q𝑣 , whereas for nonconstant profiles q𝑣 we must have that

|𝑣 | < 1 . (1.7)

Note also that the special case 𝑣 = 0 yields static solutions of (HWM) and the profiles q𝑣=0 are then
so-called half-harmonic maps, see also [8, 31].
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In view of (1.6), we refer to the case 𝑚 = 1 as ground state solitary waves, since these are nontrivial
with the least possible energy for a given velocity. From the explicit classification in [26] we can deduce
that profiles q𝑣 ∈ R𝑎𝑡 (R;S2) for ground state solitary waves are exactly rational functions of the form

q𝑣 (𝑥) = q∞ + s
𝑥 − 𝑧 +

s
𝑥 − 𝑧 (1.8)

with some q∞ ∈ S2, 𝑧 ∈ C−, and s ∈ C3 \ {0} satisfying the nonlinear constraints

s · s = 0 and s ·
(
q∞ + s

𝑧 − 𝑧

)
= 0 . (1.9)

Here a · b =
∑3

𝑘=1 𝑎𝑘𝑏𝑘 denotes the non-Hermitian dot product of a, b ∈ C3. We remark that (1.9) is
easily seen to be equivalent (by partial fraction expansion) to the geometric constraint that q𝑣 (𝑥) ∈ S2

for all 𝑥 ∈ R. Moreover, the real part Re 𝑧 corresponds to the spatial center of the solitary wave profile
q𝑣 , whereas 𝐸 (q𝑣 ) = (s · s) · 𝜋 = (1 − 𝑣2) · 𝜋 yields its energy. For more details on q𝑣 , we refer to the
discussion in Appendix C below.

We are now ready to state our second main result.
Theorem 1.3 (Soliton Resolution and Non-Turbulence). Let u0 ∈ R𝑎𝑡 (R;S2) and suppose the corre-
sponding Toeplitz operator 𝑇U0 : 𝐿2

+(R;C2) → 𝐿2
+(R;C2) has simple discrete spectrum 𝜎d(𝑇U0 ) =

{𝑣1, . . . , 𝑣𝑁 }.
Then the corresponding solution u ∈ 𝐶 (R;𝐻∞

• (R;S2)) of (HWM) with initial datum u(0) = u0
satisfies

lim
𝑡→±∞

‖u(𝑡) − u±(𝑡)‖ �𝐻 𝑠 = 0 for all 𝑠 > 0 ,

where

u±(𝑡, 𝑥) =
𝑁∑
𝑗=1

q𝑣𝑗 (𝑥 − 𝑣 𝑗 𝑡) − (𝑁 − 1)u∞ .

Here each q𝑣𝑗 ∈ R𝑎𝑡 (R;S2) is a profile of a ground state solitary wave for (HWM) with traveling
velocity 𝑣 𝑗 and it is given by

q𝑣𝑗 (𝑥) = u∞ +
s 𝑗

𝑥 − 𝑦 𝑗 + i𝛿 𝑗
+

s 𝑗
𝑥 − 𝑦 𝑗 − i𝛿 𝑗

with some complex vectors s1, . . . , s𝑁 ∈ C3 \ {0}, some real numbers 𝑦1, . . . , 𝑦𝑁 ∈ R, some positive
real numbers 𝛿1, . . . , 𝛿𝑁 > 0, and the point u∞ = lim |𝑥 |→∞ u0 (𝑥) ∈ S2.

Moreover, we have the a priori bounds

sup
𝑡 ∈R

‖u(𝑡)‖ �𝐻 𝑠 ≤ 𝐶 (u0, 𝑠) for all 𝑠 > 0 .

Remarks. 1) Obtaining a priori bounds on all higher Sobolev norms ‖u(𝑡)‖ �𝐻 𝑠 is a remarkable fact,
since the infinite hierarchy of conservation laws given by the Lax structure for (HWM) only provides
a priori control over the weaker homogeneous Besov norms ‖u(𝑡)‖ �𝐵1/𝑝

𝑝
for 1 ≤ 𝑝 < ∞. The latter fact

follows from Peller’s theorem applied to the Hankel operator 𝐻U and the conserved quantities given by
the operator traces Tr(|𝐻U |𝑝); see [14] for more details.

2) Note that the scattering profile u±(𝑡) is the same for both 𝑡 → −∞ and 𝑡 → +∞, which can be
seen as triviality of the scattering map in this setting.

3) It would be interesting to prove or disprove the existence of rational initial data u0 leading to
turbulent behavior in the sense of growth of higher Sobolev norms such that ‖u(𝑡)‖ �𝐻 𝑠 → +∞ as
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6 P. Gérard and E. Lenzmann

𝑡 → ∞ for some 𝑠 > 1
2 . Of course, the discrete spectrum 𝜎d(𝑇U0 ) for such data must have degenerate

eigenvalues.
4) It is interesting to compare our result to other completely integrable equations with a Lax pair

structure on Hardy spaces: In [15], turbulent rational global-in-time solutions have been constructed
for the Calogero–Moser derivative NLS on the real line. For the cubic Szegő equation on the real line,
turbulent rational solutions have been proven to exist in [18] along with their genericity.

We conclude this subsection by establishing that the spectral assumption in Theorem 1.7 for the
Toeplitz operator 𝑇U0 holds on a dense subset in �𝐻 1

2 (R;S2), thereby showing that the soliton resolution
above holds on a dense subset in the energy space.

Theorem 1.4. The subset

R𝑎𝑡s (R;S2) :=
{
u ∈ R𝑎𝑡 (R;S2) | 𝜎d(𝑇U) is simple

}
is dense in �𝐻 1

2 (R;S2).

We remark that the nonlinear constraint of taking values in S2 poses serious challenges when
proving this density result. Also, the reader should avoid the fallacy of claiming that rational functions
u ∈ R𝑎𝑡 (R;S2) with simple poles will always lead to simple discrete spectrum 𝜎d(𝑇U). We refer to
Section 4 for more details.

Generalized half-wave maps equation

We now discuss a natural geometric generalization of (HWM) beyond the target S2. The reader who is
mainly interested in the S2-valued case may skip this subsection at first reading.

For a given integer 𝑑 ≥ 2, we let 𝑀𝑑 (C) ≡ C𝑑×𝑑 denote the vector space of complex 𝑑 × 𝑑-matrices.
For matrix-valued maps U : [0, 𝑇) × R → 𝑀𝑑 (C), we introduce the generalized half-wave maps
equation given by

𝜕𝑡U = − i
2
[U, |𝐷 |U] , (HWMd)

subject to the initial condition U(0) = U0 : R→ 𝑀𝑑 (C) satisfying the algebraic constraints such that

U0(𝑥) = U0 (𝑥)∗ and U0 (𝑥)2 = 1𝑑 for a. e. 𝑥 ∈ R . (1.10)

We readily check that these properties of U0 are formally preserved along the flow of (HWMd). At this
point, we also mention that (HWMd) can be formally seen as the zero-dispersion limit of the so-called
spin Benjamin–Ono equation recently introduced in [4]; see also below for further remarks on this.

The matrix-valued generalization of (HWM) above also has a straightforward geometric meaning as
follows. Let Gr𝑘 (C𝑑) denote the complex Grassmannian consisting of the k-dimensional subspaces of
the complex vector space C𝑑 . We recall that Gr𝑘 (C𝑑) can be canonically identified with the space of
self-adjoint projections 𝑃 = 𝑃∗ ∈ 𝑀𝑑 (C) with rank(𝑃) = 𝑘 . Since Tr(𝑃) = rank(𝑃) for such projections
P, we find

Gr𝑘 (C𝑑) =
{
𝑃 ∈ 𝑀𝑑 (C) | 𝑃∗ = 𝑃 = 𝑃2 and Tr(𝑃) = 𝑘

}
. (1.11)

We remark that Gr𝑘 (C𝑑) is a compact submanifold of real dimension 2𝑘 (𝑛 − 𝑘) embedded in 𝑀𝑑 (C).
In fact, we have that Gr𝑘 (C𝑑) is a compact complex Kähler manifold, see also below.

Thanks to the elementary affine relation

𝑈 = 1𝑑 − 2𝑃 , (1.12)
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we obtain the natural identification of the complex Grassmannians such that

Gr𝑘 (C𝑑) �
{
𝑈 ∈ 𝑀𝑑 (C) | 𝑈 = 𝑈∗, 𝑈2 = 1𝑑 and Tr(𝑈) = 𝑑 − 2𝑘

}
(1.13)

for all 𝑘 = 0, . . . , 𝑑. With the simple relation (1.12) in mind, we will use the slight abuse of notation and
identify elements in the right-hand side in (1.13) as elements in Gr𝑘 (C𝑑) in what follows. Moreover,
throughout our discussion we will also include the trivial cases when 𝑘 = 0 or 𝑘 = 𝑑 corresponding to
{1𝑑} or {−1𝑑}, respectively.

In addition to the constraints (1.10), it is easy to see that the matrix trace Tr(U(𝑡, 𝑥)) is formally
preserved in time along the flow of (HWMd). Hence we can view solutions of (HWMd) as maps

U : [0, 𝑇) × R→ Gr𝑘 (C𝑑) ,

provided that the initial condition U0 : R→ 𝑀𝑑 (C) satisfies the pointwise condition

Tr(U0 (𝑥)) = 𝑑 − 2𝑘 for a. e. 𝑥 ∈ R (1.14)

in addition to the constraints (1.10) above.

Remarks. 1) For 𝑑 = 2 and 𝑘 = 1, we see that (HWMd) reduces to (HWM) in accordance with the
classical fact that Gr1(C2) � CP1 � S2.

2) For general 𝑑 ≥ 2 and 𝑘 = 1, we recall that Gr1(C𝑑) � CP𝑑−1. In particular, our global well-
posedness result below will apply to the generalized half-wave maps equation with target being the
complex projective spaces CP𝑑−1 for any 𝑑 ≥ 2.

We will prove that (HWMd) also possess a Lax structure on suitable 𝐿2-based Hardy spaces, which
will be discussed in Section 3 below. For 𝑑 ≥ 2 and 0 ≤ 𝑘 ≤ 𝑑 given, we observe that the natural energy
space for (HWMd) reads

�𝐻
1
2 (R; Gr𝑘 (C𝑑)) :=

{
U ∈ �𝐻

1
2 (R;𝑀𝑑 (C)) | U(𝑥) ∈ Gr𝑘 (C𝑑) for a. e. 𝑥 ∈ R

}
equipped with the natural Gagliardo semi-norm ‖ · ‖ �𝐻

1
2

whose square is (up to a multiplicative constant)
the energy functional for (HWMd) given by

𝐸 (U) = 1
2
‖U‖2

�𝐻
1
2
=

1
4𝜋

∫
R

∫
R

|U(𝑥) − U(𝑦) |2𝐹
|𝑥 − 𝑦 |2

𝑑𝑥 𝑑𝑦 . (1.15)

Here |𝐴|𝐹 =
√

Tr(𝐴∗𝐴) denotes the natural Frobenius norm for matrices 𝐴 ∈ 𝑀𝑑 (C).
In analogy to our analysis of (HWM), we define the set

R𝑎𝑡 (R; Gr𝑘 (C𝑑)) :=
{
U : R→ Gr𝑘 (C𝑑) | U(𝑥) is rational

}
.

We have the following global well-posedness result about (HWMd) for rational initial data, which
includes Theorem 1.2 as a special case.

Theorem 1.5 (GWP of (HWMd) for Rational Data). Let 𝑑 ≥ 2 and 0 ≤ 𝑘 ≤ 𝑑 be integers. Then,
for every initial datum U0 ∈ R𝑎𝑡 (R; Gr𝑘 (C𝑑)), there exists a unique global-in-time solution U ∈
𝐶 (R;𝐻∞

• (R; Gr𝑘 (C𝑑))) of (HWMd) with U(0) = U0.

Generalizing the density result in Theorem 1.6, we have the following result proven in Appendix A.

Theorem 1.6. For every 𝑑 ≥ 2 and 0 ≤ 𝑘 ≤ 𝑑, the subsetR𝑎𝑡 (R; Gr𝑘 (C𝑑)) is dense in �𝐻 1
2 (R; Gr𝑘 (C𝑑)).

Remark. The reader may wonder about finding explicit elements in R𝑎𝑡 (R; Gr𝑘 (C𝑑)). Indeed, in the
case Gr1 (C𝑑) � CP𝑑−1, we can easily construct rational maps as follows. Let 𝑃1, . . . , 𝑃𝑑 ∈ C[𝑋]
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be polynomials such that 𝑓 (𝑥) := (𝑃1 (𝑥), . . . , 𝑃𝑑 (𝑥)) ∈ C𝑑 \ {0} for all 𝑥 ∈ R. Evidently, the map
𝑃 : R→ 𝑀𝑑 (C) with

𝑃(𝑥) :=
𝑓 (𝑥) 𝑓 (𝑥)𝑡

〈 𝑓 (𝑥), 𝑓 (𝑥)〉C𝑑

satisfies 𝑃(𝑥) = 𝑃(𝑥)∗ = 𝑃(𝑥)2 with Tr(𝑃(𝑥)) ≡ 1. Thus U(𝑥) = 1𝑑 − 2𝑃(𝑥) belongs to
R𝑎𝑡 (R; Gr1(C𝑑)).

Next, we will extend Theorem 1.3 to the setting of half-wave maps with target Gr𝑘 (C𝑑). Here, for
a given initial datum U0 ∈ R𝑎𝑡 (R; Gr𝑘 (C𝑑)), the corresponding Toeplitz operator 𝑇U0 : 𝐿2

+(R;C𝑑) →
𝐿2
+(R;C𝑑) is analogously defined via 𝑇U0 𝑓 = Π+(U0 𝑓 ). Furthermore, the notion of traveling solitary

waves for (HWMd) is defined in the obvious manner: We say that a finite-energy solution to (HWMd)
of the form

U𝑣 (𝑡, 𝑥) = Q𝑣 (𝑥 − 𝑣𝑡)

is a traveling solitary wave with profile Q𝑣 ∈ �𝐻 1
2 (R; Gr𝑘 (C𝑑)) and velocity 𝑣 ∈ R. We have the

following result.

Theorem 1.7 (Soliton Resolution and Non-Turbulence for (HWMd)). Let 𝑑 ≥ 2 and 0 ≤ 𝑘 ≤ 𝑑 be given.
Suppose that U0 ∈ R𝑎𝑡 (R; Gr𝑘 (C𝑑)) and that its Toeplitz operator 𝑇U0 : 𝐿2

+(R;C𝑑) → 𝐿2
+(R;C𝑑) has

simple discrete spectrum 𝜎d(𝑇U0 ) = {𝑣1, . . . , 𝑣𝑁 }.
Then the corresponding solution U ∈ 𝐶 (R;𝐻∞

• (R; Gr𝑘 (C𝑑))) of (HWMd) with initial datum U(0) =
U0 satisfies

lim
𝑡→±∞

‖U(𝑡) − U±(𝑡)‖ �𝐻 𝑠 = 0 for all 𝑠 > 0 ,

where

U±(𝑡, 𝑥) =
𝑁∑
𝑗=1

Q𝑣𝑗 (𝑥 − 𝑣 𝑗 𝑡) − (𝑁 − 1)U∞ .

Here each Q𝑣𝑗 ∈ R𝑎𝑡 (R; Gr𝑘 (C𝑑)) is a profile of a traveling solitary wave for (HWMd) with velocity
𝑣 𝑗 and it is given by

Q𝑣𝑗 (𝑥) = U∞ +
𝐴 𝑗

𝑥 − 𝑦 𝑗 + i𝛿 𝑗
+

𝐴∗
𝑗

𝑥 − 𝑦 𝑗 − i𝛿 𝑗
,

with some matrices 𝐴 𝑗 ∈ 𝑀𝑑 (C) with rank(𝐴 𝑗 ) = 1 and 𝐴2
𝑗 = 0 for 𝑗 = 1, . . . , 𝑁 , some real

numbers 𝑦1, . . . , 𝑦𝑁 ∈ R, some positive real numbers 𝛿1, . . . , 𝛿𝑁 > 0, and the constant matrix U∞ =
lim |𝑥 |→∞ U0 (𝑥) ∈ Gr𝑘 (C𝑑).

Moreover, we have the a priori bounds

sup
𝑡 ∈R

‖U(𝑡)‖ �𝐻 𝑠 ≤ 𝐶 (u0, 𝑠) for all 𝑠 > 0 .

Remarks. 1) In the particular case Gr1 (C2) � CP1 � S2, we obtain Theorem 1.3 above, except that we
also find in Theorem 1.3 that the traveling solitary profiles are known to be of ground state type in this
case. For general targets Gr𝑘 (C𝑑) with (𝑘, 𝑑) ≠ (1, 2), the complete classification of traveling solitary
waves is open and hence we can only conclude that the profiles Q𝑣𝑗 above give rise to traveling solitary
wave for (HWMd) with velocity 𝑣 𝑗 .

2) It would be desirable to extend the density result for the simplicity condition on the discrete
spectrum 𝜎d(𝑇U0 ) stated in Theorem 1.4 to general targets Gr𝑘 (C𝑑).
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Strategy of proofs

Let us briefly outline the main ideas used in this paper.
The starting point of our analysis is a detailed study of the Lax pair structure of (HWMd). In particular,

this will largely extend the previous results found in [14] for (HWM) with target S2. More precisely, we
will show that, given a sufficiently smooth solution U : [0, 𝑇] × R → Gr𝑘 (C𝑑) of the matrix-valued
(HWMd), we obtain the following Lax equation

𝑑

𝑑𝑡
𝑇U(𝑡) =

[
𝐵+

U(𝑡) , 𝑇U(𝑡)
]
. (1.16)

Here 𝑇U : 𝐿2
+(R;V) → 𝐿2

+(R;V) denotes the Toeplitz operator given by

𝑇U 𝑓 = Π+(U 𝑓 ) for 𝑓 ∈ 𝐿2
+(R;V) ,

where V either stands for

V = C𝑑 or V = 𝑀𝑑 (C) ,

equipped with their canonical scalar products, see below. In fact, we shall use both choices of V in
the course of our analysis below. Moreover, we remark that 𝑇U = 𝑇∗

U is self-adjoint and bounded with
operator norm ‖𝑇U‖ = ‖U‖𝐿∞ = 1 thanks to the algebraic constraints imposed on the matrix-valued
function U. The second operator appearing in (1.16) reads

𝐵+
U =

i
2
(𝐷 ◦ 𝑇U + 𝑇U ◦ 𝐷) − i

2
𝑇|𝐷 |U , (1.17)

which is an unbounded skew-adjoint operator with dom(𝐵U) = 𝐻1
+(R;V) as its operator domain.

Now, another decisive feature of the Lax structure for (HWMd) enters, which again is due to the
algebraic constraints satisfied by the matrix-valued function U. Notably, we can derive the following
key identity

𝑇2
U = Id − 𝐻∗

U𝐻U (1.18)

where 𝐻U : 𝐿2
+(R;V) → 𝐿2

−(R;V) denotes the Hankel operator given by

𝐻U 𝑓 = Π−(U 𝑓 ) for 𝑓 ∈ 𝐿2
+(R;V)

where Π− := Id−Π+ denotes the projection in 𝐿2 (R;V) onto orthogonal complement of the Hardy space
𝐿2
+(R;V). By the Lax evolution (1.16) combined with (1.18), we obtain the infinite set of conserved

quantities for (HWMd) of the form

𝐼𝑝 (U) = Tr(|𝐾U |𝑝/2) for any 𝑝 > 0 , (1.19)

with the nonnegative operator 𝐾U = 𝐻∗
U𝐻U. In particular, for 𝑝 = 2, we obtain the trace-class norm

of 𝐾U which is easily seen to be equivalent to the scaling-critical energy (semi-)norm ‖U‖ �𝐻
1
2
; see

Section 3 for more details. Furthermore, we see from (1.18) that 𝑇U is Fredholm with index 0. We will
make use of this fact further below in our analysis.

However, as we have already mentioned above, the infinite family of conserved quantities {𝐼𝑝 (U)}𝑝≥1
does not seem to yield sufficient control to obtain global solutions for (HWMd), even for smooth and
sufficiently small initial data (i.e., small perturbations of a constant). To overcome this obstruction, we
shall derive an explicit flow formula for sufficiently smooth solutions of (HWMd), which is akin to the
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result discovered in [10] for the Benjamin–Ono equation. More precisely, for solutions of (HWMd) of
the form

U(𝑡) = U∞ + V(𝑡) ∈ 𝑀𝑑 (C) ⊕ 𝐶 ([0, 𝑇];𝐻𝑠 (R;𝑀𝑑 (C)) with 𝑠 >
3
2
,

we derive that

Π+V(𝑡, 𝑧) = 1
2𝜋i
𝐼+
(
(𝑋∗ + 𝑡𝑇U0 − 𝑧Id)−1Π+V0

)
for 𝑡 ∈ [0, 𝑇] and 𝑧 ∈ C+ (1.20)

where U0 = U∞ + V0 ∈ 𝑀𝑑 (C) ⊕ 𝐻𝑠 (R;𝑀𝑑 (C)) denotes the initial datum for (HWMd). In this
formula, we emphasize the fact that 𝑇U0 is now regarded as a Toeplitz operator acting on the Hardy
space 𝐿2

+(R;𝑀𝑑 (C)) with functions taking values in the space of complex 𝑑 × 𝑑-matrices 𝑀𝑑 (C).
Furthermore, in analogous fashion to [10], the operators 𝐼+ and 𝑋∗ are given by

𝐼+( 𝑓 ) = lim
𝜉→0+

𝑓̂ (𝜉) and �(𝑋∗ 𝑓 )(𝜉) = i
𝑑 𝑓̂

𝑑𝜉
(𝜉)

defined on their suitable domains dom(𝐼+) and dom(𝑋∗) in 𝐿2
+(R;V); see Section 2 below for details.

Now, the main challenge is to decide whether we can exploit this explicit representation above to
deduce that these strong solutions can be extended to all (forward) times, that is, whether it is true
that U ∈ 𝐶 ([0,∞);𝐻𝑠

• (R; Gr𝑘 (C𝑑))) holds? Surprisingly, this turns out to be a rather delicate question
whose affirmative answer must necessarily exploit the algebraic constraints satisfied by the matrix-
valued function U solving (HWMd). By contrast, we remark that the explicit formula (up to an inessential
rescaling of t) for the dispersionless limit of the scalar-valued Benjamin–Ono on the line reads the same
as (1.20) with the simple replacement of 𝑇U0 with the Toeplitz operator 𝑇𝑢0 : 𝐿2

+(R;C) → 𝐿2
+(R;C)

with the bounded scalar-valued function 𝑢0 ∈ 𝐿2 (R) ∩ 𝐿∞(R). However, for the dispersionless limit of
(BO), it is known [12] that strong continuity of the flow breaks down in finite-time (corresponding to
development of shocks). Thus we cannot expect to derive global-in-time existence for (HWMd) by a
naive use of (1.20) neglecting the algebraic constraints for U.

In order to further exploit the fact that the initial data U0 for (HWMd) are valued in Gr𝑘 (C𝑑), we
appeal again to the key identity (1.18). As a direct consequence, we obtain the natural orthogonal
decomposition of the underlying Hardy space of the form

𝐿2
+(R;V) = ℌ0 ⊕ ℌ1

with the closed subspace

ℌ0 := ker(𝐾U0 ) and ℌ1 := ℌ⊥
0 = ran(𝐾U0) ,

where we recall the definition of the trace-class operator 𝐾U0 = 𝐻∗
U0
𝐻U0 . Now, it turns out that

Π+V0 ∈ ℌ1 and, in addition to this, we see that ℌ1 is an invariant subspace of both 𝑇U0 as well as the
semigroup generated by 𝑋∗. As a consequence, we see that the resolvent appearing on right-hand side
in (1.20) satisfies the mapping property (𝑋∗ + 𝑡𝑇U0 − 𝑧Id)−1 : ℌ1 → ℌ1 for any 𝑡 ∈ R. Hence the explicit
flow formula found for (HWMd) effectively takes place only the invariant subspace ℌ1. This is a great
deal of information which can be used to deduce global existence of strong solutions! In particular, an
adaptation of the classical Kronecker theorem for Hankel operators shows that

dim(ℌ1) < +∞ if and only if U0 is a rational map .

Thanks to this fact, the proof of global existence of strong solutions via (1.20) for rational initial data U0
amounts to showing that 𝑀 (𝑡) = 𝑋∗ + 𝑡𝑇U0 has no real eigenvalues for any 𝑡 ∈ R, proving its injectivity
on ℌ1 and hence the surjectivity of 𝑀 (𝑡) because ℌ1 is finite-dimensional in this setting.
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Remark. The case of nonrational initial data U0, which implies that dimℌ1 = +∞, and the question of
global well-posedness for (HWMd) will be studied in our companion work [16] posed on the torus.

Finally, let us briefly comment on the strategy behind the proofs of our further main results stated as
Theorems 1.3 and 1.7 concerning the long-time behaviour of rational solutions. Inspired by our recent
study of N-solitons for the Calogero–Moser derivative NLS in [15], the main idea rests on using the
explicit flow formula combined with a perturbation analysis of the family of (bounded) operators

𝜀𝑋∗ + 𝑇U0 : ℌ1 → ℌ1

with 𝜀 = 1
𝑡 in the regime where 𝜀 → 0 under the assumption that 𝑇U0 : ℌ1 → ℌ1 has simple spectrum.

However, as a striking difference to the analysis in [15], we will encounter that turbulence (i.e., growth
of higher Sobolev norms) can be ruled out for rational solutions of (HWMd) provided that the Lax
operator 𝑇U0 : 𝐿2

+(R;C𝑑) → 𝐿2
+(R;C𝑑) has simple discrete spectrum.

Links to Schrödinger maps and spin Benjamin–Ono equation

In order to put (HWMd) in a broader geometric perspective, we recall the well-known fact that Gr𝑘 (C𝑑)
is a Kähler manifold of complex dimension 𝑘 (𝑑 − 𝑘). Its complex structure 𝐽𝐴 on the tangent space
𝑇𝐴Gr𝑘 (C𝑑) at a point 𝐴 ∈ Gr𝑘 (C𝑑) can be expressed as the matrix commutator

𝐽𝐴(𝑋) = − i
2
[𝐴, 𝑋] .

Thus we see that (HWMd) can be written as a Schrödinger maps-type equation of the form1

𝜕𝑡U = 𝐽U |𝐷 |U (SM)

with the first-order pseudo-differential operator |𝐷 |. However, we will not further exploit this geometric
point of view in our analysis here.

On the other hand, we also mention the remarkable fact that (HWMd) can be formally seen as the
zero-dispersion limit of the spin Benjamin–Ono equation (sBO), which was recently introduced by
Berntson–Langmann–Lenells in [4]. In our choice of units, this equation can be written as

𝜕𝑡V =
1
2
𝜕𝑥 (|𝐷 |V − V2) − i

2
[V, |𝐷 |V] , (sBO)

for the matrix-valued map V : [0, 𝑇) × R → 𝑀𝑑 (C); see also [11] where a Lax pair structure for
(sBO) was found. We notice that, in the special case of real-valued maps V(𝑡, 𝑥) ∈ R, we obtain the
classical Benjamin–Ono equation (apart from trivial rescaling of t compared to the standard form of this
equation).

At least on a formal level, we see that replacing |𝐷 | by 𝜀 |𝐷 | with 𝜀 > 0 in (sBO) and forcing
the condition that V2 = 1𝑑 , we are led to (HWMd) when formally taking the zero-dispersion limit as
𝜀 → 0. For a rigorous analysis of the zero-dispersion of the scalar Benjamin–Ono equation, we refer to
the recent work in [12]. However, as already mentioned above, we will encounter a striking difference
in our analysis here due to the algebraic constraint U2 = 1𝑑 that is absent in the scalar case. From an
operator theoretic point of view, this remarkable difference stems from the fact that Toeplitz operators
𝑇U with matrix-valued symbols U : R→ C𝑑×𝑑 for 𝑑 ≥ 2 can have entirely different spectral properties
compared to Toeplitz operators 𝑇 𝑓 with scalar-valued symbols 𝑓 : R → C. The interested reader will
find more details on this difference further below.

1A priori this geometric rewriting of (HWMd) would involve using the projection 𝑃U onto the tangent space 𝑇UGr𝑘 (C𝑑) , that
is, we have 𝜕𝑡U = 𝐽U𝑃U |𝐷 |U. However, it can readily checked that [U, (Id − 𝑃U)𝐵] = 0 for Hermitian matrices 𝐵 ∈ 𝑀𝑑 (C) .
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2. Preliminaries and notation

In this section, we set up some definitions and notation used throughout this paper.

Sobolev-type spaces

For the study of the generalized half-wave maps equations (HWM𝑑), we introduce the following Sobolev-
type spaces for matrix-valued functions. For an integer 𝑑 ≥ 2, we use 𝑀𝑑 (C) ≡ C𝑑×𝑑 to denote the
Hilbert space of complex 𝑑 × 𝑑-matrices equipped with the inner product

〈𝐴, 𝐵〉𝐹 := Tr(𝐴𝐵∗) for 𝐴, 𝐵 ∈ 𝑀𝑑 (C)

and the corresponding Frobenius norm of a matrix 𝐴 ∈ 𝑀𝑑 (C) will be denoted by |𝐴|𝐹 =
√
〈𝐴, 𝐴〉𝐹 .

The Lebesgue spaces 𝐿𝑝 (R;𝑀𝑑 (C)) and 𝐿 𝑝loc (R;𝑀𝑑 (C)) are defined in an obvious manner. For
𝑠 > 0, we use the Sobolev spaces

�𝐻𝑠 (R;𝑀𝑑 (C)) :=
{
U ∈ 𝐿1

loc (R;𝑀𝑑 (C)) | ‖U‖ �𝐻 𝑠 := ‖|𝐷 |𝑠U‖𝐿2 < +∞
}
,

𝐻𝑠 (R;𝑀𝑑 (C)) :=
{
V ∈ 𝐿1

loc(R;𝑀𝑑 (C)) | ‖V‖𝐻 𝑠 := ‖〈𝐷〉𝑠V‖𝐿2 < +∞
}
.

We set �𝐻∞(R;𝑀𝑑 (C)) := ∩𝑠>0 �𝐻𝑠 (R;𝑀𝑑 (C)) and 𝐻∞(R;𝑀𝑑 (C)) := ∩𝑠>0𝐻
𝑠 (R;𝑀𝑑 (C)). Note that

‖ · ‖ �𝐻 𝑠 is a semi-norm, since nontrivial constant maps also belong to �𝐻𝑠 (R;𝑀𝑑 (C)) for 𝑠 > 0.
Furthermore, for 0 ≤ 𝑘 ≤ 𝑑 given, we define the spaces

�𝐻𝑠 (R; Gr𝑘 (C𝑑)) :=
{
U ∈ �𝐻𝑠 (R;𝑀𝑑 (C)) | U(𝑥) ∈ Gr𝑘 (C𝑑) for a. e. 𝑥 ∈ R

}
.

Note that the scaling-critical energy space associated to (HWM𝑑) with target Gr𝑘 (C𝑑) is
�𝐻 1

2 (R; Gr𝑘 (C𝑑)) equipped with the Gagliardo semi-norm ‖ · ‖ �𝐻
1
2

such that

‖U‖2
�𝐻

1
2
= ‖|𝐷 |

1
2 U‖2

𝐿2 =
1

2𝜋

∫
R

∫
R

|U(𝑥) − U(𝑦) |2𝐹
|𝑥 − 𝑦 |2

𝑑𝑥 𝑑𝑦 . (2.1)

Note that 𝐸 (U) = 1
2 ‖U‖2

�𝐻
1
2

is the Hamiltonian energy functional for (HWM𝑑) with the natural sym-

plectic form for maps defined on R with values in the complex Grassmannian Gr𝑘 (C𝑑).
In addition to the space �𝐻𝑠-spaces, it turns out to be convenient to introduce the following family of

affine inhomogeneous Sobolev-type spaces given by

𝐻𝑠
• (R;𝑀𝑑 (C)) := 𝑀𝑑 (C) ⊕ 𝐻𝑠 (R;𝑀𝑑 (C))

and we define 𝐻∞
• (R;𝑀𝑑 (C)) := ∩𝑠>0𝐻

𝑠
• (R;𝑀𝑑 (C)). Furthermore, we set

𝐻𝑠
• (R; Gr𝑘 (C𝑑)) :=

{
U ∈ 𝐻𝑠

• (R;𝑀𝑑 (C)) | U(𝑥) ∈ Gr𝑘 (C𝑑) for a. e. 𝑥 ∈ R
}
.

It is easy to see that the following strict inclusions hold true:

R𝑎𝑡 (R; Gr𝑘 (C𝑑)) � 𝐻𝑠
• (R; Gr𝑘 (C𝑑)) � �𝐻𝑠 (R; Gr𝑘 (C𝑑)) � 𝐿∞(R;𝑀𝑑 (C)) ,

where we recall that R𝑎𝑡 (R; Gr𝑘 (C𝑑)) denotes the space of rational maps from R to Gr𝑘 (C𝑑).
For (HWM) with maps valued in the unit sphere S2 ⊂ R3, we make use of the corresponding Sobolev

spaces 𝐻𝑠 (R;R3) and �𝐻𝑠 (R;R3), where the energy space is

�𝐻
1
2 (R;S2) :=

{
u ∈ �𝐻

1
2 (R;R3) | u(𝑥) ∈ S2 for a. e. 𝑥 ∈ R

}
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endowed with the Gagliardo semi-norm ‖ · ‖ �𝐻
1
2

such that

‖u‖2
�𝐻

1
2
= ‖|𝐷 |

1
2 u‖2

𝐿2 =
1

2𝜋

∫
R

∫
R

|u(𝑥) − u(𝑦) |2

|𝑥 − 𝑦 |2
𝑑𝑥 𝑑𝑦 .

From the introduction above, we recall that unit vectors u ∈ S2 can be equivalently encoded by using
the standard Pauli matrices (𝜎1, 𝜎2, 𝜎3) via the relation

U = u · 𝝈 = 𝑢1𝜎1 + 𝑢2𝜎2 + 𝑢3𝜎3 =

(
𝑢3 𝑢1 − i𝑢2

𝑢1 + i𝑢2 −𝑢3

)
,

where we easily check that U = U∗ with U2 = 12 and Tr(U) = 0. Also, we find that 𝑢𝑘 = 1
2 Tr(U𝜎𝑘 ) =

1
2 〈U, 𝜎𝑘〉𝐹 for 𝑘 = 1, 2, 3. Thus, by means of the relation U = u · 𝝈, we find the equivalence of (semi)-
norms ‖u‖ �𝐻 𝑠 ∼ ‖U‖ �𝐻 𝑠 for all 𝑠 > 0.

Hardy spaces, Toeplitz and Hankel operators

We consider the Hilbert space 𝐿2 (R;V) for maps on R with values in the finite-dimensional Hilbert
spaces

V = C𝑑 or V = 𝑀𝑑 (C) ,

which we endow with their natural inner products and norms, that is,

〈𝑢, 𝑣〉V =
𝑑∑
𝑘=1
𝑢𝑘𝑣𝑘 if V = C𝑑 , 〈𝐴, 𝐵〉V = Tr(𝐴𝐵∗) if V = 𝑀𝑑 (C) .

The Cauchy–Szegő projection Π+ : 𝐿2 (R;V) → 𝐿2
+(R;V) onto the Hardy space

𝐿2
+(R;V) := { 𝑓 ∈ 𝐿2 (R;V) | supp 𝑓̂ ⊂ [0,∞)}

is given by

(Π+ 𝑓 ) (𝑥) :=
1

2𝜋

∫ +∞

0
ei𝑥 𝜉 𝑓̂ (𝜉) 𝑑𝜉 with 𝑓̂ (𝜉) =

∫ +∞

−∞
𝑓 (𝑥)e−i𝜉 𝑥 𝑑𝑥 ,

or, equivalently, we have �(Π+ 𝑓 )(𝜉) = 1𝜉 ≥0 𝑓̂ (𝜉) on the Fourier side. We use

Π− := Id − Π+

to denote projection onto the orthogonal complement

𝐿2
−(R;V) := (𝐿2

+(R;V))⊥ = { 𝑓 ∈ 𝐿2 (R;V) | supp 𝑓̂ (𝜉) ⊂ (−∞, 0]} .

From standard Paley–Wiener theory we recall that elements 𝑓 ∈ 𝐿2
+(R;V) can be naturally identified

with holomorphic functions defined on the complex upper half-plane C+ such that

𝐿2
+(R;V) �

{
𝑓 ∈ Hol(C+;V) | sup

𝑦>0

∫
R

| 𝑓 (𝑥 + i𝑦) |2V 𝑑𝑥 < +∞
}
,

where | · |V denotes the norm onV . Throughout this paper, we will freely make use of this fact and we thus
regard elements 𝑓 ∈ 𝐿2

+(R;V) as holomorphic functions 𝑓 = 𝑓 (𝑧) with 𝑧 ∈ C+. We use H = −iΠ+ + iΠ−
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to denote the Hilbert transform on 𝐿2 (R;V), which can also be written as the singular integral operator

(H 𝑓 ) (𝑥) = 1
𝜋

p.v.
∫
R

𝑓 (𝑦)
𝑥 − 𝑦 𝑑𝑦.

For a bounded matrix-valued function U ∈ 𝐿∞(R;𝑀𝑑 (C)), we define the corresponding Toeplitz
operator as

𝑇U : 𝐿2
+(R;V) → 𝐿2

+(R;V), 𝑓 ↦→ 𝑇U 𝑓 := Π+(U 𝑓 ) .

Likewise, the corresponding Hankel operator is given by

𝐻U : 𝐿2
+(R;V) → 𝐿2

−(R;V), 𝑓 ↦→ 𝐻U 𝑓 := Π−(U 𝑓 ) .

We remark that we adapt the definition of 𝐻U from Peller’s book [32]; another (equivalent) definition
of Hankel operators can be achieved by anti-linear operators (see, e.g., [17]). However, for studying the
Lax pair structure for (HWM𝑑), we have found it more convenient to use the present convention for 𝐻U.

A central fact about Hankel operators used in this paper is Kronecker’s theorem, which relates the
rationality of the symbol U with the property that 𝐻U has finite rank. We refer the reader to Section 4 for
details. Furthermore, we remark that 𝐻U is Hilbert-Schmidt if and only if U ∈ �𝐻 1

2 ; see again Section 4
for a detailed discussion.

The operators 𝑋∗, X, and 𝐼+
On the Hardy space 𝐿2

+(R;V), we recall that the adjoint Lax–Beurling semigroup {𝑆(𝜂)∗}𝜂≥0 is given by

(𝑆(𝜂)∗ 𝑓 ) (𝑥) = Π+(𝑒−i𝜂𝑥 𝑓 (𝑥)) for 𝑓 ∈ 𝐿2
+(R;V) and 𝜂 ≥ 0 ,

which corresponds to the contraction semigroup of left shifts on 𝐿2
+(R;V). We remark that 𝑆(𝜂)∗ =

𝑒−i𝜂𝑋∗ , where its generator 𝑋∗ is given by the unbounded operator

�(𝑋∗ 𝑓 )(𝜉) = i
𝑑

𝑑𝜉
𝑓̂ (𝜉)1𝜉 ≥0

with the operator domain

dom(𝑋∗) =
{
𝑓 ∈ 𝐿2

+(R;V) | 𝑑 𝑓̂
𝑑𝜉

∈ 𝐿2 (R+;V)
}
.

It is straightforward to check that all rational functions 𝑓 ∈ 𝐿2
+(R;V) belong to dom(𝑋∗). For 𝑧0 ∈ C+,

the action of the resolvent (𝑋∗ − 𝑧0)−1 is easily found to be

((𝑋∗ − 𝑧0)−1 𝑓 ) (𝑧) = 𝑓 (𝑧) − 𝑓 (𝑧0)
𝑧 − 𝑧0

,

for all 𝑓 ∈ 𝐿2
+(R;V). We remark that 𝑋∗ is the adjoint of the unbounded operator

(𝑋 𝑓 ) (𝑥) = 𝑥 𝑓

corresponding to multiplication with 𝑥 ∈ R and its operator domain is given by

dom(𝑋) =
{
𝑓 ∈ 𝐿2

+(R;V) | 𝑥 𝑓 ∈ 𝐿2 (R;V)
}

=
{
𝑓 ∈ 𝐿2

+(R;V) | 𝑑 𝑓̂
𝑑𝜉

∈ 𝐿2 (R+;V) and 𝑓̂ (0) = 0
}
.
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Note that X is the generator of the Lax–Beurling semigroup {𝑆(𝜂)}𝜂≥0 corresponding to right shifts on
𝐿2
+(R;V), that is, we have

(𝑆(𝜂) 𝑓 ) (𝑥) = 𝑒i𝜂𝑥 𝑓 (𝑥) for 𝑓 ∈ 𝐿2
+(R;V) and 𝜂 ≥ 0 .

We will sometimes use the notation 𝑆(𝜂) = 𝑒i𝜂𝑋 . Note that the strict inclusion dom(𝑋) � dom(𝑋∗)
holds, for example, the rational function 1

𝑥+i ∈ dom(𝑋∗) does not belong to dom(𝑋). Further details on
the generators 𝑋∗ and X can be found in [17] in the scalar-valued case when V is replaced by C, but the
necessary adaptations to our setting are elementary.

In addition to the generator 𝑋∗, another important operator in our analysis is given by the (unbounded)
linear operator

𝐼+ : dom(𝑋∗) ⊂ 𝐿2
+(R;V) → V , 𝑓 ↦→ 𝐼+( 𝑓 ) := 𝑓̂ (0+) = lim

𝜉→0+
𝑓̂ (𝜉) .

Note that the definition of 𝐼+ as the one-sided limit of 𝑓̂ (𝜉) as 𝜉 → 0+ makes sense for any 𝑓 ∈ dom(𝑋∗)
by the standard trace theorem for Sobolev functions in 𝐻1 (R+). An alternative and useful expression
for the action of 𝐼+ is found by using the approximate identity 𝜒𝜀 with

𝜒𝜀 (𝑥) :=
1

1 − i𝜀𝑥
∈ 𝐿2

+(R;C) for 𝜀 > 0 .

Let v ∈ V be a fixed vector. By Plancherel’s identity, we have

lim
𝜀→0

〈 𝑓 , v𝜒𝜀〉 = lim
𝜀→0

1
𝜀

∫ ∞

0
〈 𝑓̂ (𝜉), v〉V e−𝜉/𝜀 𝑑𝜉 = 〈 𝑓̂ (0+), v〉V = 〈𝐼+( 𝑓 ), v〉V .

Thus, for any orthonormal basis (v1, . . . , v𝑁 ) in V with 𝑁 = dimV , we obtain

𝐼+( 𝑓 ) = lim
𝜀→0

𝑁∑
𝑘=1

〈 𝑓 , v𝑘 𝜒𝜀〉v𝑘 . (2.2)

For later use, we also record the following formula

Im〈𝑋∗ 𝑓 , 𝑓 〉 = − 1
4𝜋

|𝐼+( 𝑓 ) |2V for 𝑓 ∈ dom(𝑋∗) , (2.3)

which is a simple consequence from Plancherel’s identity and integration by parts.
Finally, we record another elementary fact involving the operators 𝐼+ and 𝑋∗ as follows. Let 𝑓 ∈

𝐿2
+(R,V) be given. As before, we suppose that (v1, . . . , v𝑁 ) is an orthonormal basis ofV with𝑁 = dimV .

Thus we can write

𝑓 (𝑥) =
𝑁∑
𝑘=1
𝑓𝑘 (𝑥)v𝑘

with 𝑓𝑘 (𝑥) = 〈 𝑓 (𝑥), v𝑘〉V ∈ 𝐿2
+(R;C) for 𝑘 = 1, . . . , 𝑁 . Since 𝑓̂ (𝜉) =

∑𝑁
𝑘=1 𝑓̂𝑘 (𝜉)v𝑘 , we find

𝑓̂ (𝜉) =
𝑁∑
𝑘=1

lim
𝜀→0

(∫
R

e−i𝑥 𝜉 𝑓𝑘 (𝑥)
1 + i𝜀𝑥

𝑑𝑥

)
v𝑘 =

𝑁∑
𝑘=1

lim
𝜀→0

〈𝑆(𝜉)∗ 𝑓 , v𝑘 𝜒𝜀〉 v𝑘 .

https://doi.org/10.1017/fms.2025.10136 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10136


16 P. Gérard and E. Lenzmann

By taking the inverse Fourier transform, we obtain, for any 𝑧 ∈ C+, that

𝑓 (𝑧) = 1
2𝜋

∫ ∞

0
ei𝑧 𝜉

(
𝑁∑
𝑘=1

lim
𝜀→0

〈𝑆(𝜉)∗ 𝑓 , v𝑘 𝜒𝜀〉 v𝑘

)
𝑑𝜉

=
1

2𝜋
lim
𝜀→0

𝑁∑
𝑘=1

(∫ ∞

0
〈𝑒i𝑧 𝜉−i𝜉𝑋∗

𝑓 , v𝑘 𝜒𝜀〉 𝑑𝜉
)
v𝑘

=
1

2𝜋i
lim
𝜀→0

𝑁∑
𝑘=1

〈
(𝑋∗ − 𝑧Id)−1 𝑓 , v𝑘 𝜒𝜀

〉
v𝑘 .

In view of (2.2), we therefore deduce the identity

𝑓 (𝑧) = 1
2𝜋i
𝐼+[(𝑋∗ − 𝑧Id)−1 𝑓 ] (2.4)

which is valid for any 𝑓 ∈ 𝐿2
+(R;V) and 𝑧 ∈ C+.

3. Lax pair structure

In this section, we will largely extend the results from [14], where a Lax pair structure for (HWM)
was discovered. In fact, we will consider the generalized matrix-valued equation (HWM𝑑) in this
section.

Let 𝑑 ≥ 2 and 0 ≤ 𝑘 ≤ 𝑑 be fixed integers. We consider solutions U : [0, 𝑇] × R → 𝑀𝑑 (C) to the
initial-value problem for the generalized matrix-valued half-wave maps equation which is given by

𝜕𝑡U = − i
2
[U, |𝐷 |U], U(0) = U0 ∈ 𝐻𝑠 (R; Gr𝑘 (C𝑑)) . (HWMd)

For local well-posedness of (HWMd) with initial data in the inhomogeneous Sobolev-type spaces
𝐻𝑠

• (R; Gr𝑘 (C𝑑)) with 𝑠 > 3
2 , we refer the reader to Section 5 below. Note that in (HWMd) we use

[𝑋,𝑌 ] ≡ 𝑋𝑌 −𝑌𝑋 to denote the commutator of 𝑑 × 𝑑-matrices and the operator |𝐷 | is supposed to act
on each component of the matrix-valued function U.

We introduce some notation as follows. We recall that V either denotes C𝑑 or 𝑀𝑑 (C), equipped with
their natural inner products and norms. For a bounded matrix-valued function F ∈ 𝐿∞(R;𝑀𝑑 (C)), we
let 𝜇F denote the corresponding multiplication operator acting on 𝐿2 (R;V), that is, we set

(𝜇F 𝑓 ) (𝑥) = F(𝑥) 𝑓 (𝑥) .

This distinction between F and its multiplication operator 𝜇F will be needed for better clarity in this
section.2

Given a map U : [0, 𝑇] × R → Gr𝑘 (C𝑑) and some time 𝑡 ∈ [0, 𝑇], we denote the corresponding
(bounded) multiplication operator by

𝜇U(𝑡) : 𝐿2 (R,V) → 𝐿2 (R,V), 𝑓 ↦→ 𝜇U(𝑡) 𝑓 .

Since U(𝑡, 𝑥)∗ = U(𝑡, 𝑥) for a. e. 𝑥 ∈ R, we readily see that 𝜇U(𝑡) = 𝜇∗U(𝑡) is self-adjoint.
We have the following general result about (HWMd) that establishes a general Lax pair structure.

2Further below, we shall omit this distinction between F ∈ 𝐿∞(R; 𝑀𝑑 (C)) and its corresponding multiplication operator 𝜇F
acting on 𝐿2 (R;V) .
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Lemma 3.1 (Lax equation). Let 𝑠 > 3
2 and suppose U ∈ 𝐶 ([0, 𝑇], 𝐻𝑠

• (R; Gr𝑘 (C𝑑)) is a solution of
(HWMd). Then for any operator 𝐿U(𝑡) ∈ {𝜇U(𝑡) ,Π+,Π−}, it holds

𝑑

𝑑𝑡
𝐿U(𝑡) = [𝐵U(𝑡) , 𝐿U(𝑡) ] ,

with the operator

𝐵U = − i
2
(𝜇U ◦ |𝐷 | + |𝐷 | ◦ 𝜇U) +

i
2
𝜇 |𝐷 |U .

Remarks. 1) From the assumed regularity of U = U(𝑡, 𝑥) above, we readily infer that the pseudo-
differential operator 𝐵U is of order one with operator domain dom(𝐵U) = 𝐻1 (R;V), which is found to
be essentially skew-adjoint, that is, there exists a unique skew-adjoint extension with 𝐵∗

U = −𝐵U. See
Appendix D for details.

2) The fact 𝜇U(𝑡) together with orthogonal projections Π± are Lax operators for the same 𝐵U allows
us to restrict the Lax structure to the Hardy space 𝐿2

+(R;V) involving Toeplitz and Hankel operators;
see below for more details.
Proof. We divide the proof into the following cases.

Case: 𝑳 = 𝝁U. Using (HWMd), we directly find

𝜕𝑡𝜇U = − i
2
[𝜇U, 𝜇 |𝐷 |U] =

i
2
[𝜇 |𝐷 |U, 𝜇U] . (3.1)

In view of the expression for 𝐵U, it remains to show that

[𝜇U ◦ |𝐷 | + |𝐷 | ◦ 𝜇U, 𝜇U] = 0 . (3.2)

Indeed, by using that (𝜇U)2 = 𝜇U2 = Id since U2 = 1𝑑 , we readily check that

[𝜇U ◦ |𝐷 | + |𝐷 | ◦ 𝜇U, 𝜇U] = (𝜇U ◦ |𝐷 | + |𝐷 | ◦ 𝜇U) ◦ 𝜇U − 𝜇U ◦ (𝜇U ◦ |𝐷 | + |𝐷 | ◦ 𝜇U)
= 𝜇U ◦ |𝐷 | ◦ 𝜇U + |𝐷 | − |𝐷 | − 𝜇U ◦ |𝐷 | ◦ 𝜇U = 0 .

Case: 𝑳 = 𝚷±. Here it is convenient to show that the Hilbert transform H is a Lax operator for
𝐵U. The claim then readily follows for Π± = 1

2 (Id ∓ iH), since Id commutes with any operator. Since
𝑑
𝑑𝑡 H ≡ 0, we need to show that

[𝐵U,H] = 0.

From the well-known product identity

H( 𝑓 𝑔) = (H 𝑓 )𝑔 + 𝑓 (H𝑔) + H(H 𝑓H𝑔)

and using that H|𝐷 | = −𝜕𝑥 , we readily find that

[H, 𝜇 |𝐷 |U] = −𝜇𝜕𝑥U − H𝜇𝜕𝑥UH.

Hence we get

[H, |𝐷 | ◦ 𝜇U + 𝜇U ◦ |𝐷 |] = H ◦ (|𝐷 | ◦ 𝜇U + 𝜇U ◦ |𝐷 |) − (|𝐷 | ◦ 𝜇U + 𝜇U ◦ |𝐷 |) ◦ H
= −𝜕𝑥 ◦ 𝜇U + H ◦ 𝜇U ◦ H𝜕𝑥 − H𝜕𝑥 ◦ 𝜇U ◦ H + 𝜇U ◦ 𝜕𝑥
= 𝜇U ◦ 𝜕𝑥 − 𝜕𝑥 ◦ 𝜇U + H ◦ 𝜇U ◦ 𝜕𝑥H − H𝜕𝑥 ◦ 𝜇U ◦ H
= [𝜇U, 𝜕𝑥] + H[𝜇U, 𝜕𝑥]H
= −𝜇𝜕𝑥U − H ◦ 𝜇𝜕𝑥U ◦ H.
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Therefore, we find

[H, 𝐵U] =
i
2
[H, |𝐷 | ◦ 𝜇U + 𝜇U ◦ |𝐷 |] − i

2
[H, 𝜇 |𝐷 |U]

=
i
2
(−𝜇𝜕𝑥U − H ◦ 𝜇𝜕𝑥U ◦ H) − i

2
(−𝜇𝜕𝑥U − H ◦ 𝜇𝜕𝑥U ◦ H) = 0 .

This completes the proof of Lemma 3.1. �

From the Leibniz rule for commutators [𝑋,𝑌𝑍] = 𝑌 [𝑋, 𝑍] + [𝑋,𝑌 ]𝑍 and the corresponding rule
for derivatives 𝑑

𝑑𝑡 (𝑋𝑌 ) = �𝑋𝑌 + 𝑋 �𝑌 , we immediately observe from Lemma 3.1 that all finite linear
combinations of products involving the operators {𝜇U,Π+,Π−} are Lax operators too. For instance, in
view of H = −iΠ+ + iΠ−, we recover the following Lax operator of commutator-type with

𝐿U = [H, 𝜇U] = H𝜇U − 𝜇UH ,

which was already found in [14]. By taking traces of powers of 𝐿U, we obtain the conserved quantities

Tr(|𝐿U(𝑡) |𝑝) = const. for 0 < 𝑝 < ∞.

Thus, by adapting Peller’s theorem, we obtain the a priori bounds

Tr(|𝐿U(𝑡) |𝑝) ∼𝑝 ‖u(𝑡)‖ 𝑝�𝐵1/𝑝
𝑝

∼ ‖u(0)‖ 𝑝�𝐵1/𝑝
𝑝

for the homogeneous Besov-type norms ‖ · ‖ �𝐵1/𝑝
𝑝

for solutions of (HWM𝑑).3 However, these a priori
bounds are not known to provide sufficient control to deduce global-in-time existence of solutions.

In order to further exploit the Lax pair structure attached to (HWM𝑑), we make the following
observation involving operator analysis on Hardy spaces. Notice that, for a bounded matrix-valued
function F ∈ 𝐿∞(R;𝑀𝑑 (C)), that the corresponding Toeplitz and Hankel operators with symbol F can
be written as 𝑇F 𝑓 = Π+(𝜇F 𝑓 ) and 𝐻F 𝑓 = Π−(𝜇F 𝑓 ), using 𝜇F for the corresponding multiplication with
symbol F. Now, by using Lemma 3.1 together with 𝑇U = Π+𝜇UΠ+ and [𝐵U,Π±] ≡ 0 (by Lemma 3.1
too), we can easily deduce the following fact.

Corollary 3.1 (Toeplitz Lax Structure). For U = U(𝑡, 𝑥) as in Lemma 3.1, we have the Lax equation

𝑑

𝑑𝑡
𝑇U(𝑡) =

[
𝐵+

U(𝑡) , 𝑇U(𝑡)

]
.

Here 𝐵+
U = Π+𝐵UΠ+ is the compression of 𝐵U onto 𝐿2

+(R;V) which is given by

𝐵+
U = − i

2
(𝑇U ◦ 𝐷 + 𝐷 ◦ 𝑇U) +

i
2
𝑇|𝐷 |U

with 𝐷 = −i𝜕𝑥 .

Remarks. 1) Note that the compressed operator 𝐵+
U is a differential operator as |𝐷 | 𝑓 = 𝐷 𝑓 = −i𝜕𝑥 𝑓

for 𝑓 ∈ (𝐻1 ∩ 𝐿2
+)(R;V).

2) For 𝑡 ∈ [0, 𝑇], let U (𝑡) : 𝐿2
+(R;V) → 𝐿2

+(R;V) denote the unitary operator generated by the
skew-adjoint operator 𝐵+

U(𝑡) so that

𝑑

𝑑𝑡
U (𝑡) = 𝐵+

U(𝑡)U (𝑡) for 𝑡 ∈ [0, 𝑇], U (0) = Id . (3.3)

3For 0 < 𝑝 < 1, we only have that ‖ · ‖ �𝐵1/𝑝
𝑝

is a quasi-semi-norm, since the triangle inequality fails in this case. In our analysis,

we only need the case 𝑝 = 2.
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For existence and uniqueness of this operator-valued initial-value problem, we refer to Appendix D. As
a direct consequence of Corollary 3.1, we find that 𝑇U(𝑡) and 𝑇U(0) are given by unitary conjugation:

𝑇U(𝑡) = U (𝑡)𝑇U(0)U (𝑡)∗ for 𝑡 ∈ [0, 𝑇] .

In particular, we obtain the invariance of the spectrum 𝜎(𝑇U(𝑡) ) = 𝜎(𝑇U(0) ) for 𝑡 ∈ [0, 𝑇].
3) Of course, the Hankel operator 𝐻U(𝑡) also satisfies a corresponding Lax equation with 𝐵+

U(𝑡)
replaced by the “twisted” compressed operator Π−𝐵U(𝑡)Π+. But in what follows we shall only work
with the Lax equation for 𝑇U(𝑡) , which allow us to conclude all the necessary facts for our arguments
developed below.

For later use, we record the following commutator relations, where we remind the reader that we
occasionally use 𝐴.𝐵 to denote matrix product 𝐴𝐵 on 𝑀𝑑 (C) for better readability.

Lemma 3.2. Let U = U∞ + V ∈ 𝑀𝑑 (C) ⊕ (𝐿∞ ∩ 𝐿2) (R;𝑀𝑑 (C)). Then, for every 𝑓 ∈ dom(𝑋∗), we
have 𝑇U 𝑓 ∈ dom(𝑋∗) and

[𝑋∗, 𝑇U] 𝑓 =
i

2𝜋
Π+V.𝐼+( 𝑓 ) .

Moreover, it holds that

[𝑋∗, 𝑇2
U] 𝑓 =

i
2𝜋
𝑇U (Π+V.𝐼+( 𝑓 )) +

i
2𝜋

Π+V.𝐼+(𝑇U 𝑓 ) .

Proof. First, we note that [𝑋∗, 𝑇U∞] = 0, since U∞ ∈ 𝑀𝑑 (C) is a constant matrix. Also, we evidently
have that 𝑇U∞ 𝑓 ∈ dom(𝑋∗) whenever 𝑓 ∈ dom(𝑋∗).

Thus it remains to discuss the commutator [𝑋∗, 𝑇U] = [𝑋∗, 𝑇V] with V ∈ (𝐿∞ ∩ 𝐿2) (R;𝑀𝑑 (C)).
Indeed, by adapting the proof in [17][Lemma 2.3] to the matrix-valued symbol V, we find that

[𝑋∗, 𝑇V] 𝑓 =
i

2𝜋
Π+V.𝐼+( 𝑓 )

noticing that 𝑇V 𝑓 ∈ dom(𝑋∗) for any 𝑓 ∈ dom(𝑋∗). We leave the details to the reader.
The commutator identity for [𝑋∗, 𝑇2

U] simply follows from the first identity and the fact that [𝐴, 𝐵𝐶] =
𝐵[𝐴,𝐶] + [𝐴, 𝐵]𝐶. �

4. Spectral analysis of 𝑇U

As in the previous sections, we let V either stand for the Hilbert spaces C𝑑 or 𝑀𝑑 (C) for some given
integer 𝑑 ≥ 2. The aim of this section is to derive some fundamental spectral properties of the Toeplitz
operator

𝑇U : 𝐿2
+(R;V) → 𝐿2

+(R;V), 𝑓 ↦→ 𝑇U 𝑓 = Π+(U 𝑓 ) .

Throughout the following we will always assume that

U(𝑥) = U∞ + V(𝑥) ∈ 𝐻
1
2
• (R;𝑀𝑑 (C)) ≡ 𝑀𝑑 (C) ⊕ 𝐻

1
2 (R;𝑀𝑑 (C))

together with the pointwise algebraic constraints

U(𝑥)∗ = U(𝑥) and U(𝑥)2 = 1𝑑 for a. e. 𝑥 ∈ R .

As a consequence, we see that the corresponding Toeplitz operator 𝑇U = 𝑇∗
U is self-adjoint and bounded

with operator norm ‖𝑇U‖ ≤ 1. Moreover, we readily check that the following properties hold.
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(i) U∗
∞ = U∞ and U2

∞ = 1𝑑 .
(ii) U,V ∈ 𝐿∞(R;𝑀𝑑 (C)) with ‖U‖𝐿∞ = 1 and ‖V‖𝐿∞ ≤ ‖U∞‖𝐿∞ + ‖U‖𝐿∞ = 2.

(iii) V = V+ + V∗
+ with V+ = Π+V and V∗

+ = Π−V.

Fredholm property and invariant subspaces

Recall that

𝐻U : 𝐿2
+(R;V) → 𝐿2

−(R;V), 𝐻U 𝑓 = Π−(U 𝑓 )

denotes the corresponding (block) Hankel operator with matrix-valued symbol U. For later use, we
remark that the adjoint Hankel operator is given by

𝐻∗
U : 𝐿2

−(R;V) → 𝐿2
+(R;V), 𝐻∗

U 𝑓 = Π+(U 𝑓 ) .

Remark. Here we used the fact that U(𝑥)∗ = U(𝑥) almost everywhere. For general matrix-valued
symbols F ∈ 𝐿∞(R;𝑀𝑑 (C)), the adjoint Hankel operator is 𝐻∗

F 𝑓 = Π+(F∗ 𝑓 ) for 𝑓 ∈ 𝐿2
−(R;V).

We have the following general fact, for matrix-valued symbols U satisfying the assumptions stated
above.

Lemma 4.1 (Key Identity and Fredholmness). We have the identity

𝑇2
U = Id − 𝐾U on 𝐿2

+(R;V) ,

where the self-adjoint operator

𝐾U := 𝐻∗
U𝐻U : 𝐿2

+(R;V) → 𝐿2
+(R;V)

satisfies 0 ≤ 𝐾U ≤ Id and it is trace-class with

Tr(𝐾U) = Tr(𝐻∗
U𝐻U) = const. · ‖U‖2

�𝐻
1
2
.

Moreover, the Toeplitz operator 𝑇U is Fredholm with index 0.

Proof. Let us consider the case V = C𝑑 , where we remark that the proof for V = 𝑀𝑑 (C) is analogous.
Suppose that 𝑓 ∈ 𝐿2

+(R;C𝑑) is given. Using that 𝜇2
U = 𝜇U2 = 𝜇1𝑑 = Id holds on 𝐿2

+(R;C𝑑) and
U∗(𝑥) = U(𝑥) for a. e. 𝑥 ∈ R, we observe that

𝑇U (𝑇U 𝑓 ) = Π+(UΠ+(U 𝑓 )) = Π+(U(Id − Π−)U 𝑓 )
= Π+ 𝑓 − Π+(U(Π−U 𝑓 )) = 𝑓 − 𝐻∗

U𝐻U 𝑓 ,

since we trivially have that Π+ 𝑓 = 𝑓 for 𝑓 ∈ 𝐿2
+(R;C𝑑). This proves the claimed identity.

Consider now the bounded and self-adjoint operator

𝐾U := 𝐻∗
U𝐻U : 𝐿2

+(R;C𝑑) → 𝐿2
+(R;C𝑑) .

Clearly, we have that 𝐾U ≥ 0 is non-negative. Also, we notice that ‖𝐾U‖ ≤ ‖𝐻U‖2 ≤ ‖U‖𝐿∞ = 1, which
shows that 𝐾U ≤ Id holds in the sense of operators. Next, we observe that 𝐾U is trace-class with

Tr(𝐾U) = Tr(𝐻∗
U𝐻U) = ‖𝐻U‖2

𝐻𝑆 = 𝑐 · ‖U‖2
�𝐻

1
2
, (4.1)
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where 𝑐 > 0 is some numerical constant. Here ‖𝐴‖𝐻𝑆 denotes the Hilbert–Schmidt norm of a bounded
operator 𝐴 : 𝐻1 → 𝐻2 with separable Hilbert spaces 𝐻1, 𝐻2, that is, we have

‖𝐴‖2
𝐻𝑆 =

∞∑
𝑛=1

〈𝐴𝑒𝑛, 𝐴𝑒𝑛〉𝐻2 ,

where (𝑒𝑛)𝑛∈N is an arbitrary orthonormal basis of 𝐻1. For the last equation in (4.1), we give an
elementary proof taken from [14]. Using the orthogonal decomposition 𝐿2 (R;C𝑑) = 𝐿2

+(R;C𝑑) ⊕
𝐿2
−(R;C𝑑), we consider the commutator of U viewed as multiplication operator on 𝐿2 (T;C𝑑) with the

Hilbert transform H. This can be written as a 2 × 2-matrix of operators such that

[H,U] =
(

0 −iΠ+UΠ−
iΠ−UΠ+ 0

)
: 𝐿2

+(R;C𝑑) ⊕ 𝐿2
−(R;C𝑑) → 𝐿2

+(R;C𝑑) ⊕ 𝐿2
−(R;C𝑑).

On the other hand, from the singular integral formula for H, we easily see that [H,U] has the integral
kernel ℎU(𝑥, 𝑦) = 1

𝜋
U(𝑥)−U(𝑦)

𝑥−𝑦 ∈ 𝐿2 (R × R;𝑀𝑑 (C)). Hence its Hilbert-Schmidt norm as an operator
acting on 𝐿2 (R;V) can be directly computed as

‖[H,U]‖2
𝐻𝑆 = ‖ℎU‖2

𝐿2 (R×R;𝑀𝑑 (C)) =
1
𝜋2

∫
R

∫
R

|U(𝑥) − U(𝑦) |2𝐹
|𝑥 − 𝑦 |2

𝑑𝑥 𝑑𝑦 ,

where | · |𝐹 denotes the Frobenius norm of matrices in 𝑀𝑑 (C). Next, by using that U = U∗ holds, we
see that ‖ℎU‖2

𝐻𝑆 = ‖Π+UΠ−‖2
𝐻𝑆 + ‖Π−UΠ+‖2

𝐻𝑆 = 2‖𝐻U‖2
𝐻𝑆 . Recalling the formula (2.1), we deduce

that the last equation in (4.1) holds.
It remains to prove that 𝑇U is Fredholm with index 0. Indeed, we readily see that 𝑇U is Fredholm since

𝑇U is invertible modulo compact operators, which directly follows from the identity𝑇U𝑇U = 𝑇2
U = Id−𝐾U.

Since 𝑇U is self-adjoint, its Fredholm index must be 0. �

In view of the general identity established in Lemma 4.1, it is natural to introduce the following
closed subspaces

ℌ0 := ker(𝐾U) and ℌ1 := ran(𝐾U) (4.2)

which yields the orthogonal decomposition

𝐿2
+(R;V) = ℌ0 ⊕ ℌ1 (4.3)

As a direct consequence, we obtain a decomposition of the Toeplitz operator 𝑇U into invariant subspaces
in the spirit of the celebrated Sz.–Nagy–Foias, decomposition for contractions on Hilbert spaces [34]
(also referred to as Langer’s lemma in [24]), which in turn is a generalization of the well-known Wold
decomposition for isometries on Hilbert spaces. Note that 𝑇U is a contraction, because its operator norm
satisfies ‖𝑇U‖ ≤ ‖U‖𝐿∞ = 1, where in fact we have equality in view of the identity in Lemma 4.1 above.

Proposition 4.1. The subspaces ℌ0 and ℌ1 are invariant under 𝑇U. Moreover, the restriction 𝑇U |ℌ0 is
unitary, whereas the restriction 𝑇U |ℌ1 is completely nonunitary (c.n.u.), that is, there is no nontrivial
invariant subspace in ℌ1 on which 𝑇U is unitary.

Proof. Since the operator 𝐾U : 𝐿2
+(R;V) → 𝐿2

+(R;V) with 0 ≤ 𝐾U ≤ 1 is compact and self-adjoint,
we can write

𝐾U =
𝑁∑
𝑗=1
𝜆 𝑗 〈·, 𝜑 𝑗〉𝜑 𝑗
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with 𝑁 = rank(𝐾U) ∈ N ∪ {∞}, 𝜆 𝑗 ∈ (0, 1] for 𝑗 = 1, . . . , 𝑁 , and the corresponding eigenvectors
(𝜑 𝑗 )𝑁𝑗=1 form an orthonormal basis of ℌ1 = ran(𝐾U). By the identity 𝑇2

U = Id−𝐾U and from elementary
spectral calculus for the self-adjoint restrictions 𝑇U |𝐸𝜆 𝑗

on the finite-dimensional subspaces 𝐸𝜆 𝑗 =
ker(𝐾U − 𝜆 𝑗 Id) ⊂ ℌ1, we deduce that

𝑇U =
𝑁∑
𝑗=1
𝜀 𝑗

√
1 − 𝜆 𝑗 〈·, 𝜑 𝑗〉𝜑 𝑗 on ℌ1 (4.4)

with some 𝜀 𝑗 ∈ {±1} for 𝑗 = 1, . . . , 𝑁 . Evidently, we have that ℌ1 is invariant under 𝑇U and we see that
𝑇U |ℌ1 is c. n. u. Because otherwise𝑇U |ℌ1 would have an eigenvalue 𝜇 ∈ {±1} on some finite-dimensional
subspace 𝐸𝜆 𝑗 , contradicting the above explicit formula since 𝜆 𝑗 > 0 holds.

Since ℌ0 = ker(𝐾U) = ℌ⊥
1 and by self-adjointness of 𝑇U, we see that 𝑇U (ℌ0) ⊂ ℌ0. Furthermore

from 𝑇2
U = Id − 𝐾U, we readily find 𝑇2

U |ℌ0 = Id|ℌ0 , which implies that the self-adjoint operator 𝑇U |ℌ0 is
also unitary. �

Thanks to the formula 𝑇2
U = Id − 𝐾U and the decomposition obtained in Proposition 4.1, we deduce

that the spectrum of 𝑇U decomposes as

𝜎(𝑇U) = 𝜎e(𝑇U) � 𝜎d(𝑇U) ,

where the essential and discrete spectra of 𝑇U are given by

𝜎e(𝑇U) = 𝜎(𝑇U |ℌ0 ) ⊂ {±1}

𝜎d(𝑇U) = 𝜎d(𝑇U |ℌ1) = {𝜀 𝑗
√

1 − 𝜆 𝑗 | 𝑗 = 1, . . . , rank(𝐾U)} ,

with the sequences (𝜀 𝑗 ) ⊂ {±1} and (𝜆 𝑗 ) ⊂ (0, 1] taken from (4.4) above.
Remark. As an aside, we remark that the property of the Toeplitz operator 𝑇U having nonempty
discrete spectrum is due to the fact its symbol U(𝑥) is matrix-valued. By contrast, a classical result
due to Widom [36] states that any Toeplitz operator 𝑇𝜑 : 𝐿2

+(R;C) → 𝐿2
+(R;C) with a scalar-valued

symbol 𝜑 ∈ 𝐿∞(R;C) has a spectrum 𝜎(𝑇𝜑) which must be a connected subset in C, which shows that
𝜎d(𝑇𝜑) = ∅ in this case.

As a next step, we find some explicit elements in the invariant subspace ℌ1. The use of this fact
will become clear later on when proving our global well-posedness result for (HWM𝑑). Recall our
assumption that

U = U∞ + V ∈ 𝑀𝑑 (C) ⊕ 𝐻
1
2 (R;𝑀𝑑 (C)) . (4.5)

For later use, we make the following observation. For better readability, we use 𝐵.𝐴 to denote the
product 𝐵𝐴 of two matrices 𝐵, 𝐴 ∈ 𝑀𝑑 (C).
Proposition 4.2. Let V = 𝑀𝑑 (C). For any constant matrix 𝐴 ∈ 𝑀𝑑 (C), it holds that Π+V.𝐴 ∈ ℌ1.
Proof. Since 𝐾U = 𝐻∗

U𝐻U, we find that ker(𝐾U) = ker(𝐻U), which yields that ℌ1 = (ℌ0)⊥ = ran(𝐻∗
U).

Hence we have to show that Π+V.𝐴 ∈ ran(𝐻∗
U) holds for any constant matrix 𝐴 ∈ 𝑀𝑑 (C). Indeed, by

recalling 𝜒𝜀 = 1
1−i𝜀𝑥 ∈ 𝐿2

+(R;C) for 𝜀 > 0 and hence 𝜒𝜀 ∈ 𝐿2
−(R;C), we notice

lim
𝜀→0

𝐻∗
U(𝜒𝜀𝐴) = lim

𝜀→0
Π+(U.𝜒𝜀𝐴)

= lim
𝜀→0

Π+((U∞ + Π+V + Π−V).𝜒𝜀𝐴)

= lim
𝜀→0

Π+((Π+V)𝜒𝜀).𝐴 = Π+V.𝐴,
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because of lim𝜀→0 Π+( 𝑓 𝜒𝜀) = 𝑓 in 𝐿2
+(R;V) by dominated convergence. This shows that Π+V.𝐴

belongs to ℌ1 = ran(𝐻∗
U). �

Next, by using the well-known fact that kernels of Hankel operators are invariant under the Lax–
Beurling semigroup {𝑆(𝜂)}𝜂≥0, we obtain the following result.

Lemma 4.2. It holds that 𝑆(𝜂)ℌ0 ⊂ ℌ0 and 𝑆(𝜂)∗ℌ1 ⊂ ℌ1 for all 𝜂 ≥ 0.

Proof. Let 𝑓 ∈ ℌ0 = ker(𝐾U) = ker(𝐻U). For any 𝜂 ≥ 0, we immediately observe that

𝐻U(𝑆(𝜂) 𝑓 ) = Π−(U𝑆(𝜂) 𝑓 ) = Π−(ei𝜂𝑥U 𝑓 )
= Π−(ei𝜂𝑥Π−(U 𝑓 )) = Π−(ei𝜂𝑥𝐻U(U 𝑓 )) = 0 .

Thus we find 𝑆(𝜂) 𝑓 ∈ ℌ0 for any 𝑓 ∈ ℌ0. This proves that 𝑆(𝜂)ℌ0 ⊂ ℌ0.
Since ℌ0 ⊥ ℌ1, we directly see that 𝑆(𝜂)∗ 𝑓 ∈ ℌ1 for any 𝑓 ∈ ℌ1 and 𝜂 ≥ 0 with the adjoint

Lax–Beurling semigroup {𝑆(𝜂)∗}𝜂≥0 acting on 𝐿2
+(R;V). �

Remark. As a direct consequence of the well-known Lax–Beurling theorem (see the version in [25] for
a direct application to our setting) about invariant subspaces of 𝑆(𝜂), we can deduce the following fact:
If ℌ0 = ker(𝐾U) ≠ {0} is nontrivial, there exist a subspace V ′ ⊆ V and a function

Θ ∈ 𝐿∞+ (R; End(V ′;V)) with Θ(𝑥)∗Θ(𝑥) = IdV′ for a. e. 𝑥 ∈ R

such that

ℌ0 = Θ𝐿2
+(R;V ′) and ℌ1 = (Θ𝐿2

+(R;V ′))⊥ .

The matrix-valued function Θ is called a (left) inner function and the subspace ℌ1 is thus the model
space generated by Θ. However, we will not exploit this fact in the present paper.

Spectral properties for rational data

Recall that ℌ1 = ran(𝐾U). We have the following characterization when the subspace ℌ1 is finite-
dimensional, corresponding to the fact that the compact operator 𝐾U : 𝐿2

+(R;V) → 𝐿2
+(R;V) has finite

rank.

Lemma 4.3 (Kronecker-type theorem). Let U ∈ 𝐿∞(R;𝑀𝑑 (C)) be of the form (4.5) with U(𝑥) = U(𝑥)∗
for a.e. 𝑥 ∈ R. Then 𝐾U : 𝐿2

+(R;V) → 𝐿2
+(R;V) has finite rank (i.e., we have dimℌ1 < ∞) if and only

if U is a rational function.

Remark 4.1. Since 𝐾U = 𝐻∗
U𝐻U = Id − 𝑇2

U is a Lax operator for (HWM𝑑), we see that rationality is
preserved along the flow. For (HWM) with target S2 � Gr1 (C2), this feature was already observed in
[14].

Proof. Since dim ran(𝐻∗
U𝐻U) = dim ran(𝐻U), it suffices to consider the Hankel operator 𝐻U :

𝐿2
+(R;V) → 𝐿2

−(R;V). Furthermore, since U∞ ∈ 𝑀𝑑 (C) is constant, we see that 𝐻U∞ = 0
and hence 𝐻U = 𝐻U∞+V = 𝐻V. Thus it remains to discuss 𝐻V with the matrix-valued symbol
V ∈ (𝐻 1

2 ∩ 𝐿∞)(R;𝑀𝑑 (C)) for the rest of the proof.
We first recall the following general Kronecker-type theorem valid for Hankel operators acting on the

Hardy space 𝐿2
+(T;H) on the torus T � 𝜕D, where H is a given separable complex Hilbert space (not

necessarily finite-dimensional). Correspondingly, we use P+ and P− = Id − P+ to denote the Cauchy–
Szegő projections on 𝐿2 (T; E); see [32] for a general background. As usual, we use B(H,K) to denote
the Banach space of bounded linear operators from H to another complex Hilbert space K. From
[32][Chapter 2, Theorem 5.3] we directly deduce the following result.
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Theorem 4.1 (Kronecker’s theorem on 𝐿2
+(T;H)). Let H,K be separable complex Hilbert spaces

and assume Φ ∈ 𝐿∞(T;B(H,K)). Define the Hankel operator 𝐻Φ : 𝐿2
+(T;H) → 𝐿2

−(T;K) by
𝐻Φ 𝑓 = P−(Φ 𝑓 ). Then rank𝐻Φ < ∞ if and only if P−Φ : T→ B(H,K) is a rational map of the form

P−Φ =
∑
𝜆∈Λ

𝑘 (𝜆)∑
𝑛=1

𝑇𝜆,𝑛
(𝑧 − 𝜆)𝑛 ,

where Λ is a finite subset inD and the 𝑘 (𝜆) are positive integers and𝑇𝑛,𝜆 ∈ B(H,K) \{0} are finite-rank
operators, 𝜆 ∈ Λ, and 1 ≤ 𝑛 ≤ 𝑘 (𝜆).

Let us now take the finite-dimensional spaces H = K = V in the previous result with either V = C𝑑

or V = 𝑀𝑑 (C). For any Φ ∈ 𝐿∞(T;𝑀𝑑 (C)) given, we deduce the equivalence

𝐻Φ = P−ΦP+ has finite rank if and only if P−Φ ∈ 𝐿∞(T;𝑀𝑑 (C)) is rational.

Now using the standard conformal map 𝜔 : D→ C+ with 𝜔(𝜁) = i 1+𝜁
1−𝜁 , let us define the map

(U 𝑓 ) (𝑥) = 1
√
𝜋

( 𝑓 ◦ 𝜔−1) (𝑥)
𝑥 + i

=
1
√
𝜋

1
𝑥 + i

𝑓

(
𝑥 − i
𝑥 + i

)
for 𝑓 ∈ 𝐿2 (T;V),

which is known to be unitary operator from 𝐿2 (T;V) to 𝐿2 (R;V) with the property that U (𝐿2
+(T;V)) =

𝐿2
+(R;V); see [32][Appendix 2.1]. We easily verify that

𝐻Φ = U∗𝐻VU with Φ = V ◦ 𝜔,

see, for example, [32][Chapter 1, Lemma 8.3]. Since compositions with 𝜔 and 𝜔−1 preserve rationality
and in view of the identity Π−V = (P−(V ◦ 𝜔)) ◦ 𝜔−1, we deduce

𝐻V has finite rank if and only if Π−V : R→ 𝑀𝑑 (C) is rational.

Finally, by recalling that Π+V = (Π−V)∗, we conclude that V = (Π−V)∗ + Π−V is a rational function if
and only if 𝐻V has finite rank. �

We now show that, for rational matrix-valued symbols U, the subspace ℌ1 is also an invariant
subspace for the unbounded operator 𝑋∗, which is the generator of the adjoint Lax–Beurling semigroup
{𝑆(𝜂)∗}𝜂≥0 = {e−i𝜂𝑋∗ }𝜂≥0.

Proposition 4.3. If U ∈ R𝑎𝑡 (R; Gr𝑘 (C𝑑)), then ℌ1 ⊂ dom(𝑋∗) and 𝑋∗(ℌ1) ⊂ ℌ1.

Proof. By Lemma 4.2, we recall that the adjoint Lax–Beurling semigroup 𝑆(𝜂)∗ acts invariantly on
ℌ1. Moreover, by Lemma 4.3, we know that dimℌ1 < ∞. By standard arguments from semigroup
theory, it follows that the generator 𝑋∗ restricted to the finite-dimensional invariant subspace ℌ1 is
bounded and thus its domain dom(𝑋∗ |ℌ1) is thus all of ℌ1. In particular, we have ℌ1 ⊂ dom(𝑋∗) with
𝑋∗(ℌ1) ⊂ ℌ1. �

5. Local well-posedness and explicit flow formula

In this section, we derive the explicit flow formula valid for (HWM𝑑) for sufficiently smooth solutions.
In fact, this formula will play an essential rôle for obtaining the main results of this paper. Let us also
remark that similar explicit flow formulae have been recently derived for other completely integrable
equations which feature a Lax pair structure on Hardy spaces such as the cubic Szegő equation [13], the
Benjamin–Ono equation [10] and the Calogero–Moser derivative NLS [15, 2, 21].
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Local well-posedness for sufficiently regular data

We start with a result on local well-posedness for the matrix-valued (HWM𝑑) for sufficiently regular
initial data of the form

U0 (𝑥) = U∞ + V0(𝑥) ∈ 𝑀𝑑 (C) ⊕ 𝐻𝑠 (R;𝑀𝑑 (C)) , (5.1)

satisfying the constraints

U0(𝑥) = U0 (𝑥)∗, U0 (𝑥)2 = 1𝑑 for a. e. 𝑥 ∈ R . (5.2)

In what follows, we will always assume that

𝑠 >
3
2
.

In particular, the initial datum U0 : R→ 𝑀𝑑 (C) is of class𝐶1 by Sobolev embeddings. In view of (5.2),
we easily conclude that Tr(U0 (𝑥)) can only attain integer values, whence it follows Tr(U0 (𝑥)) = const.
on R by continuity.4 As a consequence, we deduce that there exists some integer 0 ≤ 𝑘 ≤ 𝑑 such that

U0 (𝑥) ∈ Gr𝑘 (C𝑑) for 𝑥 ∈ R.

We have the following result.
Lemma 5.1. Let 𝑠 > 3

2 , 𝑑 ≥ 2, and assume U0 : R → 𝑀𝑑 (C) satisfies (5.1) and (5.2). Then, for any
𝑅 > 0, there exists some 𝑇 = 𝑇 (𝑅) > 0 such that for every U0 = U∞ + V0 as above with ‖V0‖𝐻 𝑠 < 𝑅,
there exists a unique solution of (HWMd) of the form

U(𝑡) = U∞ + V(𝑡) ∈ 𝑀𝑑 (C) ⊕ 𝐶 ([0, 𝑇];𝐻𝑠 (R;𝑀𝑑 (C)))

and we have U(𝑡, 𝑥) ∈ Gr𝑘 (C𝑑) for all 𝑡 ∈ [0, 𝑇] and 𝑥 ∈ R with some integer 0 ≤ 𝑘 ≤ 𝑑.
Furthermore, the 𝐻𝜎-regularity of V0 with 𝜎 > 𝑠 is propagated on the whole maximal time-interval

of existence of U(𝑡), and the flow map V0 ↦→ V(𝑡) is continuous in the 𝐻𝜎-topology.
Remark. For proving the above local well-posedness result, the Hermitian constraint in (5.2) is the
relevant one. However, the second constraint in (5.2) will be essential to obtain a global well-posedness
result below based on the Lax pair structure, which involves the use of both pointwise constraints stated
in (5.2).
Proof. We postpone the detailed proof of Lemma 5.1 to Appendix D. �

Explicit flow formula

Inspired by the very recent work [10] on the Benjamin–Ono equation, we next derive an explicit flow
formula for solutions of (HWMd) based on its Lax pair structure acting on the Hardy space. Note that,
in this formula, we choose the vector space V = 𝑀𝑑 (C) for the Hardy space 𝐿2

+(R;V).
Lemma 5.2 (Explicit Flow Formula). Let 𝑠 > 3

2 , 𝑑 ≥ 2, and U(𝑡) = U∞ + V(𝑡) ∈ 𝑀𝑑 (C) ⊕
𝐶 ([0, 𝑇];𝐻𝑠 (R, 𝑀𝑑 (C)) be as in Lemma 5.1 above. Then it holds that

Π+V(𝑡, 𝑧) = 1
2𝜋i
𝐼+

[
(𝑋∗ + 𝑡𝑇U0 − 𝑧Id)−1Π+V0

]
for 𝑧 ∈ C+ and 𝑡 ∈ [0, 𝑇] .

Here 𝑇U0 : 𝐿2
+(R;V) → 𝐿2

+(R;V) denotes the Toeplitz operator 𝑇U0 𝑓 = Π+(U0 𝑓 ) with V = 𝑀𝑑 (C).

4The fact that Tr(U0 (𝑥)) = const. almost everywhere is even true for 𝑠 = 1/2, since any integer-valued map Tr(U0) ∈
�𝐻

1
2 (R;R) necessarily satisfies Tr(U0 ( (𝑥)) = const. almost everywhere; see, for example, [5].
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Before we turn to the proof of Lemma 5.2, we need some commutator identities as follows. Recall that

𝐵U = − i
2
(𝜇U |𝐷 | + |𝐷 |𝜇U) +

i
2
𝜇 |𝐷 |U .

In fact, since we can restrict to the Hardy space 𝐿2
+(R;V), it will be convenient to work with the

compression of 𝐵U to the Hardy space 𝐿2
+(R;V) denoted by

𝐵+
U := Π+𝐵UΠ+ = − i

2
(𝑇U𝐷 + 𝐷𝑇U) +

i
2
𝑇|𝐷 |U with 𝐷 = −i𝜕𝑥 .

Note that 𝐷 ≥ 0 on 𝐿2
+(R;V) with its operator domain dom(𝐷) = 𝐻1

+(R;V). The Lax equation for
𝑇U(𝑡) : 𝐿2

+(R,V) → 𝐿2
+(R,V) can thus be written as

𝑑

𝑑𝑡
𝑇U(𝑡) = [𝐵+

U(𝑡) , 𝑇U(𝑡) ] .

We have the following key commutator identity.

Proposition 5.1. For any 𝑓 ∈ dom(𝑋∗) ∩ 𝐻1
+(R;V), it holds that

[𝑋∗, 𝐵+
U] 𝑓 = 𝑇U 𝑓 .

Proof. Using the fact that [𝑋∗, 𝐷] = i Id and by Lemma 3.2, we calculate

[𝑋∗, 𝑇U𝐷 + 𝐷𝑇U] 𝑓 = [𝑋∗, 𝑇U]𝐷 𝑓 + 𝑇U [𝑋∗, 𝐷] 𝑓 + [𝑋∗, 𝐷]𝑇U 𝑓 + 𝐷 [𝑋∗, 𝑇U] 𝑓

=
i

2𝜋
Π+V.𝐼+(𝐷 𝑓 ) + i𝑇U 𝑓 + i𝑇U 𝑓 +

i
2𝜋
𝐷 (Π+V.𝐼+( 𝑓 ))

= 2i𝑇U 𝑓 +
i

2𝜋
Π+(𝐷V).𝐼+( 𝑓 ) ,

where also used that 𝐼+(𝐷 𝑓 ) = 0 holds. By applying Lemma 3.2 once again,

[𝑋∗, 𝑇|𝐷 |U] 𝑓 =
i

2𝜋
Π+(|𝐷 |V).𝐼+( 𝑓 ) =

i
2𝜋

Π+(𝐷V).𝐼+( 𝑓 ) .

In view of these identities, we easily conclude the claimed identity. �

We are now ready to turn to the proof of Lemma 5.2.

Proof of Lemma 5.2 (Explicit Flow Formula). We divide the proof into the following steps. We remind
the reader that we take V = 𝑀𝑑 (C) in the following.

Step 1. Recalling identity (2.4), we write

Π+V(𝑡, 𝑧) = 1
2𝜋i
𝐼+((𝑋∗ − 𝑧Id)−1Π+V(𝑡)) for 𝑧 ∈ C+ and 𝑡 ∈ [0, 𝑇] .

Let 𝐹 ∈ 𝑀𝑑 (C) and 𝑧 ∈ C+ be fixed from now on. We find

〈Π+V(𝑡, 𝑧), 𝐹〉V =
1

2𝜋i
〈𝐼+((𝑋∗ − 𝑧Id)−1Π+V(𝑡), 𝐹〉V

=
1

2𝜋i
lim
𝜀→0

〈
(𝑋∗ − 𝑧Id)−1Π+V(𝑡), 𝐹𝜒𝜀

〉
=

1
2𝜋i

lim
𝜀→0

〈
U (𝑡)∗(𝑋∗ − 𝑧Id)−1Π+V(𝑡),U (𝑡)∗(𝐹𝜒𝜀)

〉
,
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where we also use that U (𝑡)∗ : 𝐿2
+(R;V) → 𝐿2

+(R;V) is a unitary map for any 𝑡 ∈ [0, 𝑇], which is given
by the solution of the initial-value problem

𝑑

𝑑𝑡
U (𝑡) = 𝐵+

U(𝑡)U (𝑡) for 𝑡 ∈ [0, 𝑇], U (0) = Id .

See Appendix D for details. Using the identity

U (𝑡)∗(𝑋∗ − 𝑧Id)−1 = (U (𝑡)∗𝑋∗U (𝑡) − 𝑧Id)−1U (𝑡)∗ ,

we conclude

〈Π+V(𝑡, 𝑧), 𝐹〉V =
1

2𝜋i
lim
𝜀→0

〈
(U (𝑡)∗𝑋∗U (𝑡) − 𝑧Id)−1U (𝑡)∗(Π+V(𝑡)),U (𝑡)∗(𝐹𝜒𝜀)

〉
for any 𝑧 ∈ C+, 𝑡 ∈ [0, 𝑇] and 𝐹 ∈ 𝑀𝑑 (C).

Step 2. We will now discuss the individual terms which appear in the expression derived in Step 1
above. First, we notice that

𝑑

𝑑𝑡
U (𝑡)∗𝑋∗U (𝑡) = U (𝑡)∗ [𝑋∗, 𝐵+

U(𝑡) ]U (𝑡) = U (𝑡)∗𝑇U(𝑡)U (𝑡) = 𝑇U0 ,

where we used Proposition 5.1 together with the fact that 𝑇U(𝑡) = U (𝑡)𝑇U0U (𝑡)∗ holds thanks to the Lax
evolution. By integration on the interval [0, 𝑡], we get

U (𝑡)∗𝑋∗U (𝑡) = 𝑋∗ + 𝑡𝑇U0 . (5.3)

Next, we observe
𝑑

𝑑𝑡
(U (𝑡)∗(𝐹𝜒𝜀)) = −U (𝑡)∗(𝐵+

U(𝑡) (𝐹𝜒𝜀)) = 𝑜(1) ,

where 𝑜(1) → 0 in 𝐿2 as 𝜀 → 0 uniformly with respect to 𝑡 ∈ [0, 𝑇]. To see this, we remark

𝐵+
U(𝐹𝜒𝜀) =

i
2
𝑇U (𝐹𝐷𝜒𝜀) +

i
2
𝐷 (𝑇U𝐹𝜒𝜀) −

i
2
𝑇|𝐷 |U(𝐹𝜒𝜀)

→ i
2
Π+(𝐷U).𝐹 − i

2
Π+(𝐷U).𝐹 = 0 as 𝜀 → 0

in 𝐿2 (R;V) uniformly in 𝑡 ∈ [0, 𝑇]. Therefore, by integrating in t, we conclude

U (𝑡)∗(𝐹𝜒𝜀) = 𝐹𝜒𝜀 + 𝑜(1) (5.4)

with 𝑜(1) → 0 in 𝐿2
+(R,V) as 𝜀 → 0 uniformly in 𝑡 ∈ [0, 𝑇].

It remains to discuss the last term from Step 1. Here we claim that

U (𝑡)∗(Π+V(𝑡)) = Π+V0 . (5.5)

SinceU (0)∗ = Id, we need to show that the time derivative of the left-hand side vanishes. Indeed, we note
𝑑

𝑑𝑡
(U (𝑡)∗(Π+V(𝑡))) = U (𝑡)∗

(
−𝐵+

U(𝑡)Π+V(𝑡) + 𝜕𝑡Π+V(𝑡)
)
.

Now, by the Lax equation 𝑑
𝑑𝑡𝑇U(𝑡) = [𝐵+

U(𝑡) , 𝑇U(𝑡) ] and if we let 𝐸 = 1𝑑 denote the identity matrix in
𝑀𝑑 (C), we find

𝑑

𝑑𝑡
𝑇U(𝑡) (𝐸𝜒𝜀) = 𝐵+

U(𝑡)𝑇U(𝑡) (𝐸𝜒𝜀) − 𝑇U(𝑡)𝐵
+
U(𝑡) (𝐸𝜒𝜀)
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For the first term on right-hand side, we observe

𝐵+
U(𝑡)𝑇U(𝑡) (𝐸𝜒𝜀) → 𝐵+

U(𝑡) (Π+V(𝑡)) in 𝐿2
+ as 𝜀 → 0

uniformly in 𝑡 ∈ [0, 𝑇]. Furthermore, in the same way as in the discussion showing that 𝐵+
U(𝑡) (𝐹𝜒𝜀) → 0

as 𝜀 → 0 for any constant matrix 𝐹 ∈ 𝑀𝑑 (C), we conclude

𝑇U(𝑡)𝐵
+
U(𝑡) (𝐸𝜒𝜀) → 0 in 𝐿2

+ as 𝜀 → 0

uniformly in t. On the other hand, we have

𝑑

𝑑𝑡
𝑇U (𝑡)𝐸𝜒𝜀 → 𝜕𝑡Π+V in 𝐿2

+ as 𝜀 → 0

uniformly in 𝑡 ∈ [0, 𝑇]. In summary, we infer that 𝜕𝑡Π+V(𝑡) = 𝐵U(𝑡)Π+V(𝑡) holds, whence it follows

𝑑

𝑑𝑡
(U (𝑡)∗(Π+V(𝑡))) = U (𝑡)∗(−𝐵+

U(𝑡)Π+V(𝑡) + 𝜕𝑡Π+V(𝑡)) = 0 .

This completes the proof of (5.5).
Step 3. Combining the results from Step 1 and Step 2 above, we conclude, for any 𝐹 ∈ 𝑀𝑑 (C) and

𝑧 ∈ C+, that

〈Π+V(𝑡, 𝑧), 𝐹〉V =
1

2𝜋i
lim
𝜀→0

〈
(U (𝑡)∗𝑋∗U (𝑡) − 𝑧Id)−1U (𝑡)∗(Π+V(𝑡)),U (𝑡)∗(𝐹𝜒𝜀)

〉
=

1
2𝜋i

lim
𝜀→0

〈
(𝑋∗ + 𝑡𝑇U0 − 𝑧Id)−1Π+V0, 𝐹𝜒𝜀

〉
=

1
2𝜋i

〈
𝐼+[(𝑋∗ + 𝑡𝑇U0 − 𝑧Id)−1Π+V0)], 𝐹

〉
V .

Since 𝐹 ∈ 𝑀𝑑 (C) is arbitrary, we deduce the claimed formula for Π+V(𝑡, 𝑧) ∈ V .
The proof of Lemma 5.2 is now complete. �

6. Global well-posedness for rational data

We are now ready to prove global well-posedness for (HWM𝑑) with rational initial data

U0 ∈ R𝑎𝑡 (R; Gr𝑘 (C𝑑))

for any 𝑑 ≥ 2 and 0 ≤ 𝑘 ≤ 𝑑. The main argument rests on exploiting the explicit flow formula derived
above. First, we start with the following general result, which in fact does not require rational initial data.

Lemma 6.1. Let 𝑑 ≥ 2 be an integer. Suppose W ∈ 𝐿∞(R;𝑀𝑑 (C)) has the following properties

W(𝑥) = W(𝑥)∗ a. e., W(𝑥) = W∞ + V0 (𝑥) ∈ 𝑀𝑑 (C) ⊕ 𝐿2 (R;𝑀𝑑 (C)) .

Then 𝑋∗ + 𝑇W acting on 𝐿2
+(R;𝑀𝑑 (C)) has no real eigenvalues, that is, its point spectrum satisfies

𝜎p(𝑋∗ + 𝑇W) ∩ R = ∅.

Proof. Let 𝑥 ∈ R. Since 𝑋∗ is closed, we find that E := ker(𝑋∗ + 𝑇W − 𝑥Id) is a closed subspace
in 𝐿2

+(R;𝑀𝑑 (C)); see also Section 2 for general properties of 𝑋∗ as well as ??. Moreover, from the
eigenvalue equation

(𝑋∗ + 𝑇W − 𝑥) 𝑓 = 0
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we see that E ⊂ dom(𝑋∗). By taking the imaginary part of the inner product with f and using that
𝑇∗

W = 𝑇W is self-adjoint and that x is a real number, we conclude that Im〈𝑋∗ 𝑓 , 𝑓 〉 = 0. Recalling the
identity (2.3), we deduce

𝐼+( 𝑓 ) = 0 for 𝑓 ∈ E .

In view of Lemma 3.2, we also notice

[𝑋∗, 𝑇W] 𝑓 = i
2𝜋

Π+V0.𝐼+( 𝑓 ) = 0 for 𝑓 ∈ E ,

which shows that 𝑋∗ 𝑓 ∈ E for all 𝑓 ∈ E . Thus E is an invariant subspace for 𝑋∗. For the semigroup
{𝑆(𝜂)∗}𝜂≥0 generated by 𝑋∗, we thus deduce

𝑆(𝜂)∗ 𝑓 = 𝑒−i𝜂𝑋∗
𝑓 ∈ E for all 𝑓 ∈ E and all 𝜂 ≥ 0 .

But this implies that, for every 𝑓 ∈ E ,

0 = 𝐼+(𝑆(𝜂)∗ 𝑓 ) = 𝑓̂ (𝜂) for all 𝜂 ≥ 0.

Hence we see that 𝑓 = 0 for all 𝑓 ∈ E . Therefore, the subspace

E = ker(𝑋∗ + 𝑇W − 𝑥Id) = {0}

is trivial for any 𝑥 ∈ R. �

Proof of Theorem 1.5

We are now ready to prove global well-posedness for (HWM𝑑) for rational initial data

U0 ∈ R𝑎𝑡 (R; Gr𝑘 (C𝑑))

where 𝑑 ≥ 2 and 0 ≤ 𝑘 ≤ 𝑑 are given integers. We note that

U0 = U∞ + V0 ∈ Gr𝑘 (C𝑑) ⊕ 𝐻∞(R;𝑀𝑑 (C))

holds. Hence, by the local well-posedness result from Lemma 5.1, there exists a unique maximal solution

U(𝑡) = U∞ + V(𝑡) ∈ 𝐶 ([0, 𝑇max); Gr𝑘 (C𝑑) ⊕ 𝐻∞(R;𝑀𝑑 (C))

of (HWM𝑑) with initial datum U(0) = U0 and maximal (forward) time of existence 𝑇max ∈ (0, +∞]
such that the following implication holds:

𝑇max < +∞ ⇒ lim
𝑡↗𝑇max

‖V(𝑡)‖𝐻 2 = +∞ . (6.1)

Thus to show that 𝑇max = +∞ holds true we argue by contradiction and we suppose that 𝑇max < +∞.
We now claim that

sup
𝑡 ∈[0,𝑇max)

‖V(𝑡)‖𝐻 2 < +∞ , (6.2)

which implies that 𝑇max = +∞ must hold by (6.1). To prove (6.2), we first note that V(𝑡, 𝑥) = V(𝑡, 𝑥)∗
for 𝑡 ∈ [0, 𝑇max) and 𝑥 ∈ R. Therefore V(𝑡) = Π+V(𝑡) + (Π+V(𝑡))∗ and hence it suffices to show that

sup
𝑡 ∈[0,𝑇max)

‖Π+V(𝑡)‖𝐻 2 < +∞ . (6.3)
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In view of the explicit flow formula in Lemma 5.2, we define

EF[U0] (𝑡, 𝑧) :=
1

2𝜋i
𝐼+

[
(𝑋∗ + 𝑡𝑇U0 − 𝑧Id)−1Π+V0

]
for 𝑡 ≥ 0 and 𝑧 ∈ C+ , (6.4)

where 𝑇U0 : 𝐿2
+(R;𝑀𝑑 (C)) → 𝐿2

+(R;𝑀𝑑 (C)). Let us check that EF[U0] is indeed well-defined for all
𝑡 ≥ 0 and 𝑧 ∈ C+. By Lemma 4.3 (Kronecker-type theorem), the subspace ℌ1 = ran(𝐾U0) ⊂ dom(𝑋∗)
is finite-dimensional. By Propositions 4.2 and 4.3, we deduce Π+V0 ∈ ℌ1 and that

𝑀 (𝑡) := 𝑋∗ + 𝑡𝑇U0 : ℌ1 → ℌ1

is an endomorphism on the finite-dimensional subspace ℌ1. Moreover, by Lemma 6.1 with W = 𝑡U0,
we see that the eigenvalues of 𝑀 (𝑡) cannot be real, that is, 𝜎(𝑀 (𝑡)) ∩ R = ∅ holds, which implies that

𝜎(𝑀 (𝑡)) ⊂ C− for all 𝑡 ≥ 0 .

Hence the resolvent (𝑋∗ + 𝑡𝑇U0 − 𝑧Id)−1 : ℌ1 → ℌ1 exists for all 𝑡 ≥ 0 and 𝑧 ∈ C+. Moreover, by
continuity of eigenvalues of 𝑀 (𝑡) with respect to t, we deduce that, for any compact interval 𝐼 ⊂ [0,∞),
it holds that

‖(𝑋∗ + 𝑡𝑇U0 − 𝑧Id)−1‖ℌ1→ℌ1 ≤ 𝐶 (𝐼,U0) for all 𝑡 ∈ 𝐼 and 𝑧 ∈ C+ ,

with some finite constant 𝐶 (𝐼,U0) > 0. Since 𝐼+ : ℌ1 ⊂ dom(𝑋∗) → 𝑀𝑑 (C) is bounded (as a linear
map on a finite-dimensional Hilbert space), we deduce EF[U0] (𝑡, 𝑧) is a rational function in z for any
𝑡 ≥ 0, whose poles belong to a compact subset 𝐾 = 𝐾 (𝐼,U0) ⊂ C− when 𝑡 ∈ 𝐼 for any given compact
time interval 𝐼 ⊂ [0,∞).

To summarize, we have shown that, for any given compact interval 𝐼 ⊂ [0,∞), there exists some
constant 𝐶 = 𝐶 (𝐼,U0) > 0 such that

|𝛼 | + 1
|Im𝛼 | ≤ 𝐶

whenever 𝛼 is a pole of the rational map 𝑧 ↦→ EF[U0] (𝑡, 𝑧) with 𝑡 ∈ 𝐼. By possibly enlarging the
constant 𝐶 > 0, we obtain the 𝐿∞-bound with

sup
𝑥∈R

|EF[U0] (𝑡, 𝑥) |𝐹 ≤ 𝐶 for 𝑡 ∈ 𝐼 .

Since ℌ1 has finite dimension, we easily deduce that the degree of the denominator of the rational
functions 𝑧 ↦→ EF[U0] (𝑡, 𝑧) can be uniformly bounded for 𝑡 ∈ 𝐼. Hence, by applying Lemma 6.2 below,
we deduce

sup
𝑡 ∈𝐼

‖EF[U0] (𝑡)‖𝐻 2 ≤ 𝐶 (𝐼,U0)

with some finite constant 𝐶 (𝐼,U0).
Since Π+V(𝑡) = EF[U0] (𝑡) for 𝑡 ∈ [0, 𝑇max) and by taking a compact interval 𝐼 ⊂ [0,∞) with

[0, 𝑇max) ⊂ 𝐼, we conclude that (6.3) holds true. This completes the proof that the maximal (forward)
time of existence must be 𝑇max = +∞.

Finally, by the time reversal symmetry of (HWM𝑑) with

U(𝑡, 𝑥) ↦→ −U(−𝑡,−𝑥) ,

which maps solutions to solutions (and evidently preserves rationality in x), we deduce that solutions of
(HWM𝑑) with rational initial data also uniquely extend to all negative times 𝑡 ∈ (−∞, 0].

This completes the proof of Theorem 1.5.
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Proof of Theorem 1.2

This is a direct consequence of Theorem 1.5. Indeed, let u0 ∈ R𝑎𝑡 (R;S2) be given and define U0 =
u0 · 𝝈 ∈ R𝑎𝑡 (R; Gr1(C2)). By Theorem 1.5, there exists a unique global solution U = U(𝑡, 𝑥) of
(HWM2) with initial datum U(0) = u0. Hence

u(𝑡, 𝑥) = 1
2

Tr(U(𝑡, 𝑥)𝝈) = 1
2
(Tr(U(𝑡, 𝑥)𝜎1),Tr(U(𝑡, 𝑥)𝜎2),Tr(U(𝑡, 𝑥)𝜎3))

is the claimed unique global-in-time solution of (HWM) with initial datum u(0) = u0.
We close this section with the following auxiliary result used above.

Lemma 6.2. Let R ⊂ C(𝑋) be a subset of rational functions. We assume that there exists 𝐶 > 0 such
that the following properties hold.
1. If 𝛼 is a pole of some 𝑅 ∈ R, then

|𝛼 | + 1
|Im(𝛼) | ≤ 𝐶 .

2. For every 𝑅 ∈ R, 𝑅(𝑥) → 0 as 𝑥 → ∞ and

‖𝑅‖𝐿∞ (R) ≤ 𝐶 .

3. There exists an integer N such that the degree of the denominator of every 𝑅 ∈ R is at most N.
Then, for every integer 𝑘 ≥ 0, it holds that

sup
𝑅∈R

‖𝑅‖𝐻 𝑘 (R) < ∞ .

Proof. Given 𝑅 ∈ R, write

𝑅(𝑥) = 𝑃(𝑥)
𝑄(𝑥) , 𝑄(𝑥) =

𝐷∏
𝑗=1

(𝑥 − 𝛼 𝑗 ) , 𝑃 ∈ C[𝑋] , deg(𝑃) < 𝐷 ≤ 𝑁 .

Because of properties (1) and (2),

max
0≤𝑥≤1

|𝑃(𝑥) | ≤ 𝐶 max
0≤𝑥≤1

������ 𝐷∏𝑗=1
(𝑥 − 𝛼 𝑗 )

������ ≤ 𝐶 (1 + 𝐶)𝑁 .

Consequently, all the coefficients 𝑎 𝑗 of P satisfy

sup
𝑗<𝐷

|𝑎 𝑗 | ≤ 𝐵(𝑁,𝐶) ,

for some constant 𝐵(𝑁,𝐶) depending only on N and C. Similarly, from property (1), all the coefficients
of Q are uniformly bounded by a constant depending only on C and N. Moreover, from property (1), for
every 𝑥 ∈ R,

|𝑄(𝑥) | ≥
(
| |𝑥 | − 𝐶 |2 + 𝐶−2

)𝐷/2
.

Notice that the k-th derivative 𝑅 (𝑘) is a sum of a finite number – depending only on k – of terms of the
form

𝑃 (𝑚)𝑄 (𝑚1) . . . 𝑄 (𝑚𝑟 )

𝑄𝑟+1
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where 0 ≤ 𝑟 ≤ 𝑘 and 𝑚 + 𝑚1 + . . . 𝑚𝑟 = 𝑘 . Notice that the degree of the numerator is at most
(𝑟 + 1)𝐷 − 𝑘 − 1, and that its coefficients are all bounded by a constant depending only on k, N and C.
Consequently,

‖𝑅 (𝑘) ‖2
𝐿2 ≤ 𝐴(𝑘, 𝑁, 𝐶) max

𝑟 ≤𝑘
max

ℓ≤(𝑟+1)𝐷−𝑘−1

∫
R

𝑥2ℓ

(| |𝑥 | − 𝐶 |2 + 𝐶−2)𝐷 (𝑟+1) 𝑑𝑥

with some constant 𝐴(𝑘, 𝑁, 𝐶) > 0. This completes the proof. �

7. Soliton Resolution and Non-Turbulence

In this section we prove our next main result Theorem 1.7, which shows soliton resolution and non-
turbulence for rational solutions of (HWM𝑑) under the spectral assumption that the Toeplitz operator
𝑇U0 : 𝐿2

+(R;C𝑑) → 𝐿2
+(R;C𝑑) has simple discrete spectrum.

Preliminaries

Let 𝑑 ≥ 2 and 0 ≤ 𝑘 ≤ 𝑑 be given integers. In what follows, we suppose that U0 ∈ R𝑎𝑡 (R; Gr𝑘 (C𝑑))
holds, that is, the map U0 : R → 𝑀𝑑 (C) is a rational matrix-valued function satisfying the pointwise
constraints

U0(𝑥)∗ = U0(𝑥), U0 (𝑥)2 = 1𝑑 , Tr(U0(𝑥)) = 𝑑 − 2𝑘 for 𝑥 ∈ R .

In the trivial case of constant initial data U0(𝑥) ≡ U∞, we directly obtain Theorem 1.7 with 𝑁 = 0.
Hence for the rest of the proof, we will assume that U0 is nonconstant.

For the following discussion, we need to clearly distinguish between the Toeplitz operator 𝑇U0 acting
on the Hardy space 𝐿2

+(R;V) with V = C𝑑 or V = 𝑀𝑑 (C), respectively.
From Lemma 4.1, we recall the general formula

𝑇2
U0

= Id − 𝐾U0 on 𝐿2
+(R;V) , (7.1)

with the trace-class operator 𝐾U0 = 𝐻
∗
U0
𝐻U0 : 𝐿2

+(R;V) → 𝐿2
+(R;V). Since U0 is rational, the operator

𝐾U0 is finite-rank by Lemma 4.3 and we have the finite-dimensional invariant subspace for 𝑇U0 given by

ℌ1 (V) := ran(𝐾U0 : 𝐿2
+(R;V) → 𝐿2

+(R;V)) , (7.2)

where we use the notation ℌ1 (V) instead of ℌ1 to keep track of whether we choose V = C𝑑 or
V = 𝑀𝑑 (C). We introduce the following short-hand notations

T := 𝑇U0 |ℌ1 (𝑀𝑑 (C)) and T̃ := 𝑇U0 |ℌ1 (C𝑑) . (7.3)

Note that T = T∗ and T̃ = T̃∗ are self-adjoint endomorphisms on the finite-dimensional spaces
ℌ1 (𝑀𝑑 (C)) and ℌ1 (C𝑑), respectively. From Proposition 4.3 we recall that the generator 𝑋∗ of the
adjoint Lax–Beurling semigroup also acts invariantly on the finite-dimensional subspace ℌ1 (V). Like-
wise, we use the following notation

G := 𝑋∗ |ℌ1 (𝑀𝑑 (C)) and G̃ := 𝑋∗ |ℌ1 (C𝑑) (7.4)

for the generator 𝑋∗ of adjoint Lax–Beurling semigroup restricted to the invariant subspacesℌ1 (𝑀𝑑 (C))
and ℌ1 (C𝑑), respectively.

Let us now assume T̃ has simple spectrum, that is, we have

𝜎(T̃) = {𝑣1, . . . , 𝑣𝑁 } with 𝑁 = dimℌ1 (C𝑑) . (7.5)
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Note that 𝑣𝑛 ∈ (−1, 1) for 𝑛 = 1, . . . , 𝑁 . Let 𝜑𝑛 ∈ ℌ1 (C𝑑) ⊂ 𝐿2
+(R;C𝑑) be a choice of the corresponding

normalized eigenfunctions of T̃ such that

T̃𝜑𝑛 = 𝑣𝑛𝜑𝑛 with ‖𝜑𝑛‖𝐿2 = 1

for 𝑛 = 1, . . . , 𝑁 . Clearly, the family (𝜑𝑛)1≤𝑛≤𝑁 forms an orthonormal basis for ℌ1 (C𝑑).
We can easily construct an orthonormal basis of eigenfunction for T acting on the matrix-valued

finite-dimensional Hilbert space ℌ1 (𝑀𝑑 (C)) as follows. For 1 ≤ 𝑛 ≤ 𝑁 and 1 ≤ 𝑗 ≤ 𝑑, we define the
matrix-valued functions Φ𝑛, 𝑗 ∈ 𝐿2

+(R;𝑀𝑑 (C)) by setting

Φ𝑛, 𝑗 :=
���� 0, . . . , 𝜑𝑛︸︷︷︸

𝑗-th column

, . . . , 0
%&&&' . (7.6)

We readily check that

TΦ𝑛, 𝑗 = 𝑣𝑛Φ𝑛, 𝑗 for 𝑛 = 1, . . . , 𝑁 and 𝑗 = 1, . . . , 𝑑 . (7.7)

Thus the eigenvalues 𝑣𝑛 for T are d-fold degenerate in a trivial manner by changing the columns in the
matrix-valued functions Φ𝑛, 𝑗 .

We have the following fact, whose elementary proof we omit.

Proposition 7.1. The functions {Φ𝑛, 𝑗 }1≤𝑛≤𝑁 ,1≤ 𝑗≤𝑑 form an orthonormal basis of eigenfunctions for
T : ℌ1 (𝑀𝑑 (C)) → ℌ1 (𝑀𝑑 (C)).

Perturbation analysis as |𝑡 | → ∞

From Theorem 1.5 we know that the corresponding solution of (HWM𝑑) with rational initial datum U0
is global in time and satisfies

U(𝑡, 𝑥) = U∞ + ΠV(𝑡, 𝑥) + (ΠV(𝑡, 𝑥))∗ , (7.8)

where here and in the following we write Π ≡ Π+ for the Cauchy–Szegő projection for notational
simplicity. By the following explicit flow formula from Lemma 5.2, we have

ΠV(𝑡, 𝑥) = 1
2𝜋i
𝐼+

[
(G + 𝑡T − 𝑥Id)−1ΠV0

]
for (𝑡, 𝑥) ∈ R × R , (7.9)

using our definitions of G and T acting on the finite-dimensional subspace ℌ1 (𝑀𝑑 (C)). Note that we can
take 𝑥 ∈ R here, since we have already shown that the rational function ΠV(𝑡, 𝑧) for 𝑧 ∈ C+ has no poles
on the real axis for all 𝑡 ∈ R. Recall also that ΠV0 ∈ ℌ1 (𝑀𝑑 (C)) holds thanks to Proposition 4.2 above.

In order to study the large time limit 𝑡 → ±∞, it will be convenient to define

M(𝜀) := 𝜀G + T with 𝜀 :=
1
𝑡

(7.10)

for 𝑡 ≠ 0. In terms of these definition, we can write the explicit flow formula as

Π𝑉 (𝜀−1, 𝑥) = 𝜀

2𝜋i
𝐼+[(M(𝜀) − 𝜀𝑥Id)−1Π𝑉0] . (7.11)

Inspired by the analysis in [15] for the study of N-solitons for the Calogero–Moser derivative NLS,
we carry out a perturbation analysis of the non-self-adjoint endomorphisms M(𝜀) : ℌ1 (𝑀𝑑 (C)) →
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ℌ1 (𝑀𝑑 (C)) in the limit 𝜀 → 0. We have the following facts, where we recall that we always suppose
that the nondegeneracy assumption (7.5) for T̃ : ℌ1 (C𝑑) → ℌ1 (C𝑑) holds true.

Lemma 7.1. There exists some 𝜀0 > 0 sufficiently small such that the following holds.

(i) For 1 ≤ 𝑛 ≤ 𝑁 and 1 ≤ 𝑗 ≤ 𝑑, there exist analytic functions 𝜀 ↦→ 𝑣𝑛 (𝜀) ∈ C and 𝜀 ↦→ Φ𝑛, 𝑗 (𝜀) ∈
ℌ1 (𝑀𝑑 (C)) for |𝜀 | ≤ 𝜀0 with

𝑣𝑛 (𝜀) = 𝑣𝑛 + 𝜀𝑤𝑛 +𝑂 (𝜀2), Φ𝑛, 𝑗 (𝜀) = Φ𝑛, 𝑗 +𝑂 (𝜀) ,

M(𝜀)Ψ𝑛, 𝑗 (𝜀) = 𝑣𝑛 (𝜀)Ψ𝑛, 𝑗 (𝜀) .

The functions {Ψ𝑛, 𝑗 (𝜀)}1≤𝑛≤𝑁 ,1≤ 𝑗≤𝑑 form a basis for ℌ1 (𝑀𝑑 (C)) for |𝜀 | ≤ 𝜀0.
(ii) For 1 ≤ 𝑛 ≤ 𝑁 , we have

𝑤𝑛 = 〈G̃𝜑𝑛, 𝜑𝑛〉 and Im𝑤𝑛 < 0 .

Remark. The fact that all complex numbers 𝑤𝑛 have nonvanishing imaginary part will play a funda-
mental role to obtain a priori bound on all higher Sobolev norms for U(𝑡, 𝑥), that is, it rules out the
phenomenon of turbulence in the limit 𝑡 → ±∞. This is in striking contrast to the analysis of N-soliton
solutions for the Calogero–Moser derivative NLS studies in [15], where the corresponding perturbative
analysis yields the vanishing of the imaginary parts in the limit 𝑡 → ±∞ (which corresponds to the limit
𝜀 → 0).

Proof. We divide the proof of Lemma 7.1 into the following steps.
Step 1. Let 𝜀0 > 0 be a constant chosen later. For |𝜀 | ≤ 𝜀0, we define the endomorphisms

M̃(𝜀) := T̃ + 𝜀G̃ : ℌ1 (C𝑑) → ℌ1 (C𝑑) . (7.12)

Note that M̃(0) = T̃ = T̃∗ is self-adjoint with simple spectrum𝜎(T̃) = {𝑣1, . . . , 𝑣𝑁 } with a corresponding
orthonormal basis of eigenfunctions (𝜑𝑛)1≤𝑛≤𝑁 . By standard analytic perturbation theory, there exist
analytic functions 𝜀 ↦→ 𝑣𝑛 (𝜀) ∈ C and 𝜀 ↦→ 𝜑𝑛 (𝜀) ∈ ℌ1 (C𝑑) for 1 ≤ 𝑛 ≤ 𝑁 such that

T̃(𝜀)𝜑𝑛 (𝜀) = 𝑣𝑛 (𝜀)𝜑𝑛 (𝜀) (7.13)

for |𝜀 | ≤ 𝜀0, where 𝜀0 > 0 is some sufficiently small constant. We have

𝑣𝑛 (𝜀) = 𝑣𝑛 + 𝜀𝑤𝑛 +𝑂 (𝜀2), 𝜑𝑛 (𝜀) = 𝜑𝑛 +𝑂 (𝜀) , (7.14)

𝑤𝑛 = 〈G̃𝜑𝑛, 𝜑𝑛〉 . (7.15)

Since (𝜑𝑛)1≤𝑛≤𝑁 forms an orthonormal basis for ℌ1 (C𝑑) and by continuity with respect to 𝜀, we readily
see that the perturbed eigenvectors (𝜑𝑛 (𝜀))1≤𝑛≤𝑁 also form a (not necessarily orthonormal) basis of
ℌ1 (C𝑑), provided that 𝜀0 > 0 is sufficiently small. By defining

Φ𝑛, 𝑗 (𝜀) :=
���� 0, . . . , 𝜑𝑛 (𝜀)︸︷︷︸

𝑗-th column

, . . . , 0
%&&&' ,

we easily verify that (i) holds true.
Step 2. It remains to prove item (ii). Thus we claim, for any 1 ≤ 𝑛 ≤ 𝑁 ,

Im𝑤𝑛 = Im 〈G̃𝜑𝑛, 𝜑𝑛〉 < 0 . (7.16)

https://doi.org/10.1017/fms.2025.10136 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10136


Forum of Mathematics, Sigma 35

Indeed, let 1 ≤ 𝑛 ≤ 𝑁 be given. From the general identity (2.3), we recall that

Im 〈G̃𝜑𝑛, 𝜑𝑛〉 = − 1
4𝜋

|𝐼+(𝜑𝑛) |2 ≤ 0 , (7.17)

with 𝐼+( 𝑓 ) = lim𝜉→0+ 𝑓̂ (𝜉) and 𝑓 ∈ dom(𝑋∗). [Note that 𝜑𝑛 ∈ dom(𝑋∗), since 𝜑𝑛 is a rational
function.] To prove (7.16), we argue by contradiction as follows. Let us assume that

𝐼+(𝜑𝑛) = 0 . (7.18)

By the commutator formula in Lemma 3.2, we deduce

[G̃, T̃]𝜑𝑛 =
i

2𝜋
ΠV0.𝐼+(𝜑𝑛) = 0 . (7.19)

Thus from T̃𝜑𝑛 = 𝑣𝑛𝜑𝑛 we see that T̃G̃𝜑𝑛 = 𝑣𝑛G̃𝜑𝑛. But since T̃ has simple spectrum by assumption,
we conclude G̃𝜑𝑛 = 𝛼𝜑𝑛 for some constant 𝛼 ∈ C. By taking the Fourier transform, this yields

i
𝑑

𝑑𝜉
𝜑𝑛 (𝜉) = 𝛼𝜑𝑛 (𝜉) for 𝜉 ≥ 0 . (7.20)

Thus we find 𝜑(𝜉) = 𝐴e−i𝛼𝜉 for 𝜉 ≥ 0 with some constant 𝐴 ≠ 0 (since 𝜑𝑛 � 0). Moreover, we infer
that Im𝛼 < 0 since 𝜑𝑛 ∈ 𝐿2 (R+). But this implies that

𝐼+(𝜑𝑛) = lim
𝜉→0+

𝜑𝑛 (𝜉) = 𝐴 ≠ 0 ,

contradicting our assumption that 𝐼+(𝜑𝑛) = 0 holds. This shows (7.16) and completes the proof of
Lemma 7.1. �

Proof of Theorem 1.7

We are now ready to give the proof of Theorem 1.7. Adapting the notation from above, we proceed as
follows.

Asymptotic behavior as 𝑡 → ±∞
Recall that 𝜀 = 𝑡−1 for 𝑡 ≠ 0. In what follows, we shall always assume that |𝜀 | ≤ 𝜀0 with the constant
𝜀0 > 0 from Lemma 7.1 above, which amounts to considering times t with |𝑡 | ≥ 𝑇0 where 𝑇0 = 𝜀−1.

We expand ΠV0 ∈ ℌ1 (𝑀𝑑 (C)) in terms of the basis (Φ𝑛, 𝑗 (𝜀))1≤𝑛≤𝑁 ,1≤ 𝑗≤𝑑 from Lemma 7.1, that
is, we write

ΠV0 =
𝑁∑
𝑛=1

𝑑∑
𝑗=1
𝛼𝑛, 𝑗 (𝜀)Φ𝑛, 𝑗 (𝜀) (7.21)

with some coefficients 𝛼𝑛, 𝑗 (𝜀) ∈ C. From Lemma 7.1 and the fact that 𝜀𝑥 ∈ R does not belong to the
spectrum 𝜎(M(𝜀)) = {𝑣1(𝜀), . . . , 𝑣𝑁 (𝜀)} ⊂ C−, we conclude that

(M(𝜀) − 𝜀𝑥Id)−1ΠV0 =
𝑁∑
𝑛=1

𝑑∑
𝑗=1

𝛼𝑛, 𝑗 (𝜀)
𝑣𝑛 (𝜀) − 𝜀𝑥

Φ𝑛, 𝑗 (𝜀) for |𝜀 | ≤ 𝜀0 and 𝑥 ∈ R . (7.22)
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In view of the explicit formula (7.11) together with 𝜀 = 𝑡−1 and the properties stated in Lemma 7.1, we
obtain that

ΠV(𝑡, 𝑥) = 𝜀

2𝜋i
𝐼+

⎡⎢⎢⎢⎢⎣
𝑁∑
𝑛=1

𝑑∑
𝑗=1

𝛼𝑛, 𝑗 (𝜀)
𝑣𝑛 (𝜀) − 𝜀𝑥

Φ𝑛, 𝑗 (𝜀)
⎤⎥⎥⎥⎥⎦ =

𝑁∑
𝑛=1

𝐴𝑛 (𝑡)
𝑥 − 𝑧𝑛 (𝑡)

. (7.23)

Here we set

𝑧𝑛 (𝑡) := 𝑡𝑣𝑛 (𝑡−1) = 𝑡𝑣𝑛 + 𝑤𝑛 +𝑂 (𝑡−1) ∈ C− for |𝑡 | ≥ 𝑇0 , (7.24)

and 𝐴𝑛 (𝑡) ∈ 𝑀𝑑 (C) are the matrix-valued functions defined as

𝐴𝑛 (𝑡) := − 1
2𝜋i

𝑑∑
𝑗=1
𝛼𝑛, 𝑗 (𝑡−1)𝐼+[Φ𝑛, 𝑗 (𝑡−1)] for |𝑡 | ≥ 𝑇0 . (7.25)

Note that, by choosing 𝑇0 > 0 possibly larger, we can henceforth ensure that

|𝑧𝑛 (𝑡) − 𝑧𝑚(𝑡) | ≥ |𝑡 |
2

· min
𝑛≠𝑚

|𝑣𝑛 − 𝑣𝑚 | > 0 for |𝑡 | ≥ 𝑇0 and 𝑛 ≠ 𝑚, (7.26)

implying that the poles 𝑧1(𝑡), . . . , 𝑧𝑁 (𝑡) ∈ C− are pairwise distinct whenever |𝑡 | ≥ 𝑇0.
Next we show, after discarding possibly trivial zero terms, that all the matrices 𝐴 𝑗 (𝑡) ∈ 𝑀𝑑 (C) are

nonzero and nilpotent of degree 2. Moreover, their limits as 𝑡 → ±∞ both exist, coincide, and are
nonzero as well.
Proposition 7.2. There exists an integer 1 ≤ 𝑀 ≤ 𝑁 such that, after possibly relabelling
{𝐴𝑛 (𝑡), 𝑧𝑛 (𝑡)}𝑁𝑛=1, it holds that

Π+V(𝑡, 𝑥) =
𝑀∑
𝑛=1

𝐴𝑛 (𝑡)
𝑥 − 𝑧𝑛 (𝑡)

for |𝑡 | ≥ 𝑇0 and 𝑥 ∈ R .

Here the matrices 𝐴𝑛 (𝑡) ∈ 𝑀𝑑 (C) satisfy 𝐴𝑛 (𝑡) ≠ 0 and 𝐴𝑛 (𝑡)2 = 0 for |𝑡 | ≥ 𝑇0.
In addition, it holds

𝐴𝑛 (𝑡) = 𝐴𝑛 +𝑂 (𝑡−1)

with some nonzero limits 𝐴𝑛 ≠ 0 satisfiying 𝐴2
𝑛 = 0 for 1 ≤ 𝑛 ≤ 𝑀 .

Remark. In the special case of (HWM) with target S2, corresponding to the target Gr1(C2) in the
matrix-valued case, we will see below that actually 𝑀 = 𝑁 must always hold. This observation is based
on the simple algebraic fact that nonzero matrices 𝐴 ∈ 𝑀2 (C) with 𝐴2 = 0 must have rank(𝐴) = 1. See
below for more details.
Proof. Step 1. We first show that 𝐴𝑛 (𝑡)2 = 0 holds for 1 ≤ 𝑛 ≤ 𝑁 and |𝑡 | ≥ 𝑇0. Indeed, we know that

U(𝑡, 𝑥) = U∞ +
𝑁∑
𝑛=1

𝐴𝑛 (𝑡)
𝑥 − 𝑧𝑛 (𝑡)

+
𝑁∑
𝑛=1

𝐴𝑛 (𝑡)∗
𝑥 − 𝑧𝑛 (𝑡)

for |𝑡 | ≥ 𝑇0 (7.27)

with the pairwise distinct poles 𝑧1(𝑡), . . . , 𝑧𝑛 (𝑡) ∈ C− and some constant matrix U∞ ∈ Gr𝑘 (C𝑑). From
the algebraic constraint U(𝑡, 𝑥)2 = 1𝑑 and by equating the terms proportional to (𝑥 − 𝑧𝑛 (𝑡))−2 to zero,
we conclude that

𝐴𝑛 (𝑡)2 = 0

for |𝑡 | ≥ 𝑇0 and 1 ≤ 𝑛 ≤ 𝑁 .
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Furthermore, we readily see that we have existence and equality of the limits

lim
𝑡→−∞

𝐴𝑛 (𝑡) = lim
𝑡→+∞

𝐴𝑛 (𝑡) =: 𝐴𝑛 ∈ 𝑀𝑑 (C) .

This directly follows from the properties in Lemma 7.1 which yields that

lim
|𝑡 |→∞

𝐴𝑛 (𝑡) = − 1
2𝜋i

lim
𝜀→0

𝑑∑
𝑗=1
𝛼𝑛, 𝑗 (𝑡−1)𝐼+[Φ𝑛, 𝑗 (𝑡−1)] = − 1

2𝜋i

𝑑∑
𝑗=1
𝛼𝑛, 𝑗 𝐼+[Φ𝑛, 𝑗 ] = 𝐴𝑛

with the coefficients 𝛼𝑛, 𝑗 = 〈ΠV0,Φ𝑛, 𝑗〉. Moreover, since Φ𝑛, 𝑗 (𝑡−1) = Φ𝑛, 𝑗 +𝑂 (𝑡−1), we readily deduce
that

𝐴𝑛 (𝑡) = 𝐴𝑛 +𝑂 (𝑡−1) .

Moreover, from 𝐴𝑛 (𝑡)2 = 0 for |𝑡 | ≥ 𝑇0, we readily deduce that the limits satisfy 𝐴2
𝑛 = 0 as well.

Step 2. By plugging (7.27) into (HWM𝑑), we obtain the following differential equations for the
matrix-valued functions 𝐴𝑛 (𝑡):

�𝐴𝑛 (𝑡) = i
𝑁∑

𝑚≠𝑛

[𝐴𝑛 (𝑡), 𝐴𝑚(𝑡)]
(𝑧𝑛 (𝑡) − 𝑧𝑚(𝑡))2 for |𝑡 | ≥ 𝑇0 and 1 ≤ 𝑛 ≤ 𝑁 , (7.28)

where [𝑋,𝑌 ] denotes the commutator of matrices in 𝑀𝑑 (C). For details of the calculation that derives
(7.28), we refer to the proof of [3][Theorem 2.1]; the generalization to (HWM𝑑) is straightforward. We
also note that the expression on the right-hand side in (7.28) is nonsingular for |𝑡 | ≥ 𝑇0 thanks to (7.26).

We now claim that

𝐴𝑛 (𝑇0) ≠ 0 ⇒ 𝐴𝑛 (𝑡) ≠ 0 for 𝑡 ≥ 𝑇0 and lim
𝑡→+∞

𝐴𝑛 (𝑡) ≠ 0 . (7.29)

Indeed, let ‖𝐴‖ = (Tr(𝐴𝐴∗))1/2 denote the Frobenius norm of a matrix 𝐴 ∈ 𝑀𝑑 (C). Since ‖𝐴𝑚 (𝑡)‖ ≤ 𝐶
for 𝑡 ≥ 𝑇0 and 1 ≤ 𝑚 ≤ 𝑁 with some constant 𝐶 > 0 (by existence of limits shown in Step 1) and from
(7.26), we obtain from (7.28) the estimate

‖ 𝑑
𝑑𝑡
𝐴𝑛 (𝑡)‖ �

1
𝑡2

‖𝐴𝑛 (𝑡)‖ for 𝑡 ≥ 𝑇0 . (7.30)

Suppose now that 𝐴𝑛 (𝑇0) ≠ 0 and let𝑇 ∈ (𝑇0, +∞]. Then by integrating the estimate above, we conclude
that ∫ 𝑇

𝑇0

𝑑

𝑑𝑡
log ‖𝐴𝑛 (𝑡)‖ 𝑑𝑡 = log(‖𝐴𝑛 (𝑇)‖) − log(‖𝐴𝑛 (𝑇0)‖) �

∫ 𝑇

𝑇0

𝑑𝑡

𝑡2
�

1
𝑇0
< +∞

which rules out 𝐴𝑛 (𝑇) = 0 for 𝑇 ∈ (𝑇0, +∞]. This proves the implication (7.29).
Step 3. Define the integer 0 ≤ 𝐾 ≤ 𝑁 by setting

𝐾 := #{1 ≤ 𝑛 ≤ 𝑁 : 𝐴𝑛 (𝑇0) = 0}

and we let 𝑀 := 𝑁 − 𝐾 . Now if 𝑀 = 0, then U(𝑡, 𝑥) = U0 = U∞ is a constant solution to (HWM𝑑).
But this implies that 𝐾U0 ≡ 0 and hence ℌ1 (C𝑑) = {0} is trivial, which contradicts our assumption that
𝑁 = dimℌ1 (C𝑑) ≥ 1. Thus we see that 𝑀 ≥ 1 holds.

Thus, after relabelling {𝐴𝑛 (𝑇0), 𝑧𝑛 (𝑇0)}𝑁𝑛=1 if necessary, we see that

ΠV(𝑇0, 𝑥) =
𝑀∑
𝑛=1

𝐴𝑛 (𝑇0)
𝑥 − 𝑧𝑛 (𝑇0)
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with 𝐴𝑛 (𝑇0) ≠ 0 for 1 ≤ 𝑛 ≤ 𝑀 . By (7.29), we deduce that 𝐴𝑛 (𝑡) ≠ 0 for all 𝑡 ≥ 𝑇0 and 1 ≤ 𝑛 ≤ 𝑀 and
lim𝑡→+∞ 𝐴𝑛 (𝑡) = 𝐴𝑛 ≠ 0 for 1 ≤ 𝑛 ≤ 𝑀 . This proves statement of Proposition 7.2 for positive times
𝑡 ≥ 𝑇0.

Finally, since lim𝑡→−∞ 𝐴𝑛 (𝑡) = lim𝑡→+∞ 𝐴𝑛 (𝑡) for all 1 ≤ 𝑛 ≤ 𝑁 by Step 1, we complete the proof
of Proposition 7.2 for negative times 𝑡 ≤ −𝑇0. �

Completing the proof of Theorem 1.7
We are now ready to complete the proof of Theorem 1.7, which we divide into the following steps.

Step 1. In view of Proposition 7.2 above, we define

U±(𝑡, 𝑥) :=
𝑀∑
𝑛=1

Q𝑣𝑛 (𝑥 − 𝑣𝑛𝑡) − (𝑁 − 1)U∞ (7.31)

with the rational functions

Q𝑣𝑛 (𝑥) := U∞ + 𝐴𝑛
𝑥 − 𝑦𝑛 + i𝛿𝑛

+
𝐴∗
𝑛

𝑥 − 𝑦𝑛 − i𝛿𝑛
. (7.32)

with the nonzero matrices 𝐴𝑛 = lim |𝑡 |→∞ 𝐴𝑛 (𝑡) ∈ 𝑀𝑑 (C) and where we set

𝑦𝑛 := Re𝑤𝑛, 𝛿𝑛 := −Im𝑤𝑛 > 0 for 𝑛 = 1, . . . , 𝑀 . (7.33)

For the difference

R(𝑡) := U(𝑡) − U±(𝑡) ∈ 𝐻∞(R;𝑀𝑑 (C))

we claim that

lim
𝑡→±∞

‖R(𝑡)‖𝐻 𝑠 = 0 for any 𝑠 ≥ 0 . (7.34)

Indeed, since R(𝑡, 𝑥)∗ = R(𝑡, 𝑥) and thus R = ΠR + (ΠR)∗, it suffices to consider ΠR. We note that

ΠR(𝑡, 𝑥) =
𝑀∑
𝑛=1

(
𝐴𝑛 (𝑡)
𝑥 − 𝑧𝑛 (𝑡)

− 𝐴𝑛
𝑥 − 𝑦𝑛 − 𝑣𝑛𝑡 + i𝛿𝑛

)
=

𝑀∑
𝑛=1

𝐴𝑛 (𝑡) − 𝐴𝑛
𝑥 − 𝑧𝑛 (𝑡)

+
𝑀∑
𝑛=1

(
𝐴𝑛

𝑥 − 𝑧𝑛 (𝑡)
− 𝐴𝑛
𝑥 − 𝑦𝑛 − 𝑣𝑛𝑡 + i𝛿𝑛

)
=: 𝑟1(𝑡) + 𝑟2 (𝑡) .

By recalling that 𝐴𝑛 (𝑡) − 𝐴𝑛 = 𝑂 (𝑡−1) and taking the Fourier transform, we see that

‖𝑟1 (𝑡)‖𝐻 𝑠 ≤ 𝑂 (𝑡−1)
𝑀∑
𝑛=1

(∫ ∞

0
〈𝜉〉2𝑠e−2𝛿 𝜉 𝑑𝜉

)1/2
→ 0 as 𝑡 → ±∞ ,

where we also used that Im 𝑧𝑛 (𝑡) ≤ −𝛿 < 0 for |𝑡 | ≥ 𝑇0 and 1 ≤ 𝑛 ≤ 𝑀 with some constant 𝛿 > 0.
Furthermore, we find

‖𝑟2 (𝑡)‖𝐻 𝑠 ≤ 𝐶
𝑀∑
𝑛=1

(∫ ∞

0
〈𝜉〉2𝑠 |e−i𝑧𝑛 (𝑡) 𝜉 − e−i(𝑦𝑛+𝑣𝑛𝑡+i𝛿𝑛) 𝜉 |2 𝑑𝜉

)1/2

≤ 𝐶
𝑀∑
𝑛=1

(∫ ∞

0
〈𝜉〉2𝑠e−2𝛿 𝜉 |e𝑂 (𝑡−1) 𝜉 − 1|2 𝑑𝜉

)1/2
→ 0 as 𝑡 → ±∞,
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by dominated convergence and by making use of the fact that 𝑧𝑛 (𝑡) = 𝑦𝑛 + 𝑣𝑛𝑡 − i𝛿𝑛 + 𝑂 (𝑡−1) and
𝛿𝑛 ≥ 𝛿 > 0 for 𝑛 = 1, . . . , 𝑀 . This completes the proof of (7.34).

Step 2. Next, we show that each rational functions Q𝑣𝑛 yields a profile for a traveling solitary wave
for (HWMd) with velocity 𝑣𝑛.

First, we verify that Q𝑣𝑛 : R → Gr𝑘 (C𝑑) holds. Indeed, for any 1 ≤ 𝑛 ≤ 𝑁 and 𝑥 ∈ R fixed, we
observe that

U(𝑡, 𝑥 + 𝑣𝑛𝑡) = Q𝑣𝑛 (𝑥) +
𝑁∑
𝑗≠𝑛

(
𝐴 𝑗

𝑥 − 𝑦 𝑗 − (𝑣 𝑗 − 𝑣𝑛)𝑡
+

𝐴∗
𝑗

𝑥 − 𝑦 𝑗 − (𝑣 𝑗 − 𝑣𝑛)𝑡

)
+ R(𝑡, 𝑥)

→ Q𝑣𝑛 (𝑥) as |𝑡 | → +∞ ,

which follows from (7.34) and the fact that 𝑣 𝑗 ≠ 𝑣𝑛 for 𝑗 ≠ 𝑛. From this we easily conclude that
Q𝑣𝑛 (𝑥) ∈ Gr𝑘 (C𝑑) for all 𝑥 ∈ R.

Next, we prove that each Q𝑣𝑛 ∈ R𝑎𝑡 (R; Gr𝑘 (C𝑑)) is a traveling solitary wave profile for the velocity
𝑣𝑛. By taking the limit 𝜀 = 𝑡−1 → 0 in (7.21) and (7.25), we obtain (using the notation in the proof of
Proposition 7.2 above) that

ΠV0 =
𝑁∑
𝑛=1

𝑑∑
𝑗=1
𝛼𝑛, 𝑗Φ𝑛, 𝑗 , 𝐴𝑛 = − 1

2𝜋i

𝑑∑
𝑗=1
𝛼𝑛, 𝑗 𝐼+(Φ𝑛, 𝑗 ) .

Let (𝑒1, . . . , 𝑒𝑑) be the canonical basis of C𝑑 . Then Φ𝑛, 𝑗 = 𝑒𝑇𝑗 𝜑𝑛 and therefore

𝐴𝑛 = − 1
2𝜋i

�� 
𝑑∑
𝑗=1
𝛼𝑛, 𝑗𝑒 𝑗

%&'
𝑇

𝐼+(𝜑𝑛),

or, equivalently, we can write

𝐴𝑛 = 〈., 𝜂𝑛〉C𝑑 𝐼+(𝜑𝑛) with 𝜂𝑛 :=
1

2i𝜋

𝑑∑
𝑗=1
𝛼𝑛, 𝑗𝑒 𝑗 ∈ C𝑑 for 𝑛 = 1, . . . , 𝑀 .

Note that 𝐴𝑛 ≠ 0 with 𝐴2
𝑛 = 0. Hence 𝜂𝑛 ∈ C𝑑 and 𝐼+(𝜑𝑛) ∈ C𝑑 are nonzero vectors with

〈𝜂𝑛, 𝐼+(𝜑𝑛)〉C𝑑 = 0. In particular, we see that rank(𝐴𝑛) = 1 for 1 ≤ 𝑛 ≤ 𝑀 .
Now we reformulate the eigenfunction identity

𝑇U0𝜑𝑛 = 𝑣𝑛𝜑𝑛

for the Toeplitz operator 𝑇U0 : 𝐿2
+(R;C𝑑) → 𝐿2

+(R;C𝑑). Indeed, let us apply 𝐼+ to both sides while
using the following elementary lemma.

Lemma 7.2. Let 𝑓 , 𝑔 ∈ 𝐿2
+ be rational functions. Then

𝐼+( 𝑓 𝑔) = 0 and 𝐼+(Π( 𝑓 𝑔)) =
∫
R

𝑓 𝑔 𝑑𝑥 .

Proof. This simply follows from by using the following fact: For all ℎ ∈ dom(𝑋∗), we have 𝐼+(ℎ) =
lim𝜀→0+ 〈ℎ, 𝜒𝜀〉𝐿2 with 𝜒𝜀 (𝑥) := 1

1−i𝜀𝑥 . �

From Lemma 7.2, we infer

𝐼+(𝑇U0𝜑𝑛) = U∞𝐼+(𝜑𝑛) +
∫
R

(ΠV0)∗𝜑𝑛 𝑑𝑥 = U∞𝐼+(𝜑𝑛) + 2i𝜋𝜂𝑛 ,
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because, using that 𝜑𝑛 is normalized in 𝐿2,∫
R

Φ∗
𝑝, 𝑗𝜑𝑛 𝑑𝑥 = 𝑒 𝑗𝛿𝑛,𝑝 .

The eigenfunction identity 𝑇U0𝜑𝑛 = 𝑣𝑛𝜑𝑛 therefore implies

U∞𝐼+(𝜑𝑛) = 𝑣𝑛𝐼+(𝜑𝑛) − 2𝜋i𝜂𝑛. (7.35)

Applying the matrix U∞ to both sides of the above identity, we get

U∞𝜂𝑛 = −𝑣𝑛𝜂𝑛 − 1
2𝜋i

(1 − 𝑣2
𝑛)𝐼+(𝜑𝑛). (7.36)

Recall that 𝐼+(𝜑𝑛) and 𝜂𝑛 are nonzero vectors in C𝑑 with 〈𝜂𝑛, 𝐼+(𝜑𝑛)〉C𝑑 = 0. We denote by 𝑃𝑛 =
span{𝜂𝑛, 𝐼+(𝜑𝑛)} the two-dimensional plane in C𝑑 generated by these two vectors. We notice that U∞
preserves 𝑃𝑛 and hence it preserves 𝑃⊥

𝑛 , since U∗
∞ = U∞. It is now easy to check that the kernel of 𝐻Q𝑣𝑛

is given by

ker(𝐻Q𝑣𝑛
) = 𝑥 − 𝑦𝑛 − i𝛿𝑛

𝑥 − 𝑦𝑛 + i𝛿𝑛
𝐿2
+(R)𝐼+(𝜑𝑛) ⊕ 𝐿2

+(R)𝜂𝑛 ⊕ (𝐿2
+(R) ⊗ 𝑃⊥

𝑛 )

and that its orthogonal subspace in 𝐿2
+(R;C𝑑) is generated by

𝜓𝑛 (𝑥) :=
1

𝑥 − 𝑦𝑛 + i𝛿𝑛
𝐼+(𝜑𝑛) .

Furthermore, from (7.35), (7.36) and the identity

U∞𝐴𝑛 + 𝐴𝑛U∞ =
𝐴𝑛𝐴

∗
𝑛 + 𝐴∗

𝑛𝐴𝑛
2i𝛿𝑛

,

we get ‖𝐼+(𝜑𝑛)‖2
C𝑑

= 4𝜋𝛿𝑛 and

𝑇Q𝑣𝑛
𝜓𝑛 = 𝑣𝑛𝜓𝑛 .

Finally, a direct calculation using again (7.35) and (7.36) leads to

−2i𝑣𝑛Q′
𝑣𝑛 (𝑥) = [Q𝑣𝑛 , |𝐷 |Q𝑣𝑛 ] (𝑥) ,

which precisely means that Q𝑣𝑛 (𝑥 − 𝑣𝑛𝑡) is a traveling solitary wave for (HWMd) with velocity 𝑣𝑛.
Step 3. We next show that the integer 1 ≤ 𝑀 ≤ 𝑁 given in Proposition 7.2 must satisfy

𝑀 = 𝑁

where 𝜎d(𝑇U0 ) = {𝑣1, . . . , 𝑣𝑁 }. To see this, we recall from Proposition 7.2 that

U(𝑡, 𝑥) = U∞ +
𝑀∑
𝑛=1

𝐴𝑛 (𝑡)
𝑥 − 𝑧𝑛 (𝑡)

+
𝑀∑
𝑛=1

𝐴𝑛 (𝑡)∗
𝑥 − 𝑧𝑛 (𝑡)

for |𝑡 | ≥ 𝑇0

with nonzero matrices 𝐴1(𝑡), . . . , 𝐴𝑀 (𝑡) ∈ 𝑀𝑑 (C) such that 𝐴𝑛 (𝑡)2 = 0 and pairwise distinct poles
𝑧1(𝑡), . . . , 𝑧𝑀 (𝑡) ∈ C−. Furthermore, from (7.25) and the arguments in the beginning of Step 2 above,
we deduce that

𝐴𝑛 (𝑡) = 〈·, 𝜂𝑛 (𝑡)〉C𝑑 𝐼+(𝜑𝑛 (𝑡)) for |𝑡 | ≥ 𝑇0
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with nonzero vectors 𝜂𝑛 (𝑡), 𝐼+(𝜑𝑛 (𝑡)) ∈ C𝑑 such that 〈𝜂𝑛 (𝑡), 𝐼+(𝜑𝑛 (𝑡))〉C𝑑 = 0. In particular, we
conclude that rank(𝐴𝑛 (𝑡)) = 1 for |𝑡 | ≥ 𝑇0. Hence we can apply Lemma B.1 (see also the remark there)
to deduce that rank(𝐾U(𝑇0) ) = 𝑀 .

On the other hand, thanks to the Lax evolution, we get that 𝐾U(𝑇0) = U (𝑇0)𝐾U0U (𝑇0)∗ with some
unitary map U (𝑇0) : 𝐿2

+(R;C𝑑) → 𝐿2
+(R;C𝑑). This implies rank(𝐾U(𝑇0) ) = rank(𝐾U0) = 𝑁 , whence it

follows that 𝑀 = 𝑁 .
Step 4. Finally, we observe that ‖U(∞) (𝑡)‖ �𝐻 𝑠 ≤ 𝐶 for all 𝑡 ∈ R with some constant 𝐶 > 0 depending

on 𝑠 > 0. Furthermore, in view of (7.34) and U ∈ 𝐶 (R; �𝐻∞), we readily deduce the a priori bounds

sup
𝑡 ∈R

‖U(𝑡)‖ �𝐻 𝑠 ≤ 𝐶 (U0, 𝑠) < ∞

for any 𝑠 > 0.
The proof of Theorem 1.7 is now complete.

8. Refined analysis for target S2

We now consider (HWM) with target S2. The goal of this section is to refine the general Theorem 1.7 on
soliton resolution for the target S2 � Gr1 (C2), leading to Theorem 1.3. Moreover, we will establish that
the spectral condition of simplicity of the discrete spectrum 𝜎d(𝑇U0 ) holds for a dense subset of rational
initial data in the case of the target S2, as formulated in Theorem 1.4. The proof of this density result
will make essential use of the stereographic projection S2 → C∪ {∞} to find a suitable parametrization
of rational maps from u : R → S2 and the corresponding Toeplitz operators 𝑇U with rational matrix-
valued symbol U = u · 𝝈. Our arguments will be based on analyticity properties to finally conclude
Theorem 1.4. We expect that the density result stated in Theorem 1.4 can be generalized to (HWM𝑑)
with target Gr𝑘 (C𝑑). However, the algebraic and analytic challenges would require a vast extension of
the following analysis, which we haven chosen not to pursue here.

For the reader’s convenience, we recall (HWM) with target S2 is equivalent to (HWM𝑑) with 𝑑 = 2
for matrix-valued maps of the form

U(𝑥) = u(𝑥) · 𝝈 =

(
𝑢3(𝑥) 𝑢1(𝑥) − i𝑢2(𝑥)

𝑢1(𝑥) + i𝑢2(𝑥) −𝑢3(𝑥)

)
∈ Gr1(C2)

where u = (𝑢1, 𝑢2, 𝑢3) : R→ S2.

Parametrization by stereographic projection

Let u : R→ S2 be a map and, as usual, we set U = u ·𝝈. For the rest of this subsection, we will consider
the case V = C2, that is, we consider the Toeplitz operator

𝑇U : 𝐿2
+(R;C2) → 𝐿2

+(R;C2)

acting on C2-valued functions in the Hardy space 𝐿2
+. Likewise, the operators 𝐻U and 𝐾U = 𝐻∗

U𝐻U act
on 𝐿2

+(R;C2) throughout the following. By using the (inverse) stereographic projection

Ĉ = C ∪ {∞} → S2, 𝑧 ↦→
(

2 Re 𝑧
𝑧𝑧 + 1

,
2 Im 𝑧
𝑧𝑧 + 1

,
𝑧𝑧 − 1
𝑧𝑧 + 1

)
,

we obtain the following explicit description in the case of rational maps from R to S2.

Theorem 8.1. Let u = (𝑢1, 𝑢2, 𝑢3) : R→ S2 be a rational map. Given an integer 𝑁 ≥ 1, the following
statements are equivalent.
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(i) dimℌ1 = rank(𝐾U) = 𝑁 .
(ii) The least common denominator of 𝑢1, 𝑢2, 𝑢3 has degree 2𝑁 .

(iii) There exists a rational function 𝑅 ∈ C(𝑋) of the form

𝑅(𝑥) = 𝑃(𝑥)
𝑄(𝑥) ,

where 𝑃 ∈ C[𝑋] is a polynomial of degree N and 𝑄 ∈ C[𝑋] is a nonzero polynomial of degree at
most 𝑁 − 1, such that P and Q have no common factors such that, up to rotation on the sphere S2,
we have

𝑢1(𝑥) + i𝑢2(𝑥) =
2𝑅(𝑥)

𝑅(𝑥)𝑅(𝑥) + 1
, 𝑢3(𝑥) =

𝑅(𝑥)𝑅(𝑥) − 1
𝑅(𝑥)𝑅(𝑥) + 1

.

Remarks. 1) We use C(𝑋) to denote the field of rational functions with one variable with coefficients
in C. Likewise, we use C[𝑋] to denote the ring of complex polynomials over C. The variable X either
represents an element 𝑥 ∈ R or 𝑧 ∈ C.

2) For a polynomial 𝑇 ∈ C[𝑋] with 𝑇 (𝑥) =
∑𝑁

𝑗=0 𝑡 𝑗𝑥
𝑗 , we denote its complex conjugate by 𝑇 (𝑥) =∑𝑁

𝑗=0 𝑡 𝑗𝑥
𝑗 obtained by complex conjugation of its coefficients. Likewise, for a rational function 𝑅 =

𝑃/𝑄 ∈ C(𝑋), we denote its complex conjugate by 𝑅 = 𝑃/𝑄.

Proof. The proof of Theorem 8.1 is given in Appendix B. �

In view of Theorem 8.1 we introduce, for an integer 𝑁 ≥ 1, the following subsets of rational functions

R𝑁 :=
{
𝑃(𝑥)
𝑄(𝑥) ∈ C(𝑋) | deg 𝑃 = 𝑁, deg𝑄 ≤ 𝑁 − 1, 𝑄 � 0, gcd(𝑃,𝑄) = 1

}
.

For u ∈ R𝑎𝑡 (R;S2), we can henceforth assume that u(∞) = e3 by rotational symmetry on S2. By
Theorem 8.1, we have the canonical equivalence of sets

K𝑁 := {u ∈ R𝑎𝑡 (R;S2) | u(∞) = e3, rank(𝐾U) = 𝑁} � R𝑁

by means of the (inverse) stereographic projection in Theorem 8.1 (iii) above.
Next, we analyze the topological properties of R𝑁 more closely. For 𝑃/𝑄 ∈ R𝑁 , we can assume

without loss of generality that P is a monic polynomial, that is, we denote

𝑃(𝑥) = 𝑥𝑁 + 𝑝1𝑥
𝑁−1 + . . . + 𝑝𝑁 with 𝑝𝑘 ∈ C for 𝑘 = 1, . . . 𝑁 .

The polynomials 𝑄 ∈ C[𝑋] will be written as

𝑄(𝑥) = 𝑞1𝑥
𝑁−1 + . . . + 𝑞𝑁 with 𝑞𝑘 ∈ C for 𝑘 = 1, . . . , 𝑁 ,

where (𝑞1, . . . , 𝑞𝑁 ) ≠ (0, . . . , 0). Evidently, we can identify the pair of polynomials (𝑃,𝑄) ∈ C[𝑋] ×
C[𝑋] above uniquely by elements in C𝑁 × (C𝑁 \ {0}). In particular, the set R𝑁 can be naturally
regarded as a subset in C2𝑁 . We have the following result.

Lemma 8.1. The set R𝑁 ⊂ C(𝑋) can be canonically identified with a nonempty, open and connected
subset A𝑁 in C2𝑁 .

Proof. We divide the proof into the following steps.
Step 1. Elements 𝑃/𝑄 ∈ R𝑁 can be canonically identified with pairs (𝑃,𝑄) ∈ C2𝑁 of the form

𝑃 = (𝑝1, . . . , 𝑝𝑁 ) ∈ C𝑁 , 𝑄 = (𝑞1, . . . , 𝑞𝑁 ) ∈ C𝑁 \ {0} ,

https://doi.org/10.1017/fms.2025.10136 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10136


Forum of Mathematics, Sigma 43

such that P and Q have no common factor as polynomials. Let A𝑁 ⊂ C2𝑁 denote the set of such pairs
(𝑃,𝑄). By the fundamental theorem of algebra, we can write 𝑃(𝑥) =

∏𝑁
𝑗=1 (𝑥−𝜉 𝑗 ) where 𝜉1, . . . , 𝜉𝑁 ∈ C

denote the roots of P counted with their multiplicity. In order to take into account possible permutations
of the roots, we introduce the quotient space

C𝑁sym = C𝑁 /∼

with the equivalence relation (𝜉1, . . . , 𝜉𝑁 ) ∼ (𝜉𝜎 (1) , . . . , 𝜉𝜎 (𝑁 ) ) for all permutations 𝜎 ∈ 𝑆𝑁 . We
use [𝜉1, . . . , 𝜉𝑁 ] to denote elements in C𝑁sym. It is a classical fact that the map which assigns to any
polynomial P of degree N its roots modulo permutations,

𝜏 : C𝑁 → C𝑁sym, 𝑃 ↦→ [𝜉1, . . . , 𝜉𝑁 ],

is continuous. Let us define the map

𝐹 : C𝑁 × (C𝑁 \ {0}) → C, (𝑃,𝑄) ↦→
𝑁∏
𝑗=1
𝑄(𝜉 𝑗 (𝑃)),

where [𝜉1(𝑃), . . . , 𝜉𝑁 (𝑃)] ∈ C𝑁sym denote the roots (modulo permutations) of the polynomial P. Clearly,
we have

𝐹 (𝑃,𝑄) ≠ 0 ⇔ 𝑃 and 𝑄 have no common factor.

By continuity of the map F, we deduce that the set

A𝑁 = {(𝑃,𝑄) ∈ C𝑁 × C𝑁 \ {0} : 𝐹 (𝑃,𝑄) ≠ 0}

is an open subset in C2𝑁 . Moreover, it is evident that A𝑁 is nonempty.
Step 2. Next, we prove that A𝑁 ⊂ C2𝑁 is connected. Since A𝑁 is open, this is equivalent to being

pathwise connected. For (𝑃,𝑄) ∈ A𝑁 , we define the set

𝑉𝑃 = {𝑄 ∈ C𝑁 : 𝐹 (𝑃,𝑄) = 0} = {𝑄 ∈ C𝑁 |
𝑁∏
𝑗=1
𝑄(𝜉 𝑗 (𝑃)) = 0} .

As a zero set of a nontrivial polynomial in 𝑄 = (𝑞1, . . . , 𝑞𝑁 ) ∈ C𝑁 , we see that 𝑉𝑃 is an algebraic set
in C𝑁 with 0 ∈ 𝑉𝑃 .5 Regarding its complement, we claim that

C𝑁 \𝑉𝑃 is connected . (8.1)

SinceC𝑁 \𝑉𝑃 is open, this claim is equivalent to pathwise connectedness of this set. Let𝑄, 𝑄̃ ∈ C𝑁 \𝑉𝑃
with 𝑄 ≠ 𝑄̃ be given and consider the set

𝐿 = {𝑄 + 𝜁 (𝑄̃ −𝑄) | 𝜁 ∈ C} ,

which corresponds to the complex line in C𝑁 that connects Q and 𝑄̃. Since we have 𝐿 � 𝑉𝑃 and 𝑉𝑃 is
the zero set of a polynomial in 𝑄 ∈ C𝑁 , there are only finitely many points of intersections of L with
𝑉𝑃 , that is,

𝐿 ∩𝑉𝑃 = {𝑧1, . . . , 𝑧𝐾 }

5In fact, we verify that 𝑉𝑃 =
⋃𝑁

𝑗=1 𝑉𝑗 with the linear subspaces 𝑉𝑗 = ker ℓ 𝑗 with the linear forms ℓ 𝑗 : C𝑁 → C given by
ℓ 𝑗 (𝑄) = 𝑄1 𝜉 𝑗 (𝑃)𝑁−1 + . . . +𝑄𝑁−1 𝜉 𝑗 (𝑃) +𝑄𝑁 .
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for some 𝑧1, . . . , 𝑧𝐾 ∈ C𝑁 . However, the set 𝐿 \ {𝑧1, . . . , 𝑧𝐾 } � R2 \ {𝑝1, . . . , 𝑝𝐾 } with finitely many
points 𝑝1, . . . , 𝑝𝐾 ∈ R2 is pathwise connected. Thus there exists a continuous map 𝛾 : [0, 1] → C𝑁 \𝑉𝑃
with 𝛾(0) = 𝑄 and 𝛾(1) = 𝑄̃. This proves (8.1).

Next, we suppose (𝑃,𝑄) ∈ A𝑁 and (𝑃̃, 𝑄̃) ∈ A𝑁 are given. We prove that (𝑃,𝑄) and (𝑃̃, 𝑄̃) can
be connected by a continuous path in A𝑁 as follows. We consider the sets

𝑊 = {𝑃} × (C𝑁 \𝑉𝑃) and 𝑊̃ = {𝑃̃} × (C𝑁 \𝑉𝑃̃) .

Evidently, we have that (𝑃,𝑄) ∈ 𝑊 and (𝑃̃, 𝑄̃) ∈ 𝑊̃ . Let 𝑄∗ = (0, . . . , 0, 1) ∈ C𝑁 corresponding to
the constant polynomial 𝑄∗(𝑥) ≡ 1. By (8.1) and the evident fact that 𝑄∗ ∈ (C𝑁 \ 𝑉𝑃) ∩ (C𝑁 \ 𝑉𝑃̃),
we can find two continuous paths in AN that connect (𝑃,𝑄) with (𝑃,𝑄∗) and (𝑃̃, 𝑄̃) with (𝑃̃, 𝑄∗),
respectively. Furthermore, we easily construct a continuous path in A𝑁 which connects (𝑃,𝑄∗) and
(𝑃̃, 𝑄∗). This shows that A𝑁 ⊂ C2𝑁 is pathwise connected.

This completes the proof of Lemma 8.1. �

With the results derived above, we are now ready to give the proofs of Theorems 1.3 and 1.4 for
(HWM) with target S2.

Proof of Theorem 1.3 (soliton resolution for target S2)

Suppose u0 ∈ R𝑎𝑡 (R;S2) satisfies the assumptions of Theorem 1.3 and let U0 = u0 · 𝝈 ∈
R𝑎𝑡 (R; Gr1(C2)) be the corresponding initial datum for (HWMd) with 𝑑 = 2.

By applying Theorem 1.7 and using the identification Gr1(C2) � S2 via the use of the Pauli matrices
𝝈 = (𝜎1, 𝜎2, 𝜎3), we obtain that

lim
𝑡→±∞

‖u(𝑡) − u±(𝑡)‖ �𝐻 𝑠 = 0 for any 𝑠 > 0 ,

with

u±(𝑡, 𝑥) =
𝑁∑
𝑗=1

q𝑣𝑗 (𝑥 − 𝑣 𝑗 𝑡) − (𝑁 − 1)u∞ .

Here each q𝑣𝑗 ∈ R𝑎𝑡 (R;S2) is a profile of a ground state traveling solitary wave for (HWM) with
velocity 𝑣 𝑗 and it is given by

q𝑣𝑗 (𝑥) = u∞ +
𝐴 𝑗

𝑥 − 𝑦 𝑗 + i𝛿 𝑗
+

𝐴∗
𝑗

𝑥 − 𝑦 𝑗 − i𝛿 𝑗
.

The proof of Theorem 1.3 is now complete.

Proof of Theorem 1.4 (density of rational data with simple discrete spectrum)

Let u ∈ R𝑎𝑡 (R;S2) be given and set U = u · 𝝈 ∈ R𝑎𝑡 (R; Gr1(C2)) as usual. We recall that the discrete
spectrum 𝜎d(𝑇U) of the Toeplitz operator 𝑇U : 𝐿2

+(R;C2) → 𝐿2
+(R;C2) is found to be

𝜎d(𝑇U) = 𝜎(𝑇U |ℌ1)

with the finite-dimensional subspace ℌ1 = ran(𝐾U) = ran(Id − 𝑇2
U). We are interested in the case when

𝜎d(𝑇U) is simple and therefore we define the set

R𝑎𝑡s (R;S2) := {u ∈ R𝑎𝑡 (R;S2) | 𝜎d(𝑇U) is simple} .

We have the following result (stated as Theorem 1.4 in the introduction).

https://doi.org/10.1017/fms.2025.10136 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10136


Forum of Mathematics, Sigma 45

Theorem 8.2. The subset R𝑎𝑡s (R;S2) is dense in �𝐻 1
2 (R, S2).

Proof. We divide the proof into the following steps.
Step 1. For a given integer 𝑁 ≥ 1, we define the set

K𝑁 :=
{
𝐾U : Rank(𝐾U) = 𝑁 with u ∈ R𝑎𝑡 (R;S2) and u(±∞) = e3

}
.

From Theorem 8.1 part (iii), we recall that K𝑁 is canonically identified with set of rational functions
R𝑁 ⊂ C(𝑋) via the (inverse) stereographic projection. By Lemma 8.1, we can canonically identify
R𝑁 with a nonempty, open and connected subset A𝑁 ⊂ C2𝑁 . Let us write 𝑅 = 𝑃/𝑄 ≡ (𝑃,𝑄) ∈ A𝑁

in what follows.
Next, we define the map u : A𝑁 → 𝐿∞(R;R3) with

(u(𝑃,𝑄)) (𝑥) :=

(
2Re(𝑃(𝑥)𝑄(𝑥))

𝑃(𝑥)𝑃(𝑥) +𝑄(𝑥)𝑄(𝑥)
,

2Im(𝑃(𝑥)𝑄(𝑥))
𝑃(𝑥)𝑃(𝑥) +𝑄(𝑥)𝑄(𝑥)

,

𝑃(𝑥)𝑃(𝑥) −𝑄(𝑥)𝑄(𝑥)
𝑃(𝑥)𝑃(𝑥) +𝑄(𝑥)𝑄(𝑥)

)
with 𝑥 ∈ R .

Note that, for any (𝑃,𝑄) ∈ A𝑁 , the map 𝑥 ↦→ (u(𝑃,𝑄)) (𝑥) belongs to R𝑎𝑡 (R;S2) and it evidently
satisfies (u(𝑃,𝑄)) (±∞) = e3. Correspondingly, we obtain a map U : A𝑁 → 𝐿∞(R;𝑀2 (C)) by setting

U(𝑃,𝑄) := u(𝑃,𝑄) · 𝝈 . (8.2)

By Theorem 8.1, the map

K : A𝑁 → B(𝐿2
+(R;C2)), (𝑃,𝑄) ↦→ K(𝑃,𝑄) := 𝐻∗

U(𝑃,𝑄)𝐻U(𝑃,𝑄) (8.3)

is injective and and its image satisfies K(A𝑁 ) = K𝑁 .
Step 2. We claim that

K : A𝑁 → B(𝐿2
+(R;C2)) is real analytic

with the usual identification that A𝑁 ⊂ C2𝑁 � R4𝑁 . Indeed, since the expressions in (8.2) and (8.3)
are linear and quadratic, respectively, this amounts to showing that

u : A𝑁 → 𝐿∞(R;R3) is a real analytic map .

Indeed, let (𝑃,𝑄) ∈ A𝑁 be given. We show that u is real analytic in an open neighborhood around
(𝑃,𝑄) by showing that is the restriction of a complex analytic mapping. For 𝜀 > 0, we consider the
open set

Ω𝜀 := {(𝑃1, 𝑃2, 𝑄1, 𝑄2) ∈ C4𝑁 | | (𝑃1, 𝑃2, 𝑄1, 𝑄2) − (𝑃, 𝑃, 𝑄,𝑄) | < 𝜀}

and the map ũ : Ω𝜀 → 𝐿∞(R;R3) defined as

ũ(𝑃1, 𝑃2, 𝑄1, 𝑄2) (𝑥) :=
(
𝑃1 (𝑥)𝑄2 (𝑥) + 𝑃2 (𝑥)𝑄1 (𝑥)
𝑃1 (𝑥)𝑃2 (𝑥) +𝑄1(𝑥)𝑄2 (𝑥)

,
1
2i
𝑃1 (𝑥)𝑄2 (𝑥) − 𝑃2 (𝑥)𝑄1 (𝑥)
𝑃1(𝑥)𝑃2 (𝑥) +𝑄1 (𝑥)𝑄2 (𝑥)

,

𝑃1 (𝑥)𝑃2 (𝑥) −𝑄1(𝑥)𝑄2 (𝑥)
𝑃1 (𝑥)𝑃2 (𝑥) +𝑄1 (𝑥)𝑄2 (𝑥)

)
with 𝑥 ∈ R .

Note that if 𝜀 > 0 is sufficiently small, the denominator 𝑃1 (𝑥)𝑃2 (𝑥) + 𝑄1 (𝑥)𝑄2 (𝑥) ≠ 0 for all 𝑥 ∈ R
for (𝑃1, 𝑃2, 𝑄1, 𝑄2) ∈ Ω𝜀 and hence the map ũ : Ω𝜀 → 𝐿∞(R;R3) is well-defined. Clearly, the map
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ũ : Ω𝜀 → 𝐿∞(R;R3) is 𝐶1 and satisfies the Cauchy–Riemann equations and hence it is complex
analytic. In view of the fact that

u(𝜂, 𝜁) = ũ(𝜂, 𝜂, 𝜁 , 𝜁) for (𝜂, 𝜂, 𝜁 , 𝜁) ∈ Ω𝜀 ,

we conclude that u : A𝑁 → 𝐿∞(R;R3) is real analytic.
Step 3. Since the image K(A𝑁 ) = K𝑁 belongs to the subspace F𝑁 of bounded operators in

B(𝐿2
+(R;C2)) with finite rank N, we see that the maps

A𝑁 → R, (𝑃,𝑄) ↦→ Tr(K(𝑈, 𝑃)𝑚)

are well-defined for any integer 𝑚 ≥ 1. In fact, these maps are real analytic as being the composition of
real analytic maps.

Let 𝑝K(𝑃,𝑄) (𝜆) denote the characteristic polynomial of the endomorphism K(𝑃,𝑄) : ℌ1 → ℌ1 on
the N-dimensional subspace ℌ1 = ran(K(𝑃,𝑄)). Applying the Plemelj–Smithies formula (see, e.g.,
[19]) in the theory of Fredholm determinants, we obtain that

𝑝K(𝑃,𝑄) (𝜆) = det(𝜆Id − K(𝑃,𝑄)) =
𝑁∑
𝑘=0

(−1)𝑘𝐶𝑘 (K(𝑃,𝑄))𝜆𝑁−𝑘 ,

with the coefficients

𝐶𝑘 (A) =
1
𝑘!

det

�������� 

Tr(A) 𝑘 − 1 0 · · · 0

Tr(A2) Tr(A) 𝑘 − 2
. . .

...
...

...
. . .

. . . 0
Tr(A𝑘−1) Tr(A𝑘−2) · · · Tr(A) 1
Tr(A𝑘 ) Tr(A𝑘−1) · · · Tr(A2) Tr(A)

%&&&&&&&'
,

where 𝑘 = 0, . . . , 𝑁 . This shows that the coefficients of 𝑝K(𝑃,𝑄) (𝜆) are real analytic functions of
(𝑃,𝑄) ∈ A𝑁 . As a consequence, the discriminant function

𝔡 : A𝑁 → R, (𝑃,𝑄) ↦→ 𝔡(𝑃,𝑄) := disc(𝑝K(𝑃,𝑄) )

is also a real analytic function on the open and connected set A𝑁 ⊂ C2𝑁 � R4𝑁 . Moreover, we have
𝔡(𝑃,𝑄) ≠ 0 if and only if K(𝑃,𝑄) : ℌ1 → ℌ1 has simple eigenvalues, which by the identity in Lemma
4.1, is equivalent to having simple spectrum of 𝑇2

U(𝑃,𝑄) = Id − K(𝑃,𝑄) on ℌ1. Thus we find

𝔡(𝑃,𝑄) ≠ 0 if and only if the discrete spectrum 𝜎d(𝑇2
U(𝑃,𝑄) ) is simple .

Defining the set

Ã𝑁 := {(𝑃,𝑄) ∈ A𝑁 | 𝔡(𝑃,𝑄) ≠ 0} ,

we conclude from the real analyticity of the function 𝔡 on the connected set A𝑁 that either

Ã𝑁 is a dense and open subset in A𝑁 ,

or it holds Ã𝑁 = ∅, in which case we must have 𝔡 ≡ 0 on A𝑁 . However, by an explicit construction in
Lemma C.2 below, we conclude that 𝔡 � 0 on A𝑁 . Hence we have shown that

𝜎d(𝑇2
U(𝑃,𝑄) ) is simple for all (𝑃,𝑄) ∈ Ã𝑁
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with some dense and open subset Ã𝑁 ⊂ A𝑁 . Note that, by self-adjointness of 𝑇U, the simplicity of
𝜎d(𝑇2

U) implies that 𝜎d(𝑇U) is simple as well. Hence we deduce that

𝜎d(𝑇U(𝑃,𝑄) ) is simple for all (𝑃,𝑄) ∈ Ã𝑁 .

Step 4. We are now ready to finish the proof of Theorem 8.2. Let u ∈ R𝑎𝑡 (R;S2) be given. Note that
lim𝑥→±∞ u(𝑥) = p for some unit vector p ∈ S2. By rotational symmetry, we can henceforth assume that

p = e3 .

Let 𝑁 = Rank(𝐾U) and ℌ1 = ran(𝐾U). If 𝑁 = 0 (which corresponds to the constant map u ≡ e3) then
dimℌ1 = 0 and thus 𝜎d(𝑇U) = ∅ which is trivially simple. Also if 𝑁 = 1, we have dimℌ1 = 1 and thus
𝜎d(𝑇U) is evidently simple.

Henceforth we assume that 𝑁 ≥ 2 holds. Note that there is a (unique) point (𝑃,𝑄) ∈ A𝑁 such that

U = U(𝑃,𝑄) and 𝐾U = K(𝑃,𝑄) ∈ K𝑁 .

By density Ã𝑁 ⊂ A𝑁 , we can find a sequence (𝑃𝑘 , 𝑄𝑘 ) ∈ Ã𝑁 such that (𝑃𝑘 , 𝑄𝑘 ) → (𝑃,𝑄) in C2𝑁 .
Letting U𝑘 = U(𝑃𝑘 , 𝑄𝑘 ), we conclude that

𝜎d(𝑇U𝑘 ) is simple for all 𝑘 ∈ N .

Moreover, from (𝑃𝑘 , 𝑄𝑘 ) → (𝑃,𝑄) in C2𝑁 it is easy to see that ‖U𝑘 − U‖ �𝐻
1
2

→ 0 as 𝑘 → ∞.
Equivalently, in terms of the rational functions u𝑘 = (𝑢𝑘,1, 𝑢𝑘2 , 𝑢𝑘,3) ∈ R𝑎𝑡 (R;S2) with

u𝑘, 𝑗 =
1
2

TrC2 (U𝑘𝜎𝑗 ) for 𝑗 = 1, 2, 3 and 𝑘 ∈ N,

we deduce that ‖u𝑘 − u‖ �𝐻
1
2
→ 0 as 𝑘 → ∞. This proves the density of R𝑎𝑡s (R;S2) ⊂ R𝑎𝑡 (R;S2) as

stated above. The proof of Theorem 8.2 is now complete. �

A. Density of rational maps

Let 𝑑 ≥ 2 and 0 ≤ 𝑘 ≤ 𝑑 be given integers. Recall that

R𝑎𝑡 (R; Gr𝑘 (C𝑑)) =
{
U : R→ Gr𝑘 (C𝑑) | U(𝑥) is rational in 𝑥 ∈ R

}
denotes the set of rational maps from R into the complex Grassmannian Gr𝑘 (C𝑑), which we identify
with the set of matrices6

Gr𝑘 (C𝑑) = {𝑈 ∈ C𝑑×𝑑 | 𝑈∗ = 𝑈,𝑈2 = 1𝑑 and Tr(𝑈) = 𝑑 − 2𝑘} .

Furthermore, we recall the space

�𝐻
1
2 (R; Gr𝑘 (C𝑑)) =

{
U ∈ �𝐻

1
2 (R;C𝑑×𝑑) | U(𝑥) ∈ Gr𝑘 (C𝑑) for a. e. 𝑥 ∈ R

}
,

equipped with Gagliardo semi-norm ‖ · ‖ �𝐻
1
2

given through

‖U‖2
�𝐻

1
2
= ‖|𝐷 |

1
2 U‖2

𝐿2 =
1

2𝜋

∫
R

∫
R

|U(𝑥) − U(𝑦) |2𝐹
|𝑥 − 𝑦 |2

𝑑𝑥 𝑑𝑦 ,

where |𝐴|𝐹 = (Tr(𝐴∗𝐴))1/2 denotes the Frobenius norm of a matrix 𝐴 ∈ C𝑑×𝑑 .

6Recall also that, via𝑈 = 1𝑑 − 2𝑃, we have the canonical equivalence Gr𝑘 (C𝑑) � {𝑃 ∈ C𝑑×𝑑 | 𝑃∗ = 𝑃 = 𝑃2 and Tr(𝑃) =
𝑘 } in terms of self-adjoint projections 𝑃 on C𝑑 with rank(𝑃) = 𝑘.
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Theorem A.1. R𝑎𝑡 (R; Gr𝑘 (C𝑑)) is dense in �𝐻 1
2 (R; Gr𝑘 (C𝑑)). That is, for every U ∈ �𝐻 1

2 (R; Gr𝑘 (C𝑑)),
there exists a sequence U𝑛 ∈ R𝑎𝑡 (R; Gr𝑘 (C𝑑)) such that ‖U𝑛 − U‖ �𝐻

1
2
→ 0 as 𝑛→ ∞.

Before we give the proof of Theorem A.1 below, we obtain the following fact.

Corollary A.1. R𝑎𝑡 (R;S2) is dense in �𝐻 1
2 (R;S2).

Proof. By Theorem A.1, the set R𝑎𝑡 (R; Gr1 (C2)) is dense in �𝐻 1
2 (R; Gr1 (C2)). Recall that, thanks to

the linear relation U = u · 𝝈 with 𝝈 = (𝜎1, 𝜎2, 𝜎3) denoting the standard Pauli matrices, we can easily
check the equivalence of norms ‖U‖ �𝐻

1
2
∼ ‖u‖ �𝐻

1
2

and we thus conclude. �

Next, we turn to the proof of Theorem A.1. Here it is convenient to first prove the corresponding result
in the periodic setting as follows. Let T = R/2𝜋Z denote the one-dimensional torus. Correspondingly,
we define the space

𝐻
1
2 (T; Gr𝑘 (C𝑑)) := {U ∈ 𝐻

1
2 (T;C𝑑×𝑑) | U(𝑡) ∈ Gr𝑘 (C𝑑) for a. e. 𝑡 ∈ T} ,

endowed with the 𝐻 1
2 -norm for maps from T into C𝑑×𝑑 . Likewise, we also define

R𝑎𝑡 (T; Gr𝑘 (C𝑑)) := {U : T→ Gr𝑘 (C𝑑) | U(𝑡) is rational in 𝑧 = ei𝑡 with 𝑡 ∈ T} .

It is easy to see that R𝑎𝑡 (T; Gr𝑘 (C𝑑)) ⊂ 𝐻 1
2 (T; Gr𝑘 (C𝑑)) holds. In fact, we will show the following

result.

Theorem A.2. R𝑎𝑡 (T; Gr𝑘 (C𝑑)) is dense in 𝐻 1
2 (T; Gr𝑘 (C𝑑)).

Proof of Theorem A.2. First, we recall the following general result due to Brezis–Nirenberg [6] for
Sobolev spaces of functions with values in smooth and closed (i.e., compact with no boundary) mani-
folds. Indeed, we have that Gr𝑘 (C𝑑) is a smooth and closed manifold of real dimension 2𝑘 (𝑑 − 𝑘). Now
from [6][Lemma A.12] we obtain the following result; see also [30][Section 2] for a recent and detailed
discussion of density of smooth maps in Sobolev spaces in the setting of manifolds.

Lemma A.1. 𝐶∞(T; Gr𝑘 (C𝑑)) is dense in 𝐻 1
2 (T; Gr𝑘 (C𝑑)).

To complete the proof of Theorem A.2, it remains to establish the following result.

Lemma A.2. For every U ∈ 𝐶∞(T; Gr𝑘 (C𝑑)), there exists a sequence

U𝑁 ∈ R𝑎𝑡 (T; Gr𝑘 (C𝑑))

such that ‖U𝑁 − U‖
𝐻

1
2
→ 0 as 𝑁 → ∞.

Remark. The proof below can actually be used to prove density with respect to the ‖ · ‖𝐻 𝑠 -norm for all
𝑠 ≥ 0.

Proof of Lemma A.2. Let U ∈ 𝐶∞(T; Gr𝑘 (C𝑑)) be given. We define the map P ∈ 𝐶∞(T; Gr𝑘 (C𝑑)) by
setting P(𝑡) := 1

2 (1𝑑 − U(𝑡)). We have

P(𝑡) = P(𝑡)∗ = P(𝑡)2 and rank(P(𝑡)) = 𝑘 for all 𝑡 ∈ T.

We claim that there exists a smooth map G ∈ 𝐶∞(T;C𝑑×𝑘 ) such that

P(𝑡)G(𝑡) = G(𝑡) and rank(G(𝑡)) = 𝑘 for 𝑡 ∈ T . (A.1)
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To prove this claim, we use a result in [33][Theorem 6], where the following result is shown (up to
trivial modifications of notation and changing the period of 1 to 2𝜋).

Proposition A.1. Let A ∈ 𝐶∞(R;C𝑑×𝑑) with A(𝑡 + 2𝜋) = A(𝑡) for all 𝑡 ∈ R and assume that

rank(A(𝑡)) = 𝑚 for all 𝑡 ∈ R

with some constant 𝑚 ≤ 𝑑. Then there exists B ∈ 𝐶∞(R;C𝑑×(𝑑−𝑚) ) such that

B(𝑡 + 2𝜋) = B(𝑡), A(𝑡)B(𝑡) = 0, rank(B(𝑡)) = 𝑑 − 𝑚 for 𝑡 ∈ R .

By applying Proposition A.1 to A(𝑡) = 1𝑑 − P(𝑡) where 𝑚 = 𝑑 − 𝑘 , we complete the proof of claim
(A.1) by setting G(𝑡) := B(𝑡).

Let us now return to the proof of Lemma A.2. We claim that

P(𝑡) = G(𝑡) [G(𝑡)∗G(𝑡)]−1G(𝑡)∗ for 𝑡 ∈ T , (A.2)

Note that, since rank(G(𝑡)) = 𝑘 for G(𝑡) ∈ C𝑑×𝑘 , we obtain that G(𝑡)∗G(𝑡) ∈ C𝑘×𝑘 is invertible for any
𝑡 ∈ T.

To show (A.2), let P̃(𝑡) denote its right-hand side. Evidently, we have P̃(𝑡)∗ = P̃(𝑡) and P̃(𝑡) = P̃(𝑡)2.
Notice that 𝑣 ∈ ker(P̃(𝑡)) if and only if (G(𝑡)∗G(𝑡))−1(G(𝑡)∗𝑣) ∈ ker(G(𝑡)). Hence ker(P̃(𝑡)) =

ker(G(𝑡)∗) and by orthogonal complements we find ran(P̃(𝑡)) = ran(G(𝑡)).
On the other hand, we have rank(P(𝑡)) = 𝑘 = rank(G(𝑡)) and ran(G(𝑡)) ⊂ ran(P(𝑡)) since

P(𝑡)G(𝑡) = G(𝑡). Hence ran(P(𝑡)) = ran(G(𝑡)).
We readily conclude that ran(P̃(𝑡)) = ran(P(𝑡)). But this implies that the self-adjoint projections

P̃(𝑡) and P(𝑡) must be identical. Hence (A.2) holds true.
For 𝑁 ∈ N, we let G𝑁 (𝑡) be the truncated Fourier series of G ∈ 𝐶∞(T;C𝑑×𝑘 ), that is,

G𝑁 (𝑡) =
∑

|𝑛 | ≤𝑁
Ĝ𝑛ei𝑛𝑡

with coefficients Ĝ𝑛 = 1
2𝜋

∫ 2𝜋
0 G(𝑡)e−i𝑛𝑡 𝑑𝑡 ∈ C𝑑×𝑘 for 𝑛 ∈ Z. Clearly, we have G𝑁 ∈ R𝑎𝑡 (T;C𝑑×𝑘 )

together with the fact that

‖G𝑁 − G‖𝐻 1 → 0 as 𝑁 → ∞ . (A.3)

By Sobolev embeddings, we have the uniform convergence ‖G𝑁 − G‖𝐿∞ → 0 as 𝑁 → ∞. Recall that
G(𝑡)∗G(𝑡) ∈ C𝑘×𝑘 is invertible for all 𝑡 ∈ T. Thus we deduce

G𝑁 (𝑡)∗G𝑁 (𝑡) ∈ C𝑘×𝑘 is invertible for all 𝑡 ∈ T and 𝑁 ≥ 𝑁0 ,

with some sufficiently large constant 𝑁0 ≥ 1. Also, this shows that rank(G𝑁 (𝑡)) = 𝑘 for all 𝑡 ∈ T and
𝑁 ≥ 𝑁0.

For 𝑁 ≥ 𝑁0, we now define the sequence P𝑁 : T→ C𝑑×𝑑 by

P𝑁 (𝑡) := G𝑁 (𝑡) [G𝑁 (𝑡)∗G𝑁 (𝑡)]−1G𝑁 (𝑡)∗ .

Evidently, we have P𝑁 (𝑡) = P𝑁 (𝑡)∗ = P𝑁 (𝑡)2 for any 𝑡 ∈ T. Moreover, we find that rank(P𝑁 (𝑡)) = 𝑘
for 𝑡 ∈ T and 𝑁 ≥ 𝑁0. Thus P𝑁 : T→ Gr𝑘 (C𝑑) for all 𝑁 ≥ 𝑁0.

Now, recall that G𝑁 ∈ R𝑎𝑡 (T;C𝑑×𝑘 ). But this implies that the right-hand side in the definition of
the maps P𝑁 (𝑡) is also rational in 𝑧 = ei𝑡 ∈ S, that is, we have

P𝑁 ∈ R𝑎𝑡 (T; Gr𝑘 (C𝑑)) for all 𝑁 ≥ 𝑁0 .
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Now, from the convergence (A.3) together with the fact that the Sobolev space 𝐻1 (T) is an algebra, it
is straightforward to derive

P𝑁 (𝑡) = G𝑁 (𝑡) [G𝑁 (𝑡)∗G𝑁 (𝑡)]−1G𝑁 (𝑡)∗

→ G(𝑡) [G(𝑡)∗G(𝑡)]−1G(𝑡) = P(𝑡) in 𝐻1 (T;C𝑑×𝑑) .

Thanks to the elementary embedding 𝐻1 ⊂ 𝐻 1
2 this implies that ‖P𝑁 − P‖

𝐻
1
2
→ 0 as 𝑁 → ∞.

Finally, we see that the sequence U𝑁 = 1𝑑 − 2P𝑁 ∈ R𝑎𝑡 (T; Gr𝑘 (C𝑑)) satisfies ‖U𝑁 − U‖
𝐻

1
2
=

2‖P𝑁 − P‖
𝐻

1
2
→ 0 as 𝑁 → ∞. The proof of Lemma A.2 is now complete. �

The proof of Theorem A.2 now follows immediately from Lemmas A.1 and A.2. �

With the help of Theorem A.2, we are now ready to prove Theorem A.1.

Proof of Theorem A.1. We will make use of the known conformal invariance of the Gagliardo semi-
norm ‖ · ‖ �𝐻

1
2
. In what follows, we will identify maps defined on T as maps defined on S1 by means of

𝑧 = ei𝑡 ∈ S1 with 𝑡 ∈ T.
Let

S : R→ S1 \ {i}, 𝑥 ↦→ i
𝑥 − i
𝑥 + i

.

denote the inverse stereographic projection from R to S \ {i}. Assume that U : R → Gr𝑘 (C𝑑) and
Ũ : S→ Gr𝑘 (C𝑑) are related by U = Ũ ◦ S . A well-known calculation7 shows that

‖U‖2
�𝐻

1
2 (R)

=
1

2𝜋

∫
R

∫
R

|U(𝑥) − U(𝑦) |2𝐹
|𝑥 − 𝑦 |2

𝑑𝑥 𝑑𝑦

=
1

2𝜋

∫
T

∫
T

|Ũ(𝑡) − Ũ(𝑠) |2𝐹
2 − 2 cos(𝑡 − 𝑠) 𝑑𝑡 𝑑𝑠 = ‖Ũ‖2

�𝐻
1
2 (T)

Thus for a given map U ∈ �𝐻 1
2 (R; Gr𝑘 (C𝑑)), we set Ũ(𝑧) = (U ◦ S−1) (𝑧) which is defined for almost

every 𝑧 ∈ S. Then Ũ ∈ 𝐻 1
2 (T; Gr𝑘 (C𝑑)) by the above integral identity. By Theorem A.2, there exists a

sequence Ũ𝑁 ∈ R𝑎𝑡 (T; Gr𝑘 (C𝑑)) with

0 ≤ ‖Ũ𝑁 − Ũ‖ �𝐻
1
2 (T)

≤ ‖Ũ𝑁 − Ũ‖
𝐻

1
2 (T)

→ 0 as 𝑁 → ∞ .

Note that the sequence of functions

U𝑁 := Ũ𝑁 ◦ S ∈ R𝑎𝑡 (R; Gr𝑘 (C𝑑))

since S preserves rationality. Finally, we deduce that

‖U𝑁 − U‖ �𝐻
1
2 (R)

= ‖Ũ𝑁 − Ũ‖ �𝐻
1
2 (T)

→ 0 as 𝑁 → ∞ .

This completes the proof of Theorem A.1. �

B. Stereographic parametrization

In this section, we give the proof of Theorem 8.1. Hence we always assume that u : R→ S2 is a rational
map and, as usual, we denote U = u · 𝝈 : R → Gr1(C2) for the corresponding rational matrix-valued

7This can be traced back to J. Douglas’ seminal work on the Plateau problem [9].
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map. Note that here we always consider 𝑇U : 𝐿2
+(R;C2) → 𝐿2

+(R;C2), that is, we take V = C2. Also,
the operators 𝐻U and 𝐾U = 𝐻∗

U𝐻U are always understood as acting on 𝐿2
+(R;C2) in what follows.

We first collect some auxiliary results as follows.

Lemma B.1. Assume u : R→ S2 is a rational function of the form

u(𝑥) = u∞ +
𝑁∑
𝑗=1

( s 𝑗
𝑥 − 𝑧 𝑗

+
s 𝑗
𝑥 − 𝑧 𝑗

)
with some integer 𝑁 ≥ 1, u∞ ∈ S2, s1, . . . , s𝑁 ∈ C3 \ {0}, and pairwise distinct poles 𝑧1, . . . , 𝑧𝑁 ∈ C−.
Then it holds Rank(𝐾U) = 𝑁 .

Remark. By a straightforward extension of the proof below, we obtain the following result: Let U ∈
R𝑎𝑡 (R; Gr𝑘 (C𝑑)) be of the form

U(𝑥) = U∞ +
𝑁∑
𝑗=1

𝐴 𝑗

𝑥 − 𝑧 𝑗
+

𝑁∑
𝑗=1

𝐴∗
𝑗

𝑥 − 𝑧 𝑗

with some integer 𝑁 ≥ 1, U∞ ∈ Gr𝑘 (C𝑑), nonzero matrices 𝐴1, . . . , 𝐴𝑁 ∈ 𝑀𝑑 (C) with 𝐴2
𝑗 = 0 and

rank(𝐴 𝑗 ) = 1, and pairwise distinct poles 𝑧1, . . . , 𝑧𝑁 ∈ C−. Then we have rank(𝐾U) = 𝑁 for the
operator 𝐾U = 𝐻∗

U𝐻U : 𝐿2
+(R;C𝑑) → 𝐿2

+(R;C𝑑).

Proof. Since 𝐾U = 𝐻∗
U𝐻U, we have dim ran(𝐻∗

U) = dim ran(𝐾U). Therefore, we need to determine the
rank of the adjoint Hankel operator 𝐻∗

U : 𝐿2
−(R;C2) → 𝐿2

+(R;C2) with

𝐻∗
U 𝑓 = Π+(U 𝑓 ) = Π+

�� 
𝑁∑
𝑗=1

𝐴 𝑗

𝑥 − 𝑧 𝑗
𝑓
%&' for 𝑓 ∈ 𝐿2

−(R;C2)

with the matrices 𝐴 𝑗 = s 𝑗 · 𝝈 ∈ 𝑀2 (C). From the constraint u(𝑥) · u(𝑥) = 1, we readily deduce that the
nonzero vectors s 𝑗 ∈ C3\{0} satisfy s 𝑗 ·s 𝑗 = 0 for all 𝑗 = 1, . . . , 𝑁 . To see this, we recall u∞ ·u∞ = 1 and
that the poles {𝑧 𝑗 }𝑁𝑗=1 are pairwise distinct, so that an elementary expansion in partial fractions yields

1 = u(𝑥) · u(𝑥) = �� u∞ +
𝑁∑
𝑗=1

( s 𝑗
𝑥 − 𝑧 𝑗

+
s 𝑗
𝑥 − 𝑧 𝑗

)%&' ·
(
u∞ +

𝑁∑
𝑘=1

(
s𝑘
𝑥 − 𝑧𝑘

+ s𝑘
𝑥 − 𝑧𝑘

))
= 1 +

𝑁∑
𝑗=1

s 𝑗 · s 𝑗
(𝑥 − 𝑧 𝑗 )2 + rational terms not containing

1
(𝑥 − 𝑧 𝑗 )2 for any 𝑗 = 1, . . . , 𝑁.

Hence we conclude that s 𝑗 · s 𝑗 = 0 for all 𝑗 = 1, . . . , 𝑁 . Next, by elementary algebra for the Pauli
matrices, we find 𝐴2

𝑗 = (s 𝑗 · s 𝑗 )12 = 0 and hence each matrix 𝐴 𝑗 ∈ 𝑀2 (C) has exactly rank one. On the
other hand, we easily verify that

Π+

(
1
𝑥 − 𝜁 𝑓

)
=
𝑓 (𝜁)
𝑥 − 𝜁 for 𝑓 ∈ 𝐿2

−(R;C2) and 𝜁 ∈ C− .

In particular, we see that 𝑓 ↦→ Π+((𝑥 − 𝜁)−1 𝑓 ) has rank one for 𝜁 ∈ C−. Since each matrix 𝐴∗
𝑗 has rank

one and in view of

𝐻∗
U 𝑓 = Π+(U 𝑓 ) =

𝑁∑
𝑗=1
𝐴 𝑗Π+

(
1

(𝑥 − 𝑧 𝑗 )
𝑓

)
,

we deduce the upper bound rank(𝐻∗
U) ≤ 𝑁 .
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It remains to show that rank(𝐻∗
U) ≥ 𝑁 holds. Take vectors 𝑣 𝑗 ∈ C2 with 𝐴 𝑗𝑣 𝑗 ≠ 0 for 𝑗 = 1, . . . , 𝑁 .

Now we consider the functions 𝑓1, . . . , 𝑓𝑁 ∈ 𝐿2
−(R;C2) given by

𝑓 𝑗 (𝑥) =
𝑁∏

𝑘=1, 𝑘≠ 𝑗

𝑥 − 𝑧𝑘
𝑥 − 𝑧𝑘

𝑣 𝑗

𝑥 − 𝑧 𝑗
.

An explicit calculation shows that

𝐻∗
U 𝑓 𝑗 =

𝐴 𝑗 𝑓 𝑗 (𝑧 𝑗 )
𝑥 − 𝑧 𝑗

.

Since 𝐴 𝑗 𝑓 𝑗 (𝑧 𝑗 ) ≠ 0 and 𝑧1, . . . , 𝑧𝑁 ∈ C− are pairwise distinct, we see that rank(𝐻∗
U) ≥ 𝑁 . This

completes the proof. �

The next lemma addresses the case of nonsimple poles occurring in the rational map u : R → S2

and we derive a lower bound for rank(𝐾U).
Lemma B.2. Suppose that u : R→ S2 is of the form

u(𝑥) = u∞ +
𝑝∑
𝑗=1

𝑚 𝑗∑
𝑘=1

( s 𝑗 ,𝑘
(𝑥 − 𝑧 𝑗 )𝑘

+
s 𝑗 ,𝑘

(𝑥 − 𝑧 𝑗 )𝑘

)
with some integers𝑁 ≥ 1, 1 ≤ 𝑝, 𝑚 𝑗 ≤ 𝑁 , vectors s 𝑗 ,𝑘 ∈ C3\{0}, and pairwise distinct 𝑧1, . . . , 𝑧𝑁 ∈ C−.
Then it holds that

Rank(𝐾U) ≥ 𝑁 =
𝑝∑
𝑗=1
𝑚 𝑗 .

Proof. As before, we need to bound rank(𝐻∗
U). We adapt the second part of the proof of Lemma B.1 as

follows. For any 𝜁 ∈ C− and any integer 𝑘 ≥ 1, we obtain by Taylor’s formula that

Π+

(
1

(𝑥 − 𝜁)𝑘
𝑓

)
=

𝑘−1∑
ℓ=0

𝑓 (ℓ) (𝜁)
ℓ!(𝑥 − 𝜁)𝑘−𝑙

for any 𝑓 ∈ 𝐿2
−(R;C2). Now we choose 𝑗 ∈ {1, . . . , 𝑝} and 𝑘 ∈ {1, . . . , 𝑚 𝑗 }. We claim that there exists

𝑓 𝑗 ,𝑘 ∈ 𝐿2
−(R;C2) such that

𝑓 (ℓ)𝑗 ,𝑘 (𝑧𝑖) = 0 for 𝑖 ≠ 𝑗 and ℓ ∈ {0, . . . , 𝑚𝑖 − 1} ,

𝑓 (ℓ)𝑗 ,𝑘 (𝑧 𝑗 ) = 0 and 𝐴 𝑗 ,𝑚 𝑗 𝑓
(𝑘−1)
𝑗 ,𝑘 (𝑧 𝑗 ) ≠ 0 for ℓ ∈ {0, . . . , 𝑚 𝑗 − 1} and ℓ ≠ 𝑘 − 1 ,

with the rank-one matrices 𝐴 𝑗 ,𝑘 = s 𝑗 ,𝑘 · 𝝈 ∈ 𝑀2 (C). Indeed, just choose

𝑓 𝑗 ,𝑘 (𝑥) =
𝑁∏

𝑖=1, 𝑖≠ 𝑗

(
𝑥 − 𝑧𝑖
𝑥 − 𝑧𝑖

) 𝑚 𝑗∑
𝑟=𝑘

(𝑥 − 𝑧 𝑗 )𝑟−1

(𝑥 − 𝑧 𝑗 )𝑟
𝑣 𝑗 ,𝑘,𝑟

with nonzero vectors 𝑣 𝑗 ,𝑘,𝑟 ∈ C2 such that 𝐴 𝑗 ,𝑚 𝑗 𝑣 𝑗 ,𝑘,𝑘 ≠ 0 and with the other 𝑣 𝑗 ,𝑘,𝑟 determined by
induction on r. Then

𝐻∗
U( 𝑓 𝑗 ,𝑘 ) =

1
(𝑘 − 1)!

𝑚 𝑗∑
𝑟=𝑘

𝐴 𝑗 ,𝑟 𝑓 𝑗 ,𝑘 (𝑧 𝑗 )
(𝑥 − 𝑧 𝑗 )𝑟−𝑘+1 .
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It remains to observe that these rational functions are linearly independent as 𝑗 ∈ {1, . . . , 𝑝} and
𝑘 ∈ {1, . . . , 𝑚 𝑗 }, which is elementary in view of the leading singularity in (𝑥 − 𝑧 𝑗 ). �

We are now ready to give the proof of Theorem 8.1. For the reader’s convenience, we recall that the
statement of Theorem 8.1, which is now labeled as Theorem B.1 here.

Theorem B.1. Let u = (𝑢1, 𝑢2, 𝑢3) : R→ S2 be a rational map. Given an integer 𝑁 ≥ 1, the following
statements are equivalent.

(i) dimℌ1 = rank(𝐾U) = 𝑁 .
(ii) The least common denominator of 𝑢1, 𝑢2, 𝑢3 has degree 2𝑁 .

(iii) There exists a rational function 𝑅 ∈ C(𝑋) of the form

𝑅(𝑥) = 𝑃(𝑥)
𝑄(𝑥) ,

where 𝑃 ∈ C[𝑋] is a polynomial of degree N and 𝑄 ∈ C[𝑋] is a nonzero polynomial of degree at
most 𝑁 − 1, such that P and Q have no common factor such that, up to rotation on the sphere S2,
we have

𝑢1(𝑥) + i𝑢2(𝑥) =
2𝑅(𝑥)

𝑅(𝑥)𝑅(𝑥) + 1
, 𝑢3(𝑥) =

𝑅(𝑥)𝑅(𝑥) − 1
𝑅(𝑥)𝑅(𝑥) + 1

.

Proof of Theorem B.1. We divide the proof into the following steps.
(ii) ⇒ (iii). Assume u = (𝑢1, 𝑢2, 𝑢3) : R→ S2 is a rational map with the least common denominator

given by a polynomial 𝐷 ∈ R[𝑋] of degree 2𝑁 . (Note that D must have even degree, since 𝑢1, 𝑢2, 𝑢3
are real-valued rational functions with no poles in R.) Moreover, up to a rotation on S2, we may assume
that 𝑢3(𝑥) → 1 as |𝑥 | → ∞, so that there exist polynomials 𝑄 𝑗 ∈ R[𝑋] such that

𝑢 𝑗 (𝑥) =
𝑄 𝑗 (𝑥)
𝐷 (𝑥) for 𝑗 = 1, 2, 3,

where 𝑄1, 𝑄2 have degree at most 2𝑁 − 1 and 𝑄3 has degree 2𝑁 , with the same leading coefficient as
D. Now the condition 𝑢2

1 + 𝑢2
2 + 𝑢2

3 = 1 means that

𝑄2
1 +𝑄2

2 +𝑄2
3 = 𝐷2 ,

or equivalently

(𝑄1 + i𝑄2) (𝑄1 − i𝑄2) = (𝐷 −𝑄3) (𝐷 +𝑄3) .

Since 𝑄3 and D have the same leading coefficient, the degree of 𝐷 + 𝑄3 is 2𝑁 and the degree 𝛿 of
𝐷 −𝑄3 is at most 2𝑁 − 1. Denote by d the degree of 𝑄1 + i𝑄2. Since 𝑄1 and 𝑄2 are real polynomials,
d is also the degree of 𝑄1 − i𝑄2 and hence

2𝑑 = 𝛿 + 2𝑁 .

This implies

𝑁 ≤ 𝑑 ≤ 2𝑁 − 1 .

Furthermore, we recall that D is the least common denominator of 𝑢1, 𝑢2, 𝑢3 which means that
𝑄1, 𝑄2, 𝑄3, 𝐷 have no common factor, or equivalently the polynomials

𝑄1 + i𝑄2, 𝑄1 − i𝑄2, 𝐷 −𝑄3, 𝐷 +𝑄3

have no common factor.
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Now, we claim that 𝑄1 + i𝑄2 and 𝐷 − 𝑄3 have at least 𝑑 − 𝑁 common zeros – counted with
multiplicities. Indeed, assume that 𝛼 ∈ C is a zero of 𝐷 −𝑄3 of multiplicity 𝑚 ≥ 1. We distinguish the
following cases depending whether 𝛼 ∈ R or 𝛼 ∉ R.

If 𝛼 is real, then 𝛼 is in fact a zero of𝑄1 and𝑄2, hence it is a zero of𝑄1 + i𝑄2 and𝑄1 − i𝑄2 with the
same multiplicity 𝜇. Since 𝛼 cannot be a zero of 𝐷 +𝑄3 (otherwise𝑄1 + i𝑄2, 𝑄1 − i𝑄2, 𝐷 −𝑄3, 𝐷 +𝑄3
would have common factor), we infer that 2𝜇 = 𝑚.

If 𝛼 is not real, then 𝛼 is a zero of𝑄1 + i𝑄2 or𝑄1 − i𝑄2. Since 𝛼 is also a zero of the real polynomial
𝐷 −𝑄3, we can choose the zero 𝛽 ∈ {𝛼, 𝛼} having the maximal multiplicity 𝜇 as zero of𝑄1 + i𝑄2. This
shows 𝜇 ≥ 𝑚

2 .
Summing up, we have found a common factor of 𝐷 −𝑄3 and 𝑄1 + i𝑄2 with degree at least equal to

half of the degree of 𝐷 −𝑄3, namely 𝑑 − 𝑁 . Therefore we can write

𝑄1 + i𝑄2
𝐷 −𝑄3

=
𝑃

𝑄
(B.1)

where P and Q are polynomials in C[𝑋] with no common factor, and P has degree 𝑑 − 𝑟 , Q has degree
2(𝑑 − 𝑁) − 𝑟 for some 𝑟 ≥ 𝑑 − 𝑁 . Notice that deg 𝑃 > deg𝑄.

Next, we prove that equality 𝑟 = 𝑑 − 𝑁 holds. Indeed, from (B.1), we conclude

𝑄1
𝐷

=
𝑃𝑄 + 𝑃𝑄
𝑃𝑃 +𝑄𝑄

,
𝑄2
𝐷

=
𝑃𝑄 − 𝑃𝑄

i(𝑃𝑃 +𝑄𝑄)
,
𝑄3
𝐷

=
𝑃𝑃 −𝑄𝑄
𝑃𝑃 +𝑄𝑄

.

This implies that 𝑢1, 𝑢2, 𝑢3 have a common denominator of degree equal to 2 deg 𝑃. Hence

2(𝑑 − 𝑟) ≥ 2𝑁 ,

which implies 𝑟 ≤ 𝑑 − 𝑁 , leading to the desired equality 𝑟 = 𝑑 − 𝑁 . By defining the rational function

𝑅(𝑥) = 𝑃(𝑥)
𝑄(𝑥) ∈ C(𝑋),

we conclude that (iii) holds. This completes the proof of the implication (𝑖𝑖) ⇒ (𝑖𝑖𝑖).
(iii) ⇒ (ii). Suppose we are given a rational function

𝑅(𝑥) = 𝑃(𝑥)
𝑄(𝑥) ,

where P is a polynomial of degree N, Q is a polynomial of degree at most 𝑁 − 1, and 𝑃,𝑄 have no
common factor. The formulae

𝑢1 =
𝑅 + 𝑅
𝑅𝑅 + 1

, 𝑢2 =
𝑅 − 𝑅

i(𝑅𝑅 + 1)
, 𝑢3 =

𝑅𝑅 − 1
𝑅𝑅 + 1

clearly define a rational map u = (𝑢1, 𝑢2, 𝑢3) from R with values in S2. Furthermore, we see that
|𝑃 |2 + |𝑄 |2 is a common denominator of 𝑢1, 𝑢2, 𝑢3 and its degree is 2𝑁 . Let us prove that |𝑃 |2 + |𝑄 |2
is the least common denominator of 𝑢1, 𝑢2, 𝑢3. We argue by contradiction. Suppose there is a common
factor of the polynomials

𝑃𝑄 + 𝑃𝑄, 𝑃𝑄 − 𝑃𝑄, 𝑃𝑃 −𝑄𝑄, 𝑃𝑃 +𝑄𝑄

or equivalently of the polynomials

𝑃𝑄, 𝑃𝑄, 𝑃𝑃,𝑄𝑄 .
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Since 𝑃,𝑄 have no common factor, there exist polynomials 𝑈,𝑉 such that

𝑈𝑃 +𝑉𝑄 = 1 .

Therefore the polynomials

𝑈 (𝑃𝑃) +𝑉 (𝑃𝑄) = 𝑃, 𝑈 (𝑃𝑄) +𝑉 (𝑄𝑄) = 𝑄

would have a common factor, which yields a contradiction. This proves that (iii) implies (ii).
(ii) ⇒ (i). Let us assume that u = (𝑢1, 𝑢2, 𝑢3) : R→ S2 has a least common denominator of degree

2𝑁 . We claim that

Rank(𝐾U) = 𝑁 . (B.2)

Indeed, if u : R→ S2 has only simple poles (i.e., the assumptions of Lemma B.1 are satisfied), we can
directly apply Lemma B.1 to conclude that (B.2) holds.

To deal with the case of multiple poles occurring in u : R→ S2, we need the following approximation
result.
Lemma B.3. Let 𝑃 ∈ C[𝑋] be a polynomial of degree 𝑁 ≥ 1, 𝑄 ∈ C[𝑋] be a nonzero polynomial
of degree at most 𝑁 − 1, and assume that 𝑃,𝑄 have no common factor. Then there exist sequence
𝑃𝑛, 𝑄𝑛 ∈ C[𝑋] such that 𝑃𝑛, 𝑄𝑛 have no common factor and

deg 𝑃𝑛 = 𝑁, deg𝑄𝑛 ≤ 𝑁 − 1, 𝑃𝑛 → 𝑃, 𝑄𝑛 → 𝑄 in C[𝑋] .

Furthermore, the zeros of |𝑃𝑛 |2 + |𝑄𝑛 |2 are simple for every 𝑛 ∈ N.
Proof of Lemma B.3. Consider the set A of pairs of polynomials (𝑃,𝑄) ∈ C[𝑋] × C[𝑋] such that
deg = 𝑁 , deg𝑄 ≤ 𝑁 − 1 and 𝑃,𝑄 have no common factor and P is monic. By Lemma 8.1, we can
identify A with a connected open subset in C2𝑁 . On the set A, the condition that the discriminant of
|𝑃 |2 + |𝑄 |2 is different from 0 is an open dense subset. This completes the proof. �

Suppose now that u : R → S2 has multiple poles and the least common denominator of 𝑢1, 𝑢2, 𝑢3
has degree 2𝑁 . By Lemma B.2, we must have

Rank (𝐾U) ≥ 𝑁 .

On the other hand, by the proven implication (𝑖𝑖) ⇒ (𝑖𝑖𝑖), there exists a rational function

𝑅(𝑥) = 𝑃(𝑥)
𝑄(𝑥) ∈ C(𝑋)

with deg 𝑃 = 𝑁 , deg𝑄 ≤ 𝑁 − 1 with 𝑄 � 0 and 𝑄, 𝑃 have no common factor, such that (up to
rotation on S2) the rational function u = (𝑢1, 𝑢2, 𝑢3) is given by the inverse stereographic projection
applied to 𝑅(𝑥). Now, let us take sequences 𝑃𝑛, 𝑄𝑛 ∈ C[𝑋] as provided in Lemma B.3. Define
𝑅𝑛 (𝑥) = 𝑃𝑛 (𝑥)/𝑄𝑛 (𝑥) ∈ C(𝑋) and consider the sequence of rational maps u(𝑛) : R → S2 with
components

𝑢 (𝑛)1 (𝑥) + i𝑢 (𝑛)2 (𝑥) = 2𝑅𝑛 (𝑥)
|𝑅𝑛 (𝑥) |2 + 1

, 𝑢 (𝑛)3 (𝑥) = |𝑅𝑛 (𝑥) |2 − 1
|𝑅𝑛 (𝑥) |2 + 1

.

Since |𝑃𝑛 |2 + |𝑄𝑛 |2 has only simple zeros, we see that each rational map u(𝑛) has only simple poles.
Applying the known implication (𝑖𝑖𝑖) ⇒ (𝑖𝑖), we conclude that 𝑢 (𝑛)1 , 𝑢 (𝑛)2 , 𝑢 (𝑛)3 for all n have a least
common denominator of degree 2𝑁 . Thus for every rational map u(𝑛) : R→ S2 we can apply Lemma
B.1 to conclude that

Rank (𝐾U𝑛 ) = 𝑁 for all 𝑛 ∈ N .
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On the other hand, since u(𝑛) (𝑥) → u(𝑥) pointwise and |u(𝑛) (𝑥) | = 1, we see that 𝐾U𝑛 𝑓 → 𝐾U 𝑓 in
𝐿2 (R,C2) for every 𝑓 ∈ 𝐿2

+(R,C2) by dominated convergence. From this we easily deduce that

𝑁 = lim inf
𝑛→∞

Rank(𝐾U𝑛 ) ≥ Rank(𝐾U) .

This completes the proof that (B.2) holds whenever 𝑢1, 𝑢2, 𝑢3 have a least common denominator of
degree 2𝑁 .

(i) ⇒ (ii). Suppose now that Rank(𝐾U) = 𝑁 holds for some integer 𝑁 ≥ 1. Let 𝐷 ∈ R[𝑋] denote
the least common denominator of 𝑢1, 𝑢2, 𝑢3. Since D has no zeros in R, we must have that deg𝐷 = 2𝑚
for some integer 𝑚 ≥ 1. We claim that

𝑚 = 𝑁 .

Indeed, if u : R → S2 has simple poles (in the sense of Lemma B.1), we can use Lemma B.1 directly
to deduce that 𝑚 = 𝑁 must hold.

If u : R → S2 has multiple poles, then deg𝐷 = 2𝑚 where 𝑚 ≥ 1 is the number of poles of
u counted with multiplicity. By the same argument using approximation with simple pole rational
functions u(𝑛) : R→ S2 as in the previous step, we conclude that Rank(𝐾U) = 𝑚. Hence 𝑚 = 𝑁 is also
true in this case.

The proof of Theorem B.1 is now complete. �

C. Construction of 𝑇U with simple discrete spectrum

The aim of this section is to construct, for given 𝑁 ≥ 1, rational maps u ∈ R𝑎𝑡 (R;S2) such that the
corresponding Toeplitz operator 𝑇U : 𝐿2

+(R;C2) → 𝐿2
+(R;C2) has simple discrete spectrum

𝜎d(𝑇U) = {𝑣1, . . . , 𝑣𝑁 } ,

where 𝑣 𝑗 ∈ (−1, 1) for 𝑗 = 1, . . . , 𝑁 are arbitrarily given simple eigenvalues. To achieve this, we will
use a perturbative construction by using N simple traveling solitary waves for (HWM) with different
velocities 𝑣 𝑗 ∈ (−1, 1) that are sufficiently far separated from each other.

For a rational map u ∈ R𝑎𝑡 (R;S2), we henceforth assume without loss of generality that

u∞ := lim
|𝑥 |→∞

u(𝑥) = e3 = (0, 0, 1) ∈ S2

by rotational symmetry on the sphere S2. For a given velocity 𝑣 ∈ (−1, 1), we define the unit vector
n𝑣 ∈ S2 by setting

n𝑣 := (0,
√

1 − 𝑣2, 𝑣) so that 𝑣 = n · u∞ . (C.1)

For later use, we also define the unit vectors n𝑣,1, n𝑣,2 ∈ S2 with

n𝑣,1 := e1 = (1, 0, 0) and n𝑣,2 := n𝑣 × n𝑣,1 = (0, 𝑣,−
√

1 − 𝑣2) . (C.2)

Thus (n𝑣 , n𝑣,1, n𝑣,2) forms a (positively oriented) orthonormal basis of unit vectors in R3 whose use
will become clear below.

Furthermore, it will be convenient to consider poles 𝑧 ∈ C− of the form

𝑧 = 𝑦 − i ∈ C− with 𝑦 ∈ R . (C.3)

Next, we construct a rational function q𝑣,𝑧 : R→ S2 of the form

q𝑣,𝑧 (𝑥) := e3 + s𝑣
𝑥 − 𝑧 +

s𝑣
𝑥 − 𝑧
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with some complex vector s𝑣 ∈ C3 \ {0}. By plugging this ansatz into the pointwise constraint
|q𝑣,𝑧 (𝑥) |2 = 1 for 𝑥 ∈ R and equating all terms proportional to (𝑥 − 𝑧)−1 and (𝑥 − 𝑧)−2 to zero, we easily
find the following constraints equivalent to the condition |q𝑣,𝑧 (𝑥) |2 = 1:

s𝑣 · s𝑣 = 0 and s𝑣 ·
(
e3 + s𝑣

𝑧 − 𝑧

)
= 0 , (C.4)

where a · b = 𝑎1𝑏1 + 𝑎2𝑏2 + 𝑎3𝑏3 for a, b ∈ C3. In view of [3][Lemma B.1], we make the ansatz

s𝑣 = 𝑠𝑣 (n𝑣,1 + in𝑣,2)

with some complex number 𝑠𝑣 ∈ C∗ and with the real unit vectors n𝑣,1 and n𝑣,2 from (C.2) above. This
automatically ensures that the first constraint in (C.4) holds. Next, by recalling that 𝑧 − 𝑧 = −2i for the
pole 𝑧 ∈ C−, the second equation in (C.4) becomes

𝑠𝑣 (n𝑣,1 + in𝑣,2) ·
(
e3 −

𝑠𝑣 (n𝑣,1 − in𝑣,2)
2i

)
= 0 .

Since (n𝑣,1 + in𝑣,2) · (n𝑣,1 − in𝑣,2) = 2, we readily find that 𝑠𝑣 ∈ C∗ is given by

𝑠𝑣 = −i(n𝑣,1 − in𝑣,2) · e3 = i
√

1 − 𝑣2 . (C.5)

In summary, we find that

q𝑣,𝑧 (𝑥) = e3 + s𝑣
𝑥 − 𝑧 +

s𝑣
𝑥 − 𝑧

with

s𝑣 = i
√

1 − 𝑣2(n𝑣,1 + in𝑣,2) =
√

1 − 𝑣2 �� 
i
−𝑣√

1 − 𝑣2

%&' . (C.6)

We remark that the simple pole rational function q𝑣,𝑧 : R→ S2 yields a traveling solitary wave solution

u(𝑡, 𝑥) = q𝑣,𝑧 (𝑥 − 𝑣𝑡)

of (HWM) with velocity v and lim |𝑥 |→∞ u(𝑡, 𝑥) = e3, which follows by a direct calculation which we
omit here.

We have the following main result.
Lemma C.1. Let 𝑁 ≥ 1 be an integer and let 𝑣1, . . . , 𝑣𝑁 ∈ (−1, 1) be given. Then there is a sufficiently
small constant 𝜀0 = 𝜀0 (𝑁) > 0 such that the following holds.

Let 𝑧1, . . . , 𝑧𝑁 ∈ C− be pairwise distinct poles of the form (C.3) and define

𝜀 :=
1

min 𝑗≠𝑘 |𝑧𝑘 − 𝑧 𝑗 |
> 0 and  𝑧 = (𝑧1, . . . , 𝑧𝑁 ).

Then if 𝜀 < 𝜀0, there exists a rational map u 𝑧 : R→ S2 of the form

u 𝑧 (𝑥) = e3 +
𝑁∑
𝑗=1

s 𝑗 , 𝑧
𝑥 − 𝑧 𝑗

+
𝑁∑
𝑗=1

s 𝑗 , 𝑧
𝑥 − 𝑧 𝑗

with some s 𝑗 , 𝑧 ∈ C3 \ {0}. Moreover, we have that

s 𝑗 , 𝑧 = s𝑣𝑗 +𝑂 (𝜀) for 𝑗 = 1, . . . , 𝑁 ,

where s𝑣𝑗 ∈ C3 \ {0} is given by (C.6) with 𝑣 = 𝑣 𝑗 .
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Proof. We arrange the proof into the following steps.
Step 1. Let 𝑧1, . . . , 𝑧𝑁 ∈ C− be pairwise distinct with Im 𝑧 𝑗 = −1 for 𝑗 = 1, . . . , 𝑁 and set

𝜀 = 1/min 𝑗≠𝑘 |𝑧𝑘 − 𝑧 𝑗 | > 0. We denote  𝑧 = (𝑧1, . . . , 𝑧𝑁 )- For 𝜀 ∈ (0, 𝜀0) with 𝜀0 = 𝜀0 (𝑁) > 0
chosen below, we need to find s1, 𝑧 , . . . , s𝑁 , 𝑧 ∈ C3 \ {0} such that the following nonlinear constraints
are satisfied:

s 𝑗 , 𝑧 · s 𝑗 , 𝑧 = 0 for 𝑗 = 1, . . . , 𝑁 , (C.7)

s 𝑗 , 𝑧 ·
�� e3 +

𝑁∑
𝑘≠ 𝑗

s𝑘, 𝑧
𝑧 𝑗 − 𝑧𝑘

+
𝑁∑
𝑘=1

s𝑘, 𝑧
𝑧 𝑗 − 𝑧𝑘

%&' = 0 for 𝑗 = 1, . . . , 𝑁 . (C.8)

In fact, these conditions follow simply by a partial fraction expansion for the constraint u 𝑧 (𝑥) ·u 𝑧 (𝑥) = 1
with our ansatz for u 𝑧 (𝑥) stated above. As for (C.7), we recall from [3][Lemma B.1] the algebraic fact
that any s ∈ C3 \ {0} with s · s = 0 can be written as

s = 𝑠(n1 + in2)

with a complex number 𝑠 ∈ C∗ and real unit vectors n1, n2 ∈ S2 such that n1 · n2 = 0. In fact, this
representation is unique modulo𝑈 (1)-rotations in the plane spanned by n1 and n2 with a corresponding
phase rotation of 𝑠 𝑗 .

Next, we define the vectors

s 𝑗 := s𝑣𝑗 ∈ C3 \ {0} given by (C.6) with 𝑣 = 𝑣 𝑗

and we fix corresponding real unit vectors n 𝑗 ,1, n 𝑗 ,2 ∈ S2 as defined in (C.2) with 𝑣 = 𝑣 𝑗 ∈ (−1, 1).
Thus we have

s 𝑗 = 𝑠 𝑗 (n 𝑗 ,1 + in 𝑗 ,2)

with some complex numbers 𝑠 𝑗 ∈ C∗ to be determined for 𝑗 = 1, . . . , 𝑁 .
For the vectors s 𝑗 , 𝑧 to be found, we make the ansatz

s 𝑗 ,  𝑣 = 𝑠 𝑗 , 𝑧 (n 𝑗 ,1 + in 𝑗 ,2) with 𝑠 𝑗 , 𝑧 ∈ C∗ .

Note that the vectors n 𝑗 ,1 and n 𝑗 ,2 are fixed and only depend on 𝑣 𝑗 but not on the poles (𝑧1, . . . , 𝑧𝑁 ).
Clearly, the first set of constraints (C.7) is automatically satisfied by our ansatz for s 𝑗 , 𝑧 . Thus we only
need to show how to solve (C.8) in the rest of the proof, provided that the constant 𝜀0 = 𝜀0 (𝑁) ! 1 is
sufficiently small.

Step 2. In order to solve (C.8), we devise an iteration scheme as follows inspired by the discussion
in [3]8. First, let us write (C.8) as

s 𝑗 , 𝑧 ·
(
m 𝑗 , 𝜀 +

s 𝑗 , 𝑧
𝑧 𝑗 − 𝑧 𝑗

)
= 0 with m 𝑗 , 𝑧 := e3 +

𝑁∑
𝑘≠ 𝑗

( s𝑘, 𝑧
𝑧 𝑗 − 𝑧𝑘

+
s𝑘, 𝑧
𝑧 𝑗 − 𝑧𝑘

)
.

If we recall that s 𝑗 , 𝑧 = 𝑠 𝑗 , 𝑧 (n 𝑗 ,1 + in 𝑗 ,2) and 𝑧 𝑗 − 𝑧 𝑗 = −2i, we find the equation

𝑠 𝑗 , 𝑧 (n 𝑗 ,1 + in 𝑗 ,2) ·
(
m 𝑗 , 𝑧 −

𝑠 𝑗 , 𝑧 (n 𝑗 ,1 − in 𝑗 ,2)
2i

)
= 𝑠 𝑗 , 𝑧

(
(n 𝑗 ,1 + in 𝑗 ,2) · m 𝑗 , 𝑧 + i𝑠 𝑗 , 𝑧

)
= 0,

8In [3], a different sign convention for the poles 𝑧 𝑗 and spin vectors s 𝑗 are used. The reader should be aware of this when
comparing with our formulae here.
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which has the unique nontrivial solution

𝑠 𝑗 , 𝑧 = −i(n 𝑗 ,1 − in 𝑗 ,2) · m 𝑗 , 𝑧 .

Since m 𝑗 , 𝑧 does not depend on s 𝑗 , 𝑧 , this suggests the following iteration scheme: If 𝑠 (𝑛)
𝑗 , 𝑧 is given, we

define the next iterate 𝑠 (𝑛+1)
𝑗 , 𝑧 by

𝑠 (𝑛+1)
𝑗 , 𝑧 := −i(n 𝑗 ,1 − in 𝑗 ,2) ·

�� e3 +
𝑁∑
𝑘≠ 𝑗

�� 
𝑠 (𝑛)
𝑘, 𝑧 (n𝑘,1 + in𝑘,2)
𝑧 𝑗 − 𝑧𝑘

+
𝑠 (𝑛)
𝑘, 𝑧 (n𝑘,1 − in𝑘,2)
𝑧 𝑗 − 𝑧𝑘

%&'%&' .
Thus we need to solve the fixed point equation

 𝑠 𝑧 = 𝐹 𝑧 ( 𝑠 𝑧)

with the variable  𝑠 𝑧 = (𝑠1, 𝑧 , . . . , 𝑠𝑁 , 𝑧) and the given parameters  𝑧 = (𝑧1, . . . , 𝑧𝑁 ), where the map
𝐹 𝑧 : C𝑁 → C𝑁 is defined by the right-hand side of the iteration scheme above. Recalling that
𝑠 𝑗 = −i(n 𝑗 ,1 − in 𝑗 ,2) · e3 from (C.5), we find

𝐹 𝑧 ( 𝑠 𝑧) =  𝑠 + 𝐴 𝑧 ( 𝑠 𝑧) + 𝐵 𝑧 ( 𝑠 𝑧) ,

where  𝑠 = (𝑠1, . . . , 𝑠𝑁 ) ∈ C𝑁 and 𝐴 𝑧 , 𝐵 𝑧 : C𝑁 → C𝑁 are linear maps with operator norms

‖𝐴 𝑧 ‖C𝑁→C𝑁 + ‖𝐵 𝑧 ‖C𝑁→C𝑁 ≤ 𝐶𝜀 ≤ 𝐶𝜀0 (C.9)

with some constant 𝐶 > 0 depending only on N. Hence by taking 𝜀0 := 1/(2𝐶), we see that, for any
𝜀 ∈ (0, 𝜀0), the map𝐺 := Id− 𝐴 𝑧 −𝐵 𝑧 (·) : C𝑁 → C𝑁 is invertible by using the Neumann series. Hence
 𝑠𝜀 = 𝐺−1( 𝑠) is the unique solution of the fixed point equation  𝑠 𝑧 = 𝐹 𝑧 ( 𝑠 𝑧) provided that 𝜀 ∈ (0, 𝜀0)
holds.

Step 3. It remains to show that

s 𝑗 , 𝑧 = s 𝑗 +𝑂 (𝜀) for 𝑗 = 1, . . . , 𝑁.

Since s 𝑗 , 𝑧 = 𝑠 𝑗 , 𝑧 (n 𝑗 ,1+ in 𝑗 ,2) with vectors n 𝑗 ,1, n 𝑗 ,2 independent of 𝜀, this claim is equivalent to proving
that

 𝑠 𝑧 =  𝑠 +𝑂 (𝜀)

with the notation from Step 2. But from the fixed point equation and estimate (C.9) we readily find

‖ 𝑠 𝑧 −  𝑠‖C𝑁 = ‖𝐹 𝑧 ( 𝑠 𝑧) −  𝑠‖C𝑁 ≤ 𝐶𝜀 .

with some constant 𝐶 = 𝐶 (𝑁) > 0. Furthermore, since 𝑠 𝑗 ≠ 0 for all 𝑗 = 1, . . . 𝑁 , we conclude that
s 𝑗 , 𝑧 ≠ 0 for all 𝑗 = 1, . . . , 𝑁 , provided that 𝜀 ∈ (0, 𝜀0) with 𝜀0 = 𝜀0 (𝑁) > 0 sufficiently small.

The proof of Lemma C.1 is now complete. �

With the help of Lemma C.1 we are now able to prove the following result. Recall that U = u · 𝝈 for
a map u : R→ S2.

Lemma C.2. For any integer 𝑁 ≥ 0, there exists a rational map u : R → S2 with exactly N simple
poles such that the discrete spectrum 𝜎d(𝑇2

U) is simple.

Remark. Recall that, by self-adjointness of 𝑇U, the simplicity of 𝜎d(𝑇2
U) implies that 𝜎d(𝑇U) is simple.

https://doi.org/10.1017/fms.2025.10136 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10136


60 P. Gérard and E. Lenzmann

Proof. For 𝑁 = 0, this is trivially true by taking the constant function u(𝑥) ≡ e3 and noticing that
Rank(𝐾U) = 0 and hence 𝜎d(𝑇U) = ∅. If 𝑁 = 1, we take the stationary solution (i.e., a half-harmonic
map)

u(𝑥) =
(
0,

2𝑥
𝑥2 + 1

,
𝑥2 − 1
𝑥2 + 1

)
∈ R𝑎𝑡 (R;S2) ,

which has Rank(𝐾U) = 1 with simple discrete spectrum 𝜎d(𝑇U) = {0}. Hence it remains to discuss the
case 𝑁 ≥ 2, which will be proved in the following steps.

Step 1. Assume 𝑁 ≥ 2 in what follows. Let 𝑧1, . . . , 𝑧𝑁 ∈ C− and 𝑣1, . . . , 𝑣𝑁 ∈ (−1, 1) be as in
Lemma C.1 with the additional assumption that

𝑣 𝑗 ≠ 𝑣𝑘 for 𝑗 ≠ 𝑘 .

Consider the rational map u 𝑧 : R → S2 given by Lemma C.1 with 𝜀 = 1/min 𝑗≠𝑘 |𝑧 𝑗 − 𝑧𝑘 | ∈ (0, 𝜀0),
where 𝜀0 = 𝜀0 (𝑁) > 0 denotes the small constant from Lemma C.1. In particular, the rational map
u 𝑧 : R→ S2 has exactly N simple poles.

Note that the rational matrix-valued function U 𝑧 = u 𝑧 · 𝝈 is given by

U 𝑧 (𝑥) = 𝜎3 +
𝑁∑
𝑗=1

𝐴 𝑗 , 𝑧

𝑥 − 𝑧 𝑗
+

𝑁∑
𝑗=1

𝐴∗
𝑗 , 𝑧

𝑥 − 𝑧 𝑗
,

with the nonzero matrices 𝐴 𝑗 , 𝑧 ∈ C2×2 given by 𝐴 𝑗 , 𝑧 := s 𝑗 , 𝑧 ·𝝈. Note that 𝐴2
𝑗 , 𝑧 = 0 which follows from

s 𝑗 , 𝑧 · s 𝑗 , 𝑧 = 0. Thus the nilpotent matrices 𝐴 𝑗 , 𝑧 ∈ 𝑀2 (C) have rank one and we can write

𝐴 𝑗 , 𝑧 = 𝑒 𝑗 , 𝑧 〈·, 𝜉 𝑗 , 𝑧〉C2

with some nonzero vectors 𝑒 𝑗 , 𝑧 , 𝜉 𝑗 , 𝑧 ∈ C2 \ {0} such that

‖𝑒 𝑗 , 𝑧 ‖C2 = 1 and 〈𝑒 𝑗 , 𝑧 , 𝜉 𝑗 , 𝑧〉C2 = 0 .

Note that span{𝑒 𝑗 , 𝑧} = ran(𝐴 𝑗 , 𝑧) and we readily check that

ℌ1 = ran(𝐾U 𝑧 ) = ran(𝐻∗
U 𝑧

) = span
{
𝑒 𝑗 , 𝑧

𝑥 − 𝑧 𝑗
| 𝑗 = 1, . . . , 𝑁

}
with the operator 𝐾U 𝑧 = 𝐻

∗
U 𝑧
𝐻U 𝑧 : 𝐿2

+(R;C2) → 𝐿2
+(R;C2).

Step 2. For later use, we recall that the constraint equations (C.7) and (C.8) can be rephrased in terms
of matrix-valued functions as follows:

𝐴2
𝑗 , 𝑧 = 0, 𝐵 𝑗 , 𝑧𝐴 𝑗 , 𝑧 + 𝐴 𝑗 , 𝑧𝐵 𝑗 , 𝑧 = 0 (C.10)

for all 𝑗 = 1, . . . , 𝑁 , where we define the complex 2 × 2-matrices

𝐵 𝑗 , 𝑧 := 𝜎3 +
𝑁∑
𝑘≠ 𝑗

𝐴𝑘, 𝑧
𝑧 𝑗 − 𝑧𝑘

+
𝑁∑
𝑘=1

𝐴∗
𝑘, 𝑧

𝑧 𝑗 − 𝑧𝑘
. (C.11)

Because of 𝐴 𝑗 , 𝑧𝑒 𝑗 , 𝑧 = 0 and by (C.10), we see that 𝐴 𝑗 , 𝑧𝐵 𝑗 , 𝑧𝑒 𝑗 , 𝑧 = 0. Since ker(𝐴 𝑗 , 𝑧) = span{𝑒 𝑗 , 𝑧}, we
deduce

𝐵 𝑗 , 𝑧𝑒 𝑗 , 𝑧 = 𝑏 𝑗 , 𝑧𝑒 𝑗 , 𝑧
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with some eigenvalue 𝑏 𝑗 , 𝑧 ∈ C. Since ‖𝑒 𝑗 , 𝑧 ‖C2 = 1, the eigenvalue 𝑏 𝑗 , 𝑧 is evidently given by

𝑏 𝑗 , 𝑧 = 〈𝐵 𝑗 , 𝑧𝑒 𝑗 , 𝑧 , 𝑒 𝑗 , 𝑧〉C2

= 〈𝜎3𝑒 𝑗 , 𝑧 , 𝑒 𝑗 , 𝑧〉C2 +
𝑁∑
𝑘≠ 𝑗

(
〈𝐴𝑘, 𝑧𝑒 𝑗 , 𝑧 , 𝑒 𝑗 , 𝑧〉C2

𝑧 𝑗 − 𝑧𝑘
+

〈𝐴∗
𝑘, 𝑧𝑒 𝑗 , 𝑧 , 𝑒 𝑗 , 𝑧〉C2

𝑧 𝑗 − 𝑧𝑘

)
, (C.12)

where we also used the simple fact that 〈𝐴∗
𝑗 , 𝑧𝑒 𝑗 , 𝑧 , 𝑒 𝑗 , 𝑧〉C2 = 0 because of 𝐴 𝑗 , 𝑧𝑒 𝑗 , 𝑧 = 0. Next, by partial

fraction decomposition and 𝐴 𝑗 , 𝑧𝑒 𝑗 , 𝑧 = 0, we obtain

𝑇U 𝑧

(
𝑒 𝑗 , 𝑧

𝑥 − 𝑧 𝑗

)
= Π+

[(
𝜎3 +

𝑁∑
𝑘=1

𝐴𝑘, 𝑧
𝑥 − 𝑧𝑘

+
𝑁∑
𝑘=1

𝐴∗
𝑘, 𝑧

𝑥 − 𝑧𝑘

)
𝑒 𝑗 , 𝑧

𝑥 − 𝑧 𝑗

]
=
𝜎3𝑒 𝑗 , 𝑧

𝑥 − 𝑧 𝑗
+

𝑁∑
𝑘≠ 𝑗

𝐴𝑘, 𝑧𝑒 𝑗 , 𝑧

(𝑥 − 𝑧𝑘 ) (𝑥 − 𝑧 𝑗 )
+

𝑁∑
𝑘=1

𝐴∗
𝑘, 𝑧𝑒 𝑗 , 𝑧

(𝑧 𝑗 − 𝑧𝑘 ) (𝑥 − 𝑧 𝑗 )

=
�� 𝜎3 +

𝑁∑
𝑘≠ 𝑗

𝐴𝑘, 𝑧
𝑧 𝑗 − 𝑧𝑘

+
𝑁∑
𝑘=1

𝐴∗
𝑘, 𝑧

𝑧 𝑗 − 𝑧𝑘
%&'
𝑒 𝑗 , 𝑧

𝑥 − 𝑧 𝑗
+

𝑁∑
𝑘≠ 𝑗

𝐴𝑘, 𝑧𝑒 𝑗 , 𝑧

(𝑧𝑘 − 𝑧 𝑗 ) (𝑥 − 𝑧𝑘 )

=
𝐵 𝑗 , 𝑧𝑒 𝑗 , 𝑧

𝑥 − 𝑧 𝑗
+

𝑁∑
𝑘≠ 𝑗

𝐴𝑘, 𝑧𝑒 𝑗 , 𝑧

(𝑧𝑘 − 𝑧 𝑗 ) (𝑥 − 𝑧𝑘 )
=
𝑏 𝑗 , 𝑧𝑒 𝑗 , 𝑧

𝑥 − 𝑧 𝑗
+

𝑁∑
𝑘≠ 𝑗

𝐴𝑘, 𝑧𝑒 𝑗 , 𝑧

(𝑧𝑘 − 𝑧 𝑗 ) (𝑥 − 𝑧𝑘 )
.

for any 𝑗 = 1, . . . , 𝑁 and with the eigenvalues 𝑏 𝑗 , 𝑧 from above. Let T ∈ C𝑁×𝑁 denote the matrix of
𝑇U 𝑧 : ℌ1 → ℌ1 with respect to the basis B =

(
𝑒1,  𝑧
𝑥−𝑧1

, . . . ,
𝑒𝑁,  𝑧
𝑥−𝑧𝑁

)
. Since ‖𝐴 𝑗 , 𝑧 ‖C2→C2 � ‖s 𝑗 , 𝑧 ‖C3 � 1, we

see that the matrix T ∈ C𝑁×𝑁 is of the form

T = diag(𝑏1, 𝑧 , . . . , 𝑏𝑁 , 𝑧) + B

with some matrix B = B(𝑧1, . . . , 𝑧𝑁 , 𝑣1, . . . , 𝑣𝑛) such that

‖B‖C𝑁→C𝑁 = 𝑂 (𝜀) ,

where we recall that 𝜀 = 1/min 𝑗≠𝑘 |𝑧 𝑗 − 𝑧𝑘 |. Furthermore, from (C.12) we deduce that

𝑏 𝑗 , 𝑧 = 〈𝜎3𝑒 𝑗 , 𝑧 , 𝑒 𝑗 , 𝑧〉C2 +𝑂 (𝜀) .

Next, we recall that 𝐴 𝑗 , 𝑧 → 𝐴 𝑗 = s 𝑗 · 𝝈 as 𝜀 → 0 by Lemma C.1. Notice that s 𝑗 is given by (C.6) with
𝑣 = 𝑣 𝑗 and an elementary calculation shows that ran(𝐴 𝑗 ) = span{𝑒 𝑗 } with the unit vector

𝑒 𝑗 =
1
√

2

( √
1 + 𝑣 𝑗

i
√

1 − 𝑣 𝑗

)
∈ C2 .

Thus we conclude that

〈𝜎3𝑒 𝑗 , 𝑧 , 𝑒 𝑗 , 𝑧〉C2 → 〈𝜎3𝑒 𝑗 , 𝑒 𝑗〉C2 = 𝑣 𝑗 as 𝜀 → 0 ,

whence it follows that 𝑏 𝑗 , 𝑧 → 𝑣 𝑗 as 𝜀 → 0.
In summary, we have shown that the matrix T ∈ C𝑁×𝑁 for 𝑇U 𝑧 : ℌ1 → ℌ1 with respect to the basis

B =
(
𝑒1,  𝑧
𝑥−𝑧1

, . . . ,
𝑒𝑁,  𝑧
𝑥−𝑧𝑁

)
is of the form

T = diag(𝑣1, . . . , 𝑣𝑁 ) + M
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with some matrix M = M(𝑧1, . . . , 𝑧𝑁 , 𝑣1, . . . , 𝑣𝑁 ) ∈ C𝑁×𝑁 such that

‖M‖C𝑁→C𝑁 = 𝑂 (𝜀) → 0 as 𝜀 → 0.

Step 3. Let

𝑝T (𝑧) = det(T − 𝑧1𝑁 ) = 𝑧𝑁 + 𝑎𝑁−1𝑧
𝑁−1 + . . . + 𝑎0

denote the characteristic polynomial of T ∈ C𝑁×𝑁 . Since

lim
𝜀→0

‖T − diag(𝑣1, . . . , 𝑣𝑛)‖C𝑁→C𝑁 = 0 ,

we deduce that 𝑎𝑘 → 𝑐𝑘 as 𝜀 → 0 for all 𝑘 = 0, . . . , 𝑁 − 1, where

𝑝(𝑧) = 𝑧𝑁 + 𝑐𝑁−1𝑧
𝑁−1 + . . . + 𝑐0 =

𝑁∏
𝑗=1

(𝑧 − 𝑣 𝑗 )

is the characteristic polynomial of diag(𝑣1, . . . , 𝑣𝑁 ). Note that 𝑝(𝑧) has simple zeros due to 𝑣 𝑗 ≠ 𝑣𝑘 for
𝑗 ≠ 𝑘 by assumption. Hence the roots {𝜆 𝑗 }𝑁𝑗=1 of T are also simple, provided that 𝜀 > 0 is sufficiently
small, and we have 𝜆 𝑗 → 𝑣 𝑗 as 𝜀 → 0. Since 𝑣2

𝑗 ≠ 𝑣
2
𝑘 for 𝑗 ≠ 𝑘 by our assumption above, we also

find that 𝜆2
𝑗 ≠ 𝜆

2
𝑘 for 𝑗 ≠ 𝑘 provided that 𝜀 > 0 is sufficiently small. This shows that 𝑇2

U 𝑧
|ℌ1 has simple

spectrum if 𝜀 > 0 is sufficiently small and, by self-adjointness of 𝑇U 𝑧 , this implies simple spectrum of
𝑇U 𝑧 |ℌ1 if 𝜀 = 1/min 𝑗≠𝑘 |𝑧 𝑗 − 𝑧𝑘 | > 0 is sufficiently small. Since 𝜎d(𝑇U 𝑧 ) = 𝜎(𝑇U 𝑧 |ℌ1 ), this completes
the proof of Lemma C.2. �

Remark. To conclude our discussion, let us remark that there exist rational data u : R → S2 with
nonsimple discrete spectrum 𝜎d(𝑇U). For instance, take a solitary wave profile q : R → S2 given by a
Blaschke product of degree 𝑚 ≥ 2 and set Q𝑣 = q𝑣𝜎𝝈. Then it is easy to see that the Toeplitz operator
𝑇Q𝑣 : 𝐿2

+(R;C2) → 𝐿2
+(R;C2) has discrete spectrum 𝜎d(𝑇Q𝑣 ) = {𝑣} where the eigenvalue v is m-fold

degenerate.

D. Local well-posedness

In this section, we prove local well-posedness for (HWMd) for sufficiently regular initial data as stated in
Lemma 5.1. Also, we will show well-posedness for the initial-value problem formulated in (3.3) above.

Proof of Lemma 5.1

Let 𝑠 > 3
2 , 𝑑 ≥ 2 and assume that U0 : R→ 𝑀𝑑 (C) is of the form

U0(𝑥) = U∞ + V0 (𝑥) ∈ 𝑀𝑑 (C) ⊕ 𝐻𝑠 (R;𝑀𝑑 (C)) ≡ 𝐻𝑠
• (R;𝑀𝑑 (C)) ,

satisfying the pointwise constraints

U0(𝑥) = U0 (𝑥)∗, U0 (𝑥)2 = 1𝑑 for 𝑥 ∈ R .

Note that U∞ ∈ 𝑀𝑑 (C) is a constant matrix with U∞ = U∗
∞ and U2

∞ = 1𝑑 .
Now, for 𝑅 > 0 given and assuming that ‖V0‖𝐻 𝑠 < 𝑅, we wish to prove existence and uniqueness of

the solution

U(𝑡) = U∞ + V(𝑡) ∈ 𝑀𝑑 (C) ⊕ 𝐶 ([0, 𝑇];𝐻𝑠 (R;𝑀𝑑 (C)) ,

of (HWMd) with initial datum U(0) = U0, where 𝑇 = 𝑇 (𝑅) > 0 is chosen sufficiently small. Once this
solution is constructed, it is elementary to check that U(𝑡, 𝑥) satisfies the pointwise constraints above
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for all 𝑥 ∈ R and times 𝑡 ∈ [0, 𝑇]. Furthermore, as explained before Lemma 5.1 above, we deduce that
U(𝑡, 𝑥) ∈ Gr𝑘 (C𝑑) for (𝑡, 𝑥) ∈ [0, 𝑇] × R with some integer 0 ≤ 𝑘 ≤ 𝑑.

Step 1 (Setup). To deal with the quasilinear equation (HWMd), we use the following iteration scheme.
Suppose we are given an initial datum

U0 = U∞ + V0 ∈ 𝑀𝑑 (C) ⊕ 𝐻𝑠 (R;𝐻𝑠 (R;𝑀𝑑 (C)) (D.1)

with values in the Hermitian 𝑑 × 𝑑-matrices, that is, we assume

U0(𝑥) = U0 (𝑥)∗ for 𝑥 ∈ R , (D.2)

and with some constant Hermitian matrix U∞ = U∗
∞ ∈ 𝑀𝑑 (C). Note that V0(𝑥) = V0 (𝑥)∗ must be

Hermitian valued, too.
Now, let 𝑅 > 0 be arbitrary and let 𝑇 = 𝑇 (𝑅) > 0 to be chosen later. We construct the sequence

U(𝑛) = U∞ + V(𝑛) ∈ 𝑀𝑑 (C) ⊕ 𝐶 ([0, 𝑇];𝐻𝑠 (R;𝑀𝑑 (C))) with 𝑛 ∈ N

by means of the iteration scheme

𝜕𝑡U(𝑛+1) = − i
2
[U(𝑛) , |𝐷 |U(𝑛+1) ] for 𝑡 ∈ [0, 𝑇], U(𝑛+1) (0) = U0 (D.3)

and we take U(0) (𝑡) ≡ U0. It is straightforward to show that, given U(𝑛) ∈ 𝑀𝑑 (C) ⊕
𝐶 ([0, 𝑇];𝐻𝑠 (R;𝑀𝑑 (C)), there exists indeed a unique (Hermitian-valued) solution

U(𝑛+1) = U∞ + V(𝑛+1) ∈ 𝐶 ([0, 𝑇];𝑀𝑑 (C) ⊕ 𝐻𝑠 (R;𝑀𝑑 (C))

of (D.3) with initial datum U(𝑛+1) (0) = U0; see Lemma D.1 below and its proof for details. Also, since
U = U∞ + V with the constant matrix U∞ ∈ 𝑀𝑑 (C), we have

𝜕𝑡V(𝑛+1) = − i
2
[U(𝑛) , |𝐷 |V(𝑛+1) ] for 𝑡 ∈ [0, 𝑇], V(𝑛+1) (0) = V0 .

Step 2 (Bounds). We assume that ‖V0‖𝐻 𝑠 < 𝑅 holds. We claim that the following a priori bound
holds

sup
𝑡 ∈[0,𝑇 ]

‖V(𝑛) (𝑡)‖𝐻 𝑠 ≤ 2‖V0‖𝐻 𝑠 for all 𝑛 ∈ N , (D.4)

provided that 𝑇 = 𝑇 (𝑅) > 0 is chosen sufficiently small.
We prove the bound (D.4) as follows. We use 〈𝐷〉𝑠 to denote the regularized fractional derivative

of order s given by 7(〈𝐷〉𝑠 𝑓 )(𝜉) = (1 + |𝜉 |2)𝑠/2 𝑓̂ (𝜉). Omitting the dependence on t for notational
convenience, we find (where the assumed regularity suffices to justify the following manipulations):

𝑑

𝑑𝑡

88〈𝐷〉𝑠V(𝑛+1)882
𝐿2 = 2Re

〈
〈𝐷〉𝑠𝜕𝑡V(𝑛+1) , 〈𝐷〉𝑠V(𝑛+1)

〉
= Im

〈
〈𝐷〉𝑠 [U(𝑛) , |𝐷 |V(𝑛+1) ], 〈𝐷〉𝑠V(𝑛+1)

〉
= Im

〈
[U(𝑛) , |𝐷 |〈𝐷〉𝑠V(𝑛+1) ], 〈𝐷〉𝑠V(𝑛+1)

〉
+ Im

〈
[〈𝐷〉𝑠 ,U(𝑛) ] |𝐷 |V(𝑛+1) , 〈𝐷〉𝑠V(𝑛+1)

〉
=: 𝐼 + 𝐼 𝐼 .

Here we also used the trivial fact that |𝐷 | and 〈𝐷〉𝑠 commute. Next, we assert that the term I can be
written in exact commutator form with
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𝐼 =
1
2

Im
〈[

[U(𝑛) , ·], |𝐷 |] 〈𝐷〉𝑠V(𝑛+1) , 〈𝐷〉𝑠V(𝑛+1)
〉
. (D.5)

Here [U, ·]F ≡ UF − FU denotes the pointwise matrix-commutator for matrix-valued functions U,F :
R→ 𝑀𝑑 (C). To see that (D.5) holds true, let us write U = U(𝑛 and W = 〈𝐷〉𝑠V(𝑛+1) for the moment.
Then

𝐼 = Im〈[U, |𝐷 |W],W〉 = Im
〈[

[U, ·], |𝐷 |]W,W
〉
+ Im〈|𝐷 | [U,W],W〉

= Im
〈[

[U, ·], |𝐷 |]W,W
〉
+ Im〈W, [U, |𝐷 |W]〉 = Im

〈[
[U, ·], |𝐷 |]W,W

〉
− 𝐼 ,

where the second last step we used that |𝐷 | = |𝐷 |∗ is symmetric together with the fact Tr([U,A]B∗) =
Tr(A[U,B]∗) for matrix-valued functions U,A,B : R → 𝑀𝑑 (C) provided that U = U∗ is Hermitian.
This proves (D.5).

Next, by a classical commutator estimate due to Calderón applied to (D.5) and recalling that 𝜕𝑥U(𝑛) =
𝜕𝑥V(𝑛) , we deduce

|𝐼 | ≤ 𝐶‖𝜕𝑥V(𝑛) ‖𝐿∞ ‖〈𝐷〉𝑠V(𝑛+1) ‖2
𝐿2 ≤ 𝐶‖〈𝐷〉𝑠V(𝑛) ‖𝐿2 ‖〈𝐷〉𝑠V(𝑛+1) ‖2

𝐿2 ,

where in the last step we used the Sobolev inequality ‖𝜕𝑥 𝑓 ‖𝐿∞ ≤ 𝐶‖〈𝐷〉𝑠−1𝜕𝑥 𝑓 ‖𝐿2 ≤ 𝐶‖〈𝐷〉𝑠 𝑓 ‖𝐿2 ,
since 𝐻𝑠−1(R) ⊂ 𝐿∞(R) thanks to 𝑠 > 3

2 .
To estimate the second term 𝐼 𝐼 above, we use Cauchy–Schwarz and apply the classical Kato–Ponce

commutator to [〈𝐷〉𝑠 ,U(𝑛) ] = [〈𝐷〉𝑠 ,V(𝑛) ]. This yields

|𝐼 𝐼 | ≤ ‖[〈𝐷〉𝑠 ,V(𝑛) ] |𝐷 |V(𝑛+1) ‖𝐿2 ‖〈𝐷〉𝑠V(𝑛+1) ‖𝐿2

≤ 𝐶 (‖〈𝐷〉𝑠V(𝑛) ‖𝐿2 ‖|𝐷 |V(𝑛+1) ‖𝐿∞ + ‖𝜕𝑥V(𝑛) ‖𝐿∞ ‖〈𝐷〉𝑠−1 |𝐷 |V(𝑛+1) ‖𝐿2 )‖〈𝐷〉𝑠V(𝑛+1) ‖𝐿2

≤ 𝐶‖〈𝐷〉𝑠V(𝑛) ‖𝐿2 ‖〈𝐷〉𝑠V(𝑛+1) ‖2
𝐿2 ,

where in the last step we used again the Sobolev inequalities ‖𝜕𝑥V(𝑛) ‖𝐿∞ ≤ 𝐶‖〈𝐷〉𝑠V(𝑛) ‖𝐿2 and
‖|𝐷 |V(𝑛+1) ‖𝐿∞ ≤ 𝐶‖〈𝐷〉𝑠V(𝑛+1) ‖𝐿2 in view of 𝑠 > 3

2 .
Combining the estimates for I and 𝐼 𝐼, we obtain the differential inequality

𝑑

𝑑𝑡

88〈𝐷〉𝑠V(𝑛+1) (𝑡)
882
𝐿2 ≤ 𝐶‖〈𝐷〉𝑠V(𝑛) (𝑡)‖𝐿2 ‖〈𝐷〉𝑠V(𝑛+1) (𝑡)‖2

𝐿2 . (D.6)

Next we define the quantities

𝑀𝑛 (𝑇) = sup
𝑡 ∈[0,𝑇 ]

88〈𝐷〉𝑠V(𝑛 (𝑡)
882
𝐿2 with 𝑛 ∈ N .

From (D.6) and Grönwall’s inequality we obtain

𝑀𝑛+1 (𝑇) ≤ 𝑀0 · e𝐶𝑇
√
𝑀𝑛 (𝑇 ) (D.7)

since 𝑀0 := 𝑀𝑘 (0) = ‖〈𝐷〉𝑠V0‖2
𝐿2 for all 𝑘 ∈ N. Clearly, we have the bound

𝑀0 · e2𝐶𝑇 𝑅 ≤ 4𝑀0 (D.8)

for some sufficiently small time 𝑇 = 𝑇 (𝑅) > 0. From 𝑀0 (𝑇) = 𝑀0 < 𝑅
2 and (D.7)–(D.8), it follows by

induction that

𝑀𝑛 (𝑇) ≤ 4𝑀0 for all 𝑛 ∈ N .

Since 𝑀0 = ‖〈𝐷〉𝑠V0‖2
𝐿2 = ‖V0‖2

𝐻 𝑠 , we obtain the claimed a priori bound (D.4).
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Step 3 (Cauchy Property in 𝐿2). We demonstrate that the sequence (V(𝑛) )𝑛∈N is Cauchy in
𝐶 ([0, 𝑇]; 𝐿2 (R;𝑀𝑑 (C)), provided that 𝑇 = 𝑇 (𝑅) > 0 is small enough. Indeed, let 𝑛 ≥ 1 be given. We
find

𝜕𝑡

(
V(𝑛+1) − V(𝑛)

)
=

1
2i

(
[U(𝑛) , |𝐷 |V(𝑛+1) ] − [U(𝑛−1) , |𝐷 |V(𝑛) ]

)
=

1
2i

(
[U(𝑛) , |𝐷 | (V(𝑛+1) − V(𝑛) )] + [V(𝑛) − V(𝑛−1) , |𝐷 |V(𝑛) ]

)
,

where used the simple fact that U(𝑛) − U(𝑛−1) = V(𝑛) − V(𝑛−1) . Hence we get

𝑑

𝑑𝑡

888V(𝑛+1) − V(𝑛)
8882

𝐿2
= 2Re

〈
𝜕𝑡 (V(𝑛+1) − V(𝑛) ),V(𝑛+1) − V(𝑛)

〉
= Im

〈
[U(𝑛) , |𝐷 | (V(𝑛+1) − V(𝑛) )],V(𝑛+1) − V(𝑛)

〉
+ Im

〈
[V(𝑛) − V(𝑛−1) , |𝐷 |V(𝑛) ],V(𝑛+1) − V(𝑛)

〉
≤ 𝐶 (‖𝜕𝑥V(𝑛) ‖𝐿∞ ‖V(𝑛+1) − V(𝑛) ‖2

𝐿2 )
+ 𝐶 (‖V(𝑛) − V(𝑛−1) ‖𝐿2 ‖|𝐷 |V(𝑛) ‖𝐿∞ ‖‖V(𝑛+1) − V(𝑛) ‖𝐿2)

≤ 𝐶 (
√
𝐾 (‖V(𝑛+1 − V(𝑛) ‖𝐿2 + 𝐾 ‖V(𝑛) − V(𝑛−1) ‖𝐿2 )

with the constant 𝐾 > 0 from the a priori bound (D.4) above. Since V(𝑛+1) (0) − V(𝑛) (0) = 0, we learn
from Grönwall’s inequality that

sup
𝑡 ∈[0,𝑇 ]

‖V(𝑛+1) (𝑡) − V(𝑛) (𝑡)‖𝐿2 ≤ 𝐶𝑇
√
𝐾 sup

𝑡 ∈[0,𝑇 ]
‖V(𝑛) (𝑡) − V(𝑛−1) (𝑡)‖𝐿2 .

By choosing 𝑇 = 𝑇 (𝑅) > 0 even smaller to ensure that 𝐶𝑇
√
𝐾 ≤ 1

2 , we deduce that the series

∞∑
𝑛=0

sup
𝑡 ∈[0,𝑇 ]

‖V(𝑛+1) (𝑡) − V(𝑛) (𝑡)‖𝐿2 < +∞

is geometrically convergent. In particular, the implies that the sequence (V(𝑛) )𝑛∈N is Cauchy in
𝐶 ([0, 𝑇]; 𝐿2 (R;𝑀𝑑 (C)).

Thanks to the a priori bound (D.4), this yields that (V(𝑛) )𝑛∈N forms a Cauchy sequence in
𝐶 ([0, 𝑇];𝐻𝑠 (R;𝑀𝑑 (C)) for 0 ≤ 𝑠 < 𝑠. Moreover, we readily check that its limit

U := U∞ + lim
𝑛→∞

V(𝑛) ∈ 𝑀𝑑 (C) ⊕ 𝐶 ([0, 𝑇];𝐻𝑠 (R;𝑀𝑑 (C))

solves (HWMd) with initial datum U(0) = U0.
Step 4 (Continuity of Flow in 𝐻𝑠). It remains to show that

V ∈ 𝐶 ([0, 𝑇];𝐻𝑠 (R;𝑀𝑑 (C)) .

Note that, by previous discussion, we can only deduce that V ∈ 𝐶𝑤 ([0, 𝑇];𝐻𝑠 (R;𝑀𝑑 (C)) holds, that
is, for 𝑡𝑛 → 𝑡 we only have that V(𝑡𝑛) ⇀ V(𝑡) in 𝐻𝑠 . To extend this to strong continuity, we can
make use the idea of frequency envelopes, which was recently generalized as an abstract interpolation
result in [1].
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Indeed, for real 𝑡 ≥ 0, we introduce the Sobolev spaces 𝐻𝑠
H of matrix-valued maps with Hermitian

values by setting

𝐻𝑡
H := {F ∈ 𝐻𝑡 (R;𝑀𝑑 (C)) | F(𝑥) = F(𝑥)∗ for a. e. 𝑥 ∈ R} ,

equipped with the norm ‖ · ‖𝐻 𝑡 . Let 𝐵𝑅 = {F ∈ 𝐻𝑠
H | ‖F‖𝐻 𝑠 < 𝑅}. From Step 2 and Step 3, we obtain

the map

Φ : 𝐵𝑅 → 𝐶 ([0, 𝑇];𝐻0
H), W0 ↦→ W := lim

𝑛→∞
W(𝑛)

using the iteration scheme with initial data U0 = U∞ + W0. Moreover, from the previous discussion, we
deduce the following bounds

(B1) ‖Φ(W0) −Φ(W̃0)‖𝐶𝑇𝐻0 ≤ 𝐶0‖W0 − W̃0‖𝐻 0 for all W0, W̃0 ∈ 𝐵𝑅,
(B2) ‖Φ(W0)‖𝐶𝑇 𝐻 𝑠+1 ≤ 2‖W0‖𝐻 𝑠+1 for all W0 ∈ 𝐵𝑅 ∩ 𝐻𝑠+1

H ,

with some constant 𝐶0 > 0. Indeed, the weak Lipschitz estimate (𝐵1) follows from the arguments in
Step 3, whereas the bound (𝐵2) simply follows from repeating Step 2 with 𝑠 > 3

2 replaced by 𝑠 + 1 and
by choosing 𝑇 = 𝑇 (𝑅) > 0 possibly even smaller. From [1] we now conclude that

Φ(V0) ∈ 𝐶 ([0, 𝑇];𝐻𝑠
H)

and that we have continuous dependence of the map V0 ↦→ Φ(V0) on the initial data in 𝐵𝑅.
Step 5 (Conclusion). Thus far we have proved local-in-time existence of solutions for (HWMd)

for initial data in 𝐻𝑠 with 𝑠 > 3
2 and satisfying the Hermitian condition (D.2). Moreover, by a direct

calculation and using the regularity of the solutions, we readily check by a Grönwall-type argument that
uniqueness holds for 𝐶 ([0, 𝑇];𝐻𝑠) for a given initial datum U(0) = U0.

Also, a direct calculation (which we omit) shows that the pointwise constraint U0(𝑥)2 = 1𝑑 is also
preserved by the flow.

Finally, the claimed propagation of higher Sobolev regularity also follows from the previous estimates.
Indeed, let 𝜎 > 𝑠 > 3

2 and suppose that V0 ∈ 𝐻𝜎
H . Inspecting the arguments in Step 2, we deduce that

‖〈𝐷〉𝜎V(𝑡)‖2
𝐿2 ≤ 𝐶 (‖𝜕𝑥V(𝑡)‖𝐿∞ + ‖|𝐷 |V(𝑡)‖𝐿∞)‖〈𝐷〉𝜎V(𝑡)‖2

𝐿2

≤ 𝐶‖V(𝑡)‖𝐻 𝑠 ‖〈𝐷〉𝜎V(𝑡)‖2
𝐿2 ,

where we used the Sobolev embedding 𝐻𝑠 (R) ⊂ 𝐿∞(R) for 𝑠 > 3
2 . By Grönwall’s inequality, we readily

deduce that the maximal times of existence of 𝐻𝜎 and 𝐻𝑠-solutions with 𝜎 > 𝑠 > 3
2 coincide.

This completes the proof of Lemma 5.1.
In the proof above, we need the following auxiliary result.

Lemma D.1. Let 𝑠 > 3
2 , 𝑑 ≥ 2, and U = U∞ +V ∈ 𝐶 ([0, 𝑇];𝑀𝑑 (C) ⊕𝐻𝑠 (R;𝑀𝑑 (C))). Then, for every

Ṽ0 ∈ 𝐻𝑠 (R;𝑀𝑑 (C)), there exists a unique solution Ũ = U∞+Ṽ ∈ 𝑀𝑑 (C)⊕𝐶 ([0, 𝑇];𝐻𝑠 (R;𝑀𝑑 (C))) of

𝜕𝑡 Ũ = − i
2
[U, |𝐷 |Ũ] on [0, 𝑇] and Ũ(0) = U∞ + Ṽ0 .

Moreover, if Ũ(0, 𝑥) = Ũ(0, 𝑥)∗ and Ũ(0, 𝑥)2 = 1𝑑 for all 𝑥 ∈ R, then Ũ(𝑡, 𝑥) = Ũ(𝑡, 𝑥) and
Ũ(𝑡, 𝑥) = Ũ(𝑡, 𝑥)∗ for all (𝑡, 𝑥) ∈ [0, 𝑇] × R.
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Proof. Since U∞ ∈ 𝑀𝑑 (C) is constant matrix, it suffices to show existence and uniqueness of Ṽ ∈
𝐶 ([0, 𝑇];𝐻𝑠 (R;𝑀𝑑 (C))) solving

𝜕𝑡 Ṽ = − i
2
[U, |𝐷 |Ṽ] with Ṽ = Ṽ0 . (D.9)

We construct approximate solutions of this linear equation by the following scheme. For 𝜀 > 0, we
introduce the smoothing operator

𝐽𝜀 := (1 + 𝜀 |𝐷 |)−1 with ‖𝐽𝜀 ‖𝐿2→𝐿2 ≤ 1 and ‖𝐽𝜀 ‖𝐻 𝑠→𝐻 𝑠+1 ≤ 𝜀−1 .

By standard arguments, we obtain a unique solution Ṽ𝜀 ∈ 𝐶 ([0, 𝑇];𝐻𝑠 (R;𝑀𝑑 (C))) of the initial-value
problem

𝜕𝑡 Ṽ𝜀 = − i
2
[U, |𝐷 |𝐽𝜀Ṽ𝜀] with Ṽ𝜀 (0) = Ṽ0 ,

using that |𝐷 |𝐽𝜀 : 𝐻𝑠 → 𝐻𝑠 is a bounded map together with the fact that 𝐻𝑠 (R) is an algebra for 𝑠 > 3
2 .

Now, by adapting the discussion from the previous discussion, we derive the estimate

𝑑

𝑑𝑡
‖〈𝐷〉𝑠Ṽ(𝑡)‖2

𝐿2 ≤ 𝐶 (‖ [U, ·], |𝐷 |𝐽𝜀]‖𝐿2→𝐿2 + ‖〈𝐷〉𝑠V‖𝐿2 )‖〈𝐷〉𝑠Ṽ𝜀 ‖2
𝐿2

using also again the Kato–Ponce estimate together with the fact that ‖〈𝐷〉𝑠−1 |𝐷 |𝐽𝜀Ṽ‖𝐿2 ≤ ‖〈𝐷〉𝑠Ṽ‖𝐿2 .
To bound the commutator term, we note that if 𝑎 = 𝑎(𝑥) denotes multiplication by a Lipschitz function
then

[𝑎, |𝐷 |𝐽𝜀] = |𝐷 | [𝑎, (1 + 𝜀 |𝐷 |)−1] + [𝑎, |𝐷 |] (1 + 𝜀 |𝐷 |)−1

= −𝜀 |𝐷 | (1 + 𝜀 |𝐷 |)−1 [𝑎, |𝐷 |] (1 + 𝜀 |𝐷 |)−1 + [𝑎, |𝐷 |] (1 + 𝜀 |𝐷 |)−1 .

Thus by Calderón’s commutator estimate and the facts ‖𝜀 |𝐷 | (1 + 𝜀 |𝐷 |)−1‖𝐿2→𝐿2 ≤ 1 and ‖(1 +
𝜀 |𝐷 |)−1‖𝐿2→𝐿2 ≤ 1, we deduce

‖[U, ·], |𝐷 |𝐽𝜀]‖𝐿2→𝐿2 ≤ 𝐶‖𝜕𝑥V‖𝐿∞ ≤ 𝐶‖〈𝐷〉𝑠V‖𝐿2

since 𝑠 > 3
/2. Because of sup𝑡 ∈[0,𝑇 ] ‖〈𝐷〉𝑠V(𝑡)‖𝐿2 < +∞, integrating the previous differential inequality

yields the bound

sup
𝑡 ∈[0,𝑇 ]

‖〈𝐷〉𝑠Ṽ𝜀 (𝑡)‖𝐿2 ≤ e𝐶𝑇 ‖〈𝐷〉𝑠Ṽ0‖𝐿2 (D.10)

which is independent of 𝜀 > 0. Moreover, this bound and the equation for Ṽ𝜀 imply that

‖𝜕𝑡 Ṽ𝜀 (𝑡)‖𝐿2 ≤ 𝐶‖U(𝑡)‖𝐿∞ ‖|𝐷 |𝐽𝜀Ṽ𝜀 ‖𝐿2 ≤ 𝐶 (‖U∞‖𝐿∞ + ‖〈𝐷〉𝑠V(𝑡)‖𝐿2)‖〈𝐷〉𝑠Ṽ𝜀 (𝑡)‖𝐿2 .

Hence it follows that

sup
𝑡 ∈[0,𝑇 ]

‖𝜕𝑡 Ṽ𝜀 (𝑡)‖𝐿2 ≤ 𝐶‖〈𝐷〉𝑠Ṽ0‖𝐿2

independent of 𝜀 > 0. Thus, by standard compactness arguments (see, e.g., [7][Proposition 1.1.2]), we
deduce that (Ṽ𝜀𝑛 ) converges for some sequence 𝜀𝑛 → 0 to some limit Ṽ ∈ 𝐶𝑤 ([0, 𝑇];𝐻𝑠 (R;𝑀𝑑 (C))
solving

𝜕𝑡 Ṽ = − i
2
[U, |𝐷 |Ṽ] with Ṽ(0) = Ṽ0 .
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By mimicking the arguments in the previous proof using the abstract interpolation result, we actually
deduce strong continuity, that is, we have Ṽ ∈ 𝐶 ([0, 𝑇];𝐻𝑠 (R;𝑀𝑑 (C)). Uniqueness of the solution
follows from a simple Grönwall argument in the same fashion when deriving (D.10).

Finally, we remark that the conversation of the pointwise constraints follows by a direct calculation,
which we omit. This completes the proof of Lemma D.1. �

We conclude this section by showing existence and uniqueness for the operator-valued initial-value
problem (3.3) that appears in the discussion of the Lax structure which reads

𝜕𝑡U (𝑡) = 𝐵+
U(𝑡)U (𝑡) for 𝑡 ∈ [0, 𝑇], U (0) = Id . (D.11)

for the operator-valued map U : [0, 𝑇] → B(𝐿2
+(R;V)). As usual, we use B(𝐻) to denote the Banach

space of bounded linear maps 𝐻 → 𝐻 with a given Hilbert space H. Recall that

𝐵+
U =

i
2
(𝑇U ◦ 𝐷 + 𝐷 ◦ 𝑇U) −

i
2
𝑇|𝐷 |U (D.12)

with 𝐷 = −i𝜕𝑥 denotes the compression of 𝐵U on the Hardy space 𝐿2
+(R;V). Recall that for solutions

U ∈ 𝑀𝑑 (C) ⊕ 𝐻𝑠 (R;𝑀𝑑 (C)) with 𝑠 > 3
2 as given by Lemma 5.1, the operators {𝐵+

U(𝑡) }𝑡 ∈[0,𝑇 ]

are a family of (essentially) skew-adjoint operators on 𝐿2
+(R;V) with operator domain 𝐻1

+(R;V) =
𝐿2
+(R;V) ∩ 𝐻1(R;V); see also the remark below. Recall that we either take V = C𝑑 or V = 𝑀𝑑 (C)

equipped with their natural scalar products.

Lemma D.2. Let 𝑠 > 3
2 and 𝑑 ≥ 2. Assume U = U∞ + V ∈ 𝑀𝑑 (C) ⊕ 𝐶 ([0, 𝑇];𝐻𝑠 (R;𝑀𝑑 (C)) is a

solution given by Lemma 5.1. Then there exists a unique solution U : [0, 𝑇] → B(𝐿2
+(R;V)) of (D.11)

with the following properties.

(i) The map [0, 𝑇] → 𝐿2
+(R;V) with 𝑡 ↦→ U (𝑡)𝜑 is continuous for every 𝜑 ∈ 𝐿2 (R;V).

(ii) The equation 𝜕𝑡U (𝑡) = 𝐵+
U(𝑡)U (𝑡) holds in 𝐻−1

+ (R;V) for any 𝑡 ∈ [0, 𝑇].
(iii) U (𝑡) : 𝐿2

+(R;V) → 𝐿2
+(R;V) is unitary for all 𝑡 ∈ [0, 𝑇].

(iv) For 𝜑 ∈ 𝐻1
+(R;V) ∩ dom(𝑋∗), we have U (𝑡)𝜑 ∈ 𝐻1

+(R;V) ∩ dom(𝑋∗) for 𝑡 ∈ [0, 𝑇].

Remark. In particular, the proof below shows that, given a time-dependent U = U∞ + V ∈ 𝑀𝑑 (C) ⊕
𝐻𝑠 (R;𝑀𝑑 (C)) with some 𝑠 > 3/2 and satisfying U(𝑥) = U(𝑥)∗ for all 𝑥 ∈ R, the operator 𝐵+

U :
𝐻1

+(R;V) ⊂ 𝐿2
+(R;V) → 𝐿2

+(R;V) is essentially skew-adjoint, that is, there exists a unique extension
with (𝐵+

U)
∗ = −𝐵∗

U, since it is found to be the generator of a strongly continuous one-parameter unitary
group on 𝐿2

+(R;V).

Proof. For notational convenience, we shall write 𝐿2
+, 𝐻

1
+ and 𝐻−1

+ for 𝐿2
+(R;V), 𝐻1

+(R;V) and
𝐻−1

+ (R;V), respectively.
Step 1. We first show that, for every 𝐹0 ∈ 𝐿2

+, the initial-value problem

𝜕𝑡𝐹 = 𝐵+
U𝐹, 𝐹 (0) = 𝐹0 (D.13)

has a unique solution 𝐹 ∈ 𝐶 ([0, 𝑇]; 𝐿2
+(R;V)) and we have ‖𝐹 (𝑡)‖𝐿2 = ‖𝐹0‖𝐿2 for 𝑡 ∈ [0, 𝑇].

For 𝜀 > 0, we introduce the smoothing operators

𝐽𝜀 := (1 + 𝜀𝐷)−1 : 𝐿2
+ → 𝐻1

+ with ‖𝐽𝜀 ‖𝐿2→𝐿2 ≤ 1 and ‖𝐽𝜀 ‖𝐿2→𝐻 1 ≤ 𝜀−1 .

Consider the approximate initial-value problem

𝜕𝑡𝐹𝜀 = 𝐽𝜀𝐵
+
U𝐽𝜀𝐹𝜀 , 𝐹𝜀 (0) = 𝐹0 , (D.14)
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which has a unique solution 𝐹𝜀 ∈ 𝐶1 ([0, 𝑇]; 𝐿2
+) by standard arguments. Since 𝐽𝜀𝐵U(𝑡) 𝐽𝜀 is a bounded

skew-adjoint operator for every 𝑡 ∈ [0, 𝑇], we readily find

‖𝐹𝜀 (𝑡)‖𝐿2 = ‖𝐹0‖𝐿2 .

By the equation, this implies that 𝜕𝑡𝐹𝜀 ∈ 𝐶 ([0, 𝑇];𝐻−1
+ ) uniformly in 𝜀 > 0. Hence the family {𝐹𝜀}𝜀>0

is uniformly equicontinuous in 𝐶 ([0, 𝑇];𝐻−1
+ ) and uniformly bounded in 𝐶 ([0, 𝑇]; 𝐿2

+). By a standard
compactness argument (see, e.g., [7][Proposition 1.1.2]), we can find a suitable sequence 𝜀𝑛 → 0 with
the limit 𝐹 := lim𝑛→∞ 𝐹𝜀𝑛 ∈ 𝐶 ([0, 𝑇];𝐻−1

+ ) ∩ 𝐶𝑤 ([0, 𝑇]; 𝐿2
+) which satisfies

𝜕𝑡𝐹 = 𝐵U𝐹, 𝐹 (0) = 𝐹0 . (D.15)

We now claim that

‖𝐹 (𝑡)‖𝐿2 = ‖𝐹0‖𝐿2 for 𝑡 ∈ [0, 𝑇] . (D.16)

Indeed, we calculate

𝑑

𝑑𝑡
〈𝐽𝜀𝐹 (𝑡), 𝐹 (𝑡)〉 = 2Re

〈
[𝐽𝜀 , 𝐵+

U(𝑡) ]𝐹 (𝑡), 𝐹 (𝑡)
〉
. (D.17)

Using that [𝐽𝜀 , 𝐷] = 0, [𝐽𝜀 , 𝐴𝐵] = 𝐴[𝐽𝜀 , 𝐵] + [𝐽𝜀 , 𝐴]𝐵 and [𝐽𝜀 , 𝐴] = −𝐽𝜀 [𝜀𝐷, 𝐴]𝐽𝜀 , we find

[𝐽𝜀 , 𝐵U] = − i
2
(𝐽𝜀 [𝜀𝐷,𝑇U]𝐷𝐽𝜀 + 𝐷𝐽𝜀 [𝜀𝐷,𝑇U]𝐽𝜀) −

i
2
[𝐽𝜀 , 𝑇|𝐷 |U] =: 𝐼𝜀 + 𝐼 𝐼𝜀 .

Next, we claim that

𝐼𝜀𝜑→ 0 for every 𝜑 ∈ 𝐿2
+ as 𝜀 → 0 . (D.18)

By Leibniz’ formula, we find

‖𝐼𝜀 ‖𝐿2→𝐿2 ≤ 𝐶𝜀‖𝜕𝑥U‖𝐿2 ‖𝐽𝜀 ‖𝐿2→𝐿2 ‖𝐷𝐽𝜀 ‖𝐿2→𝐿2 ≤ 𝐶𝜀𝜀−1 = 𝐶

independent of 𝜀 > 0. Furthermore, it is easy to dominated convergence (and taking adjoints) that
𝐼𝜀𝜑 → 0 in 𝐿2

+ as 𝜀 → 0 for every 𝜑 ∈ 𝐻1
+. By density of 𝐻1

+ ⊂ 𝐿2
+ and the uniform bound

‖𝐼𝜀 ‖𝐿2→𝐿2 ≤ 𝐶, we readily deduce that (D.18) holds. Next, we observe that

‖𝐼 𝐼𝜀 ‖𝐿2→𝐿2 ≤ 𝐶‖𝐽𝜀 ‖𝐿2 ‖|𝐷 |U‖𝐿∞ ≤ 𝐶

independent of 𝜀 > 0. Also, by dominated convergence (and taking adjoints) we see that 𝐼 𝐼𝜀𝜑 → 0 in
𝐿2
+ as 𝜀 → 0 for every 𝜑 ∈ 𝐻1

+. Again, we conclude

𝐼 𝐼𝜀𝜑→ 0 for every 𝜑 ∈ 𝐿2
+ as 𝜀 → 0 . (D.19)

Going back to (D.17) and using (D.18) and (D.19), we find by integration

〈𝐽𝜀𝐹 (𝑡), 𝐹 (𝑡)〉 = 〈𝐽𝜀𝐹0, 𝐹0〉 +
∫ 𝑡

0
𝑔𝜀 (𝜏) 𝑑𝜏

with 𝑔𝜀 (𝑡) → 0 in 𝐿2
+ as 𝜀 → 0 for every 𝑡 ∈ [0, 𝑇]. Since also ‖𝑔𝜀 (𝑡)‖𝐿2 ≤ 𝐶, we can use dominated

convergence when passing to the limit 𝜀 → 0 to find

〈𝐹 (𝑡), 𝐹 (𝑡)〉 = 〈𝐹0, 𝐹0〉 for all 𝑡 ∈ [0, 𝑇] ,
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which is the desired identity (D.16). Finally, we also remark that conservation of the 𝐿2-norm implies
that the strong continuity 𝐹 ∈ 𝐶 ([0, 𝑇]; 𝐿2

+). Uniqueness of solutions in this class for the linear equation
𝜕𝑡𝐹 = 𝐵U𝐹 directly follows from 𝐿2-conservation as well.

Step 2. We define the map U : [0, 𝑇] → B(𝐿2
+) by setting U (𝑡)𝐹0 := 𝐹 (𝑡) for 𝐹0 ∈ 𝐿2

+, where
𝐹 ∈ 𝐶 ([0, 𝑇]; 𝐿2

+) is the unique solution of 𝜕𝑡𝐹 = 𝐵+
U𝐹 with 𝐹 (0) = 𝐹0. By 𝐿2-conservation, we see

that ‖U (𝑡)𝐹0‖𝐿2 = ‖𝐹0‖𝐿2 and hence U (𝑡) is an isometry on 𝐿2
+ for any 𝑡 ∈ [0, 𝑇]. Furthermore, by a

time reversal argument for the Schrödinger-type equation (D.13), we see that U (𝑡) is also surjective on
𝐿2
+. Thus U (𝑡) is a unitary map on 𝐿2

+ for any 𝑡 ∈ [0, 𝑇]. This proves (iii), whereas the items (i) and (ii)
are directly verified.

Step 3. It remains to show property (iv). For 𝜑 ∈ 𝐻1
+(R;V) ∩ dom(𝑋∗), we can show, by using an

approximation argument (whose details we omit) with the family of operators 𝐽𝜀 = (1 + 𝜀𝐷)−1 and
𝑅𝜀 = (𝜀𝑋∗ − i)−1 with 𝜀 > 0, that the solution 𝐹 ∈ 𝐶 ([0, 𝑇]; 𝐿2

+) of 𝜕𝑡𝐹 = 𝐵U𝐹 with 𝐹 (0) = 𝜑 satisfies
𝐹 (𝑡) ∈ 𝐻1

+(R;V) ∩ dom(𝑋∗) for 𝑡 ∈ [0, 𝑇]. Since 𝐹 (𝑡) = U (𝑡)𝜑 this shows that (iv) holds true.
This completes the proof of Lemma D.2. �
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