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Abstract
We study the energy-critical half-wave maps equation:

du=ux|Dlu

foru : [0,T) xR — S2. Our main result establishes the global existence and uniqueness of solutions for all rational
initial data uy : R — S2. This demonstrates global well-posedness for a dense subset within the scaling-critical
energy space H 1/ 2(R; S2). Furthermore, we prove soliton resolution for a dense subset of initial data in the energy
space with uniform bounds for all higher Sobolev norms H* for s > 0.

Our analysis utilizes the Lax pair structure of the half-wave maps equation on Hardy spaces in combination with
an explicit flow formula. Extending these results, we establish global well-posedness for rational initial data (along
with a soliton resolution result) for a generalized class of matrix-valued half-wave maps equations with target spaces
in the complex Grassmannians Gry (C4). Notably, this includes the complex projective spaces CP4~! = Gry (C4)
thereby extending the classical case of the target §% = cp!.

Contents

1 Introduction and main results 2
2 Preliminaries and notation 12
3 Lax pair structure 16
4 Spectral analysis of Ty 19
5 Local well-posedness and explicit flow formula 24
6 Global well-posedness for rational data 28
7 Soliton Resolution and Non-Turbulence 32
8 Refined analysis for target S° 41
A Density of rational maps 47
B Stereographic parametrization 50
C Construction of 7Ty with simple discrete spectrum 56
D Local well-posedness 62
References 70

© The Author(s), 2025. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (https://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction,
provided the original article is properly cited.

https://doi.org/10.1017/fms.2025.10136 Published online by Cambridge University Press


doi:10.1017/fms.2025.10136
https://orcid.org/0000-0002-8237-0560
https://orcid.org/0000-0002-7627-525X
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1017/fms.2025.10136

2 P. Gérard and E. Lenzmann

1. Introduction and main results

This paper is devoted to the half-wave maps equation posed on the real line, which reads
du=ux|Dlu (HWM)

with u : [0,7) x R — S%. Here S? denotes the standard unit two-sphere embedded in R® and x
stands for the vector/cross product in R3. Formally, the operator |D| is given by its Fourier multiplier
|¢| corresponding to the half-Laplacian |D| = V=A on R. Equivalently in our setting, we can write
|D| = HO, where

(Hf)(x)z%p.v./ijf(Tyidy (1.1)

denotes the Hilbert transform on the real line. The main physical motivation for studying (HWM) stems
from the fact that it can be seen as a continuum version of discrete completely integrable so-called spin
Calogero—Moser models; see [37, 27]. See also [26] for a complete classification of traveling solitary
waves of (HWM) in relation to (nonfree) minimal surfaces of disk type, as well as the studies [3, 29] of
the dynamics of rational solutions of (HWM) in the applied math literature.

As shown in [14], the half-wave maps equation is a completely integrable Hamiltonian PDE in the
sense of having a Lax pair structure that yields an infinite set of conserved quantities and also shows
that rationality is preserved by the flow of (HWM). We remark that its Hamiltonian energy functional
is easily found to be

_ 2
Fw =1 [aiplude= L [ [BOZSOP 02

Note that the scaling u(t, x) — u(Az, Ax) with some constant 1 > 0 preserves solutions of (HWM) as
well as the energy E (u). Thus we see that (HWM) is energy-critical.

However, the question of existence (or nonexistence) of global-in-time solutions for (HWM) — even
for smooth and sufficiently small data — has been left completely open so far. Here one of the major
obstacles lies in the nondispersive nature of the half-wave operator | D| in one space dimension occurring
in the quasi-linear evolution problem (HWM). In fact, this situation prevents us from adapting known
tools developed to prove global well-posedness results for other dispersive geometric PDEs such as the
Schrédinger maps and wave maps equations; see, for example, [35, 22] and references therein. We refer
also to [23, 20, 28] for small data global existence for (HWM) in the nonintegrable case with space
dimensions at least N > 3, where dispersive estimates can be used which are not available for our setting
here.

In the present paper, we shall develop an entirely different approach that will lead to global well-
posedness for all rational initial data, which are shown to form a dense subset in the scaling-critical
energy space H 2 (R; S?) for (HWM). Our proof will be based on the Lax pair structure on suitable
Hardy spaces together with an explicit flow formula for (HWM) akin to the explicit formulae recently
found by the first author for the Benjamin—Ono equation. Furthermore, as a byproduct of our analysis,
we will also study the long-time behavior of rational solutions, leading to a general result on soliton
resolution in this setting. In particular, this result yields a rigorous proof of the numerical findings for
(HWM) that have been recently presented in [3].

Global well-posedness for rational data

We consider (HWM) with initial data that are given by rational functions. To this end, we define the set

Rat(R;S?) := {u ‘R — S$? | u(x) is rational in x € R} .
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Explicit examples of rational maps u : R — S? are easily constructed by means of the (inverse)
stereographic projection from the extended complex plane C U {co} to S?; see Section 8 below for
details.

In fact, rational maps play a distinguished role in the analysis of (HWM), as they occur in the complete
classification of traveling solitary waves. Furthermore, due to its Lax pair structure (detailed below)
and a Kronecker-type theorem for Hankel operators (see Section 4 below), another essential feature of
(HWM) is that rationality is preserved by the flow, see [14]. For any u € Rat(R; S?), we readily verify
the following properties:

o Limit: lim u(x) = p for some unit vector p € S?.
X—+00
o Smoothness: u € H® = (.o H*.
In addition, we can derive with the following nontrivial fact.

Theorem 1.1. Rat(R; S?) is a dense subset in H: (R; S?).

Remark. Due to the nonlinear constraint of taking values in the unit sphere S2, this density result is far
from obvious. For the proof of Theorem 1.1, we refer to Appendix A below.

Our first main result shows that rational data always lead to unique global-in-time solutions of
(HWM).
Theorem 1.2 (GWP for Rational Data). For everyuy € Rat(R;S?), there exists a unique global-in-time
solution u € C(R; H® (R; S?)) of (HWM) with initial datum u(0) = ug.

Remarks. 1) The global solutions u : R x R — S? constructed above are of the form
u(r) = uw + v(¢) € S? + C(R; H*(R; R?))

with the point ue, = lim|y | o (x) € S? given by the initial datum uy € Rat(R; S?). See also below,
for the definition of the space HZ® (R; S?).

2) Our result establishes global well-posedness of (HWM) for initial data belonging to a dense subset
in the scaling-critical energy space H 2 (R; S?). Hence any finite-time blowup solution for (HWM) in
the energy space — provided such solutions exist at all — must be highly unstable.

3) The solutions of Theorem 1.2 exhibit an infinite set of conserved quantities

I,(u(r)) =1,(ug) forp>1

due to the Lax structure for (HWM). In particular, we obtain conservation of energy E(u(z)) = E(up) ~
I>(up). As a consequence of Peller’s theorem, we obtain the infinite family of a priori bounds

”“(t)”B},/f’ <p ||u0||B})/P forp > 1

with the homogeneous Besov semi-norms || - || 51/»; see Section 3 for details. However, these bounds
P

do not seem to provide strong enough control to deduce global existence. In this paper, we thus use an
entirely different approach based on an explicit flow formula for (HWM).

4) In [3], the authors study the dynamics for rational initial data up : R — S? with simple poles
and derive a self-consistent system of ordinary differential equations of spin Calogero—Moser type.
However, by following this approach, it still remains unclear whether such rational solutions can be
extended globally in time, since a possible loss of simplicity of poles could arise at finite time, rendering
the simple pole ansatz invalid in finite time.

Soliton resolution and nonturbulence

As our next main result, we discuss the long-time behavior of rational solutions provided by Theorem
|.2 above. Here a suitable spectral condition will enter the scene as follows. For u € Rat(R;S?), we
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define the Toeplitz operator by
Tuf =L, (Uf) for f € L2(R;C?).

Here IT, : L?(R;C?) — L2(R;C?) is the Cauchy—Szegd projection onto the vector-valued Hardy space
defined as

L2(R;C?) := {f € L2(R:C?) | supp fir C [0, o) for k = 1,2} :

The symbol in Ty is given by the matrix-valued function U : R — C>*? with

3 .

u up —iu

U:u-a':Zuka'k: 3 ! 2, (1.3)
p uy +1up —us3

where o = (07, 03, 03) contains the standard Pauli matrices. For later use, we also remark that, by
introducing the matrix-valued function U = u - o, we can equivalently rewrite (HWM) as

8,U = —%[U, ID|U], (1.4)

where [X,Y] = XY — Y X is the commutator of matrices; see also [14] for more details on this.

In fact, by recasting (HWM) in terms of the matrix-valued function U, we will be able to fully exploit
the Lax structure initially found in [14]. Also, we note that U(x) = U(x)* € C>*? takes values in the
Hermitian matrices subject to the algebraic constraint that U(x)? = 1,. As a consequence, the Toeplitz
operator Ty = Ty; is self-adjoint with operator norm ||Ty|| < 1. Moreover, it turns out that 7y will be a
Lax operator along the flow. Hence its spectrum o (Ty(,)) will be preserved in time for solutions u(z)
of (HWM). As another key fact, we mention that the discrete spectrum

04(Ty) = {2 € o(Ty) | 4 is isolated and has finite multiplicity }

is finite if and only if the functionu : R — S? is rational; see Section 4 for a detailed discussion of the
spectral properties of Ty for general u € H? (R; S2).

Our next main result will prove that simplicity of the discrete spectrum o4 (7y) implies scattering of
the corresponding global rational solution u € C(R; H®(R;S?)) into a sum of traveling ground state
solitary waves receding from each other, that is, we obtain soliton resolution in this case. From [26] we
recall that traveling solitary waves for (HWM) are, by definition, finite-energy solutions of the form

u,(t,x) = q,(x —vt) (1.5)

with some profile q € H 2 (R;S?) and where v € R corresponds to the traveling velocity. From the
complete classification result in [26] we recall that the any such profile q, can be expressed in terms
of a finite Blaschke product, whence it follows that q, € Rat(R; Sz) holds. Moreover, the energy is
quantized according to

E(qy) = (1 —v?) -mnx  withsomem =0,1,2,... (1.6)

where the integer m corresponds to the degree of the Blaschke product. The case m = 0 corresponds to
the trivial case of constant q,,, whereas for nonconstant profiles q,, we must have that

v < 1. (1.7)

Note also that the special case v = 0 yields static solutions of (HWM) and the profiles q,-o are then
so-called half-harmonic maps, see also [8, 31].
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In view of (1.6), we refer to the case m = 1 as ground state solitary waves, since these are nontrivial
with the least possible energy for a given velocity. From the explicit classification in [26] we can deduce
that profiles q, € Rat(R;S?) for ground state solitary waves are exactly rational functions of the form

S

S
G@(X) =quo+ —+—= (1.8)
xX—-7z x-%2
with some qo, € S%, z € C_, and s € C? \ {0} satisfying the nonlinear constraints
s
s-s=0 and s-(qm+—_)=0. (1.9)
-z

Herea-b = Zi:l arxby denotes the non-Hermitian dot product of a,b € C3. We remark that (1.9) is
easily seen to be equivalent (by partial fraction expansion) to the geometric constraint that q,, (x) € S?
for all x € R. Moreover, the real part Re z corresponds to the spatial center of the solitary wave profile
q,, whereas E(q,) = (s-5) - 7 = (1 = v?) - 7 yields its energy. For more details on q,, we refer to the
discussion in Appendix C below.

We are now ready to state our second main result.

Theorem 1.3 (Soliton Resolution and Non-Turbulence). Let ug € Rat(R;S?) and suppose the corre-
sponding Toeplitz operator Ty, : L2(R;C?) — L2(R;C?) has simple discrete spectrum oyq(Ty,) =

{vl, N ,VN}.
Then the corresponding solution u € C(R; H®(R;S?)) of (HWM) with initial datum u(0) = g
satisfies
tlim lu(t) —a*()|lgs =0 foralls >0,
where

N
ut(1,0) = D@y, (x = ;1) = (N = Duss .
j=1

Here each q,; € Rat(R; S?) is a profile of a ground state solitary wave for (HWM) with traveling
velocity v; and it is given by

S; S;

(RN S
x—yj+1(5j X—yj—15j

qdv; (x) = ue +

with some complex vectors sy, . ..,sy € C>\ {0}, some real numbers yy,...,yn € R, some positive
real numbers 81, ...,0n > 0, and the point U = lim|y|e Wo(X) € s2,
Moreover, we have the a priori bounds

sup |[u(®)|lgs < C(ug,s) foralls>0.
teR

Remarks. 1) Obtaining a priori bounds on all higher Sobolev norms |[u(?)||s is a remarkable fact,

since the infinite hierarchy of conservation laws given by the Lax structure for (HWM) only provides

a priori control over the weaker homogeneous Besov norms [[u(7)|| ;1/» for I < p < oco. The latter fact
r

follows from Peller’s theorem applied to the Hankel operator Hy and the conserved quantities given by
the operator traces Tr(|Hy|?); see [14] for more details.

2) Note that the scattering profile u*(¢) is the same for both 1 — —oo and ¢t — +co, which can be
seen as triviality of the scattering map in this setting.

3) It would be interesting to prove or disprove the existence of rational initial data uy leading to
turbulent behavior in the sense of growth of higher Sobolev norms such that |[u(z)||zs — +oo as

https://doi.org/10.1017/fms.2025.10136 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2025.10136

6 P. Gérard and E. Lenzmann

t — oo for some s > % Of course, the discrete spectrum o4(Ty,) for such data must have degenerate

eigenvalues.

4) It is interesting to compare our result to other completely integrable equations with a Lax pair
structure on Hardy spaces: In [15], turbulent rational global-in-time solutions have been constructed
for the Calogero—Moser derivative NLS on the real line. For the cubic Szegd equation on the real line,
turbulent rational solutions have been proven to exist in [18] along with their genericity.

We conclude this subsection by establishing that the spectral assumption in Theorem 1.7 for the
Toeplitz operator Ty, holds on a dense subset in H 2 (R; S?), thereby showing that the soliton resolution
above holds on a dense subset in the energy space.

Theorem 1.4. The subset
Raty(R; $?) := {u € Rat(R;S?) | o4(Ty) is simple}

is dense in H* (R; S?).

We remark that the nonlinear constraint of taking values in S? poses serious challenges when
proving this density result. Also, the reader should avoid the fallacy of claiming that rational functions
u € Rat(R;S?) with simple poles will always lead to simple discrete spectrum oq(Ty). We refer to
Section 4 for more details.

Generalized half-wave maps equation

We now discuss a natural geometric generalization of (HWM) beyond the target S?. The reader who is
mainly interested in the S?-valued case may skip this subsection at first reading.

For a given integer d > 2, we let M;(C) = C%*¢ denote the vector space of complex d X d-matrices.
For matrix-valued maps U : [0,T) Xx R —» M;(C), we introduce the generalized half-wave maps
equation given by

i
o,U = _E[U’ |D|U], (HWMy)
subject to the initial condition U(0) = Up : R — M;(C) satisfying the algebraic constraints such that
Up(x) = Up(x)* and Uy(x)>=1,; fora.e.x eR. (1.10)

We readily check that these properties of Uy are formally preserved along the flow of (HWM,). At this
point, we also mention that (HWM,) can be formally seen as the zero-dispersion limit of the so-called
spin Benjamin—Ono equation recently introduced in [4]; see also below for further remarks on this.

The matrix-valued generalization of (HWM) above also has a straightforward geometric meaning as
follows. Let Gry (C?) denote the complex Grassmannian consisting of the k-dimensional subspaces of
the complex vector space C?. We recall that Gri (C?) can be canonically identified with the space of
self-adjoint projections P = P* € M4(C) withrank(P) = k. Since Tr(P) = rank(P) for such projections
P, we find

Gre(CY) ={P € My(C) | P* = P = P* and Tr(P) = k}. (1.11)
We remark that Gry (C¢) is a compact submanifold of real dimension 2k (n — k) embedded in My (C).
In fact, we have that Gri (C¢) is a compact complex Kihler manifold, see also below.

Thanks to the elementary affine relation

U=1,4-2P, (1.12)
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we obtain the natural identification of the complex Grassmannians such that
Gre(CY) = {U e My(C) | U =U", U* =14 and Tr(U) = d - 2k} (1.13)

forall k =0, ..., d. With the simple relation (1.12) in mind, we will use the slight abuse of notation and
identify elements in the right-hand side in (1.13) as elements in Gr (C%) in what follows. Moreover,
throughout our discussion we will also include the trivial cases when k = 0 or k = d corresponding to
{14} or {14}, respectively.

In addition to the constraints (1.10), it is easy to see that the matrix trace Tr(U(z,x)) is formally
preserved in time along the flow of (HWM,). Hence we can view solutions of (HWM,) as maps

U:[0,7) xR — Gri(C%),
provided that the initial condition Uy : R — M,;(C) satisfies the pointwise condition
Tr(Ug(x)) =d -2k fora.e.x eR (1.14)

in addition to the constraints (1.10) above.

Remarks. 1) For d = 2 and k = 1, we see that (HWM,) reduces to (HWM) in accordance with the
classical fact that Gr; (C2) = CP! = §2.

2) For general d > 2 and k = 1, we recall that Gry(C¢) = CP?"!. In particular, our global well-
posedness result below will apply to the generalized half-wave maps equation with target being the
complex projective spaces CP! for any d > 2.

We will prove that (HWM,) also possess a Lax structure on suitable L>-based Hardy spaces, which
will be discussed in Section 3 below. For d > 2 and 0 < k < d given, we observe that the natural energy
space for (HWM,) reads

H?(R; Gri(CY)) = {U € H2 (R; M4(C)) | U(x) € Grg(C9) fora.e. x € R}

equipped with the natural Gagliardo semi-norm || - “1-'1 1
the energy functional for (HWM,) given by

I Ux) - U
EU) =3IV, = //R| ()a y|(2y)|Fd dy (1.15)

whose square is (up to a multiplicative constant)

Here |A|r = /Tr(A*A) denotes the natural Frobenius norm for matrices A € M4 (C).
In analogy to our analysis of (HWM), we define the set

Rat(R; Grg (CY)) := {U: R — Gri(C?) | U(x) is rational}.

We have the following global well-posedness result about (HWM,) for rational initial data, which
includes Theorem 1.2 as a special case.

Theorem 1.5 (GWP of (HWM,) for Rational Data). Let d > 2 and 0 < k < d be integers. Then,
for every initial datum Uy € Rat(R;Gri(C?)), there exists a unique global-in-time solution U €
C(R; HZ (R; Gre (C))) of (HWMq) with U(0) =

Generalizing the density result in Theorem 1.6, we have the following result proven in Appendix A.

Theorem 1.6. Foreveryd > 2and0 < k < d, the subset Rat(R; Gry(C%)) is dense in H? (R; Grg (C9)).

Remark. The reader may wonder about finding explicit elements in Rat(R; Gri(C%)). Indeed, in the
case Grl(Cd) = CPd_l, we can easily construct rational maps as follows. Let Py,...,P; € C[X]
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be polynomials such that f(x) := (P;(x),...,Pa(x)) € C4\ {0} for all x € R. Evidently, the map
P:R — My(C) with

T
PO = 560, e

satisfies P(x) = P(x)* = P(x)?> with Tr(P(x)) = 1. Thus U(x) = 14 — 2P(x) belongs to
Rat(R; Gri (CY)).

Next, we will extend Theorem 1.3 to the setting of half-wave maps with target Gr; (C¢). Here, for
a given initial datum Uy € Rat(R; Gri(C9)), the corresponding Toeplitz operator Ty, : L2(R;C%) —
L2(R;C%) is analogously defined via Ty, f = I1,(Ugf). Furthermore, the notion of traveling solitary
waves for (HWM,) is defined in the obvious manner: We say that a finite-energy solution to (HWM,)
of the form

U, (t,x) = Qy(x —v1)

is a traveling solitary wave with profile Q, € H %(R;Grk (C%)) and velocity v € R. We have the
following result.

Theorem 1.7 (Soliton Resolution and Non-Turbulence for (HWM,)). Letd > 2 and 0 < k < d be given.
Suppose that Uy € Rat(R; Gri(C?)) and that its Toeplitz operator Ty, : L>(R;C9) — L2(R;C%) has
simple discrete spectrum og(Ty,) = {vi,...,vn}.

Then the corresponding solution U € C(R; H® (R; Gri (C9))) of (HWM,;) with initial datum U(0) =
Uy satisfies

tliIP U@ —U*()|lgs =0 foralls >0,

where
N
Us(1,x) = 3" Qu,(x = v;1) = (N - DUs.

J=1

Here each Q,,; € Rat(R;Grg (CY) is a profile of a traveling solitary wave for (HWM,) with velocity
v; and it is given by

Q,(x)=U = %

(X)) =Ux + - + N s

Y x—y;+ié; x-—y;—id;

with some matrices A; € My(C) with rank(A;) = 1 and A? =0forj =1,...,N, some real
numbers yi, ..., YN € R, some positive real numbers 61,...,0n > 0, and the constant matrix U, =

lim\x\—mo U()(X) € Grk (Cd)
Moreover, we have the a priori bounds

sup [[U(#)||gs < C(ug,s) foralls>0.
teR

Remarks. 1) In the particular case Gry ((C2) = CP! = S2, we obtain Theorem 1.3 above, except that we
also find in Theorem 1.3 that the traveling solitary profiles are known to be of ground state type in this
case. For general targets Gry (C¢) with (k,d) # (1,2), the complete classification of traveling solitary
waves is open and hence we can only conclude that the profiles Q,, above give rise to traveling solitary
wave for (HWM,) with velocity v;.

2) It would be desirable to extend the density result for the simplicity condition on the discrete
spectrum o4(Ty,) stated in Theorem 1.4 to general targets Gry (C¥).
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Strategy of proofs

Let us briefly outline the main ideas used in this paper.

The starting point of our analysis is a detailed study of the Lax pair structure of (HWM,). In particular,
this will largely extend the previous results found in [14] for (HWM) with target S2. More precisely, we
will show that, given a sufficiently smooth solution U : [0,7] x R — Grx(C?) of the matrix-valued
(HWM,), we obtain the following Lax equation

d

ETU(,) = [Bg(t),TU(t)] . (1.16)

Here Ty : L2(R; V) — L2(R; V) denotes the Toeplitz operator given by
Tyf =TL(Uf) for f € LY(R:V).
where V either stands for
V=C? or V=MyC)),

equipped with their canonical scalar products, see below. In fact, we shall use both choices of V in
the course of our analysis below. Moreover, we remark that Ty = 7] is self-adjoint and bounded with
operator norm ||Ty|| = ||U||z~ = 1 thanks to the algebraic constraints imposed on the matrix-valued
function U. The second operator appearing in (1.16) reads

i i
BBZE(DOTNTUoD)—Eme, (1.17)

which is an unbounded skew-adjoint operator with dom(By) = H!(R; V) as its operator domain.

Now, another decisive feature of the Lax structure for (HWM,) enters, which again is due to the
algebraic constraints satisfied by the matrix-valued function U. Notably, we can derive the following
key identity

T} =1d - HyHy (1.18)

where Hy : L2(R; V) — L2 (R;V) denotes the Hankel operator given by
Hyf =TL_(Uf) for f € L{(R;V)

where I := Id—TI, denotes the projection in L?(R; V) onto orthogonal complement of the Hardy space
Li (R; V). By the Lax evolution (1.16) combined with (1.18), we obtain the infinite set of conserved
quantities for (HWM,) of the form

1,(U) = Tr(|Ky|P/?) forany p > 0, (1.19)

with the nonnegative operator Ky = H{;Hy. In particular, for p = 2, we obtain the trace-class norm
of Ky which is easily seen to be equivalent to the scaling-critical energy (semi-)norm ”U”H 15 see
Section 3 for more details. Furthermore, we see from (1.18) that Ty is Fredholm with index 0. We will
make use of this fact further below in our analysis.

However, as we have already mentioned above, the infinite family of conserved quantities {1, (U)},>1
does not seem to yield sufficient control to obtain global solutions for (HWM,), even for smooth and
sufficiently small initial data (i.e., small perturbations of a constant). To overcome this obstruction, we
shall derive an explicit flow formula for sufficiently smooth solutions of (HWM,), which is akin to the
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result discovered in [10] for the Benjamin—Ono equation. More precisely, for solutions of (HWM,) of
the form

U(t) = Us + V(1) € My(C) & C([0,T]; H* (R; My(C)) with s > % ,

we derive that

1
ILV(t,7) = %L((x* + 1Ty, - zId)_lILVQ) fort € [0,T] and 7 € C, (1.20)

where Uy = Us + Vg € My(C) ® H(R; My(C)) denotes the initial datum for (HWM,). In this
formula, we emphasize the fact that Ty, is now regarded as a Toeplitz operator acting on the Hardy
space L2(R; M,(C)) with functions taking values in the space of complex d x d-matrices My (C).
Furthermore, in analogous fashion to [10], the operators I, and X* are given by

L) = Jim fl@) ad (A =i5L©

defined on their suitable domains dom(Z,) and dom(X*) in L2(R;V); see Section 2 below for details.
Now, the main challenge is to decide whether we can exploit this explicit representation above to
deduce that these strong solutions can be extended to all (forward) times, that is, whether it is true
that U € C([0, 00); HS (R; Gr (C4))) holds? Surprisingly, this turns out to be a rather delicate question
whose affirmative answer must necessarily exploit the algebraic constraints satisfied by the matrix-
valued function U solving (HWM,). By contrast, we remark that the explicit formula (up to an inessential
rescaling of 1) for the dispersionless limit of the scalar-valued Benjamin—Ono on the line reads the same
as (1.20) with the simple replacement of Ty, with the Toeplitz operator T,,, : L2(R;C) — L2(R;C)
with the bounded scalar-valued function ug € L*>(R) N L*(R). However, for the dispersionless limit of
(BO), it is known [12] that strong continuity of the flow breaks down in finite-time (corresponding to
development of shocks). Thus we cannot expect to derive global-in-time existence for (HWM,) by a
naive use of (1.20) neglecting the algebraic constraints for U.

In order to further exploit the fact that the initial data Uy for (HWM,) are valued in Gry (Cd), we
appeal again to the key identity (1.18). As a direct consequence, we obtain the natural orthogonal
decomposition of the underlying Hardy space of the form

L2(R;V) = $0 @ H

with the closed subspace

9o := ker(Ky,) and 9 := 9y =ran(Ky,),

where we recall the definition of the trace-class operator Ky, = Hy Huy,. Now, it turns out that
I1, Vo € $ and, in addition to this, we see that $, is an invariant subspace of both Ty, as well as the
semigroup generated by X*. As a consequence, we see that the resolvent appearing on right-hand side
in (1.20) satisfies the mapping property (X* +Ty, —zId)~! : §; — $ for any t € R. Hence the explicit
flow formula found for (HWM,;) effectively takes place only the invariant subspace $;. This is a great
deal of information which can be used to deduce global existence of strong solutions! In particular, an
adaptation of the classical Kronecker theorem for Hankel operators shows that

dim($;) < +c0 if and only if Uy is a rational map .

Thanks to this fact, the proof of global existence of strong solutions via (1.20) for rational initial data U
amounts to showing that M (¢) = X* + Ty, has no real eigenvalues for any ¢ € R, proving its injectivity
on $; and hence the surjectivity of M (¢) because $, is finite-dimensional in this setting.
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Remark. The case of nonrational initial data Uy, which implies that dim §; = +co, and the question of
global well-posedness for (HWM,) will be studied in our companion work [16] posed on the torus.

Finally, let us briefly comment on the strategy behind the proofs of our further main results stated as
Theorems 1.3 and 1.7 concerning the long-time behaviour of rational solutions. Inspired by our recent
study of N-solitons for the Calogero—Moser derivative NLS in [15], the main idea rests on using the
explicit flow formula combined with a perturbation analysis of the family of (bounded) operators

eX* +TU0 : g)] g g)]

with € = % in the regime where £ — 0 under the assumption that Ty, : $1 — $; has simple spectrum.
However, as a striking difference to the analysis in [15], we will encounter that turbulence (i.e., growth
of higher Sobolev norms) can be ruled out for rational solutions of (HWM,) provided that the Lax
operator Ty, : L%(R; cd) — LE(R; C4) has simple discrete spectrum.

Links to Schriodinger maps and spin Benjamin—-Ono equation

In order to put (HWM,) in a broader geometric perspective, we recall the well-known fact that Gry (C9)
is a Kéhler manifold of complex dimension k(d — k). Its complex structure J4 on the tangent space
T4Gr (C?) at a point A € Gry(C%) can be expressed as the matrix commutator

i
Ja(X) = _E[A’X] .
Thus we see that (HWM,) can be written as a Schrodinger maps-type equation of the form!
0:U = Jy|D|U (SM)

with the first-order pseudo-differential operator | D|. However, we will not further exploit this geometric
point of view in our analysis here.

On the other hand, we also mention the remarkable fact that (HWM,) can be formally seen as the
zero-dispersion limit of the spin Benjamin—Ono equation (sBO), which was recently introduced by
Berntson-Langmann-Lenells in [4]. In our choice of units, this equation can be written as

| .
8,V = 50, (IDIV = V?) - %[V, ID|V]. (sBO)

for the matrix-valued map V : [0,7) x R — M;(C); see also [11] where a Lax pair structure for
(sBO) was found. We notice that, in the special case of real-valued maps V(z,x) € R, we obtain the
classical Benjamin—Ono equation (apart from trivial rescaling of t compared to the standard form of this
equation).

At least on a formal level, we see that replacing |D| by £|D| with & > 0 in (sBO) and forcing
the condition that V> = 1,4, we are led to (HWM,) when formally taking the zero-dispersion limit as
& — 0. For a rigorous analysis of the zero-dispersion of the scalar Benjamin—Ono equation, we refer to
the recent work in [12]. However, as already mentioned above, we will encounter a striking difference
in our analysis here due to the algebraic constraint U? = 1, that is absent in the scalar case. From an
operator theoretic point of view, this remarkable difference stems from the fact that Toeplitz operators
Ty with matrix-valued symbols U : R — C%*¢ for d > 2 can have entirely different spectral properties
compared to Toeplitz operators Ty with scalar-valued symbols f : R — C. The interested reader will
find more details on this difference further below.

1A priori this geometric rewriting of (HWM,) would involve using the projection Py onto the tangent space TyGry (C%), that
is, we have 9, U = Jy Py|D |U. However, it can readily checked that [U, (Id — Py)B] = 0 for Hermitian matrices B € M 4(C).
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2. Preliminaries and notation

In this section, we set up some definitions and notation used throughout this paper.

Sobolev-type spaces

For the study of the generalized half-wave maps equations (HWM,;), we introduce the following Sobolev-
type spaces for matrix-valued functions. For an integer d > 2, we use My(C) = C% to denote the
Hilbert space of complex d X d-matrices equipped with the inner product

(A,B)F :=Tr(AB*) for A,B € M ;(C)

and the corresponding Frobenius norm of a matrix A € M;(C) will be denoted by |A|r = /(A, A)F.
The Lebesgue spaces LP (R; M4(C)) and L” (R; M;(C)) are defined in an obvious manner. For
s > 0, we use the Sobolev spaces

loc

H*(R; Mq(C)) := {U € L}, . (R; Ma(C)) | [Ullggs = [[IDIUl|> < +oo},

loc

H*(R;M4(C)) :=={VelL|

loc

(R; Ma(C)) | IVllars := (D)’ V|2 < +00} .

We set H(R; M;(C)) := NgsoH* (R; My(C)) and H*(R; M;4(C)) = NgsoH* (R; My(C)). Note that
Il - llzs is a semi-norm, since nontrivial constant maps also belong to H*(R; M4(C)) for s > 0.
Furthermore, for 0 < k < d given, we define the spaces

H*(R; Gr(CY)) := {U € H*(R; M4(C)) | U(x) € Gry(C?) fora.e.x € R}.

Note that the scaling-critical energy space associated to (HWMy) with target Gry(C?) is

H? (R; Gre (C)) equipped with the Gagliardo semi-norm || - ”H , such that
1 |U(x) - U(y)|?
VIR, =MDl = - [ [ =2 vy @
H? lx =yl

Note that E(U) = %||U||2' , is the Hamiltonian energy functional for (HWM,) with the natural sym-
H?

plectic form for maps defined on R with values in the complex Grassmannian Gry (C9).
In addition to the space H*-spaces, it turns out to be convenient to introduce the following family of
affine inhomogeneous Sobolev-type spaces given by

H{(R;Ma(C)) := Ma(C) & H* (R; Mq(C))
and we define H? (R; M;(C)) := Ng=oHJ (R; M4(C)). Furthermore, we set
H3(R; Gri (C9)) = {U € H (R; M4(C)) | U(x) € Grg(C?) fora.e. x € R}.
It is easy to see that the following strict inclusions hold true:
Rat(R; Grc(CY)) € HI(R:Gre(CY) ¢ H*(R:Grie(CY)) € L™ (R; Ma(C))

where we recall that Rat(R; Gr (C4)) denotes the space of rational maps from R to Gry (C?).
For (HWM) with maps valued in the unit sphere S* ¢ R, we make use of the corresponding Sobolev
spaces H* (R;R?) and H* (R; R?), where the energy space is

HE(R:S2) = {u € HE(R;R3) | u(x) € S2 fora.e.x € R}
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endowed with the Gagliardo semi-norm || - || . 1 such that

1
H2

() ~u(y)P
Il = ot = - [ [EE=S0E acay.
H> lx =yl

From the introduction above, we recall that unit vectors u € S? can be equivalently encoded by using
the standard Pauli matrices (o7, 0%, 03) via the relation

us ui —iuz
U=u-0=u0y+uroy +u3oz = . ,
uy +1up —Uu3

where we easily check that U = U* with U? =1, and Tr(U) = 0. Also, we find that u; = —Tr(Uo-k)
3 (U, ok )r for k = 1,2, 3. Thus, by means of the relation U = u - o, we find the equivalence of (semi)-
norms |[u||gs ~ ||U||gs forall s > 0.

Hardy spaces, Toeplitz and Hankel operators

We consider the Hilbert space L?(R; V) for maps on R with values in the finite-dimensional Hilbert
spaces

Vy=Cc? or V=MyC)),

which we endow with their natural inner products and norms, that is,

d
(u, vy = Z wv ifV=C  (A,B)y=Tr(AB*) ifV=My(C).
k=1
The Cauchy-Szegd projection T, : L>(R; V) — L2(R; V) onto the Hardy space
LA(R;V) = {f € L*(R; V) | supp f < [0,00)}

is given by
()@ = [T f@a win Fe= [ rwetear,

or, equivalently, we have m (&) =1, Zof(f ) on the Fourier side. We use
_:=1d-TII;
to denote projection onto the orthogonal complement
LX(R;V) = (LI(R; V)" = {f € L*(R;V) | supp f(£) € (—e0,0]}.

From standard Paley—Wiener theory we recall that elements f € L2(R; V) can be naturally identified
with holomorphic functions defined on the complex upper half-plane C, such that

L2(R;V) = {f € Hol(C,; V) | sup/ |f (x +iy) |3 dx < +oo}

where |- |\, denotes the norm on V. Throughout this paper, we will freely make use of this fact and we thus
regard elements f € L2(R; V) as holomorphic functions f = f(z) with z € C,. We use H = —ill, +ill
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to denote the Hilbert transform on L*>(R; V), which can also be written as the singular integral operator

e = 2. [ L2 ay.

For a bounded matrix-valued function U € L*(R; M;(C)), we define the corresponding Toeplitz
operator as

Tu: Li(R:V) - Li(R:V), f Tuf =TL(Uf).
Likewise, the corresponding Hankel operator is given by
Hy:L:(R:V) - L2(R;V), f Hyf :=IL(Uf).

We remark that we adapt the definition of Hy from Peller’s book [32]; another (equivalent) definition
of Hankel operators can be achieved by anti-linear operators (see, e.g., [17]). However, for studying the
Lax pair structure for (HWMy), we have found it more convenient to use the present convention for Hy.

A central fact about Hankel operators used in this paper is Kronecker’s theorem, which relates the
rationality of the symbol U with the property that Hy has finite rank. We refer the reader to Section 4 for
details. Furthermore, we remark that Hy is Hilbert-Schmidt if and only if U € H %; see again Section 4
for a detailed discussion.

The operators X*, X, and I,
On the Hardy space L2 (R; V), we recall that the adjoint Lax—Beurling semigroup {S(17)*} >0 is given by

(S f)(x) =T (e f(x)) for f € Li(R;V) and 2 0,

which corresponds to the contraction semigroup of left shifts on L2(R; V). We remark that S(n)* =
e~ X" where its generator X* is given by the unbounded operator

X)) = idi;f(f)]lgzo

with the operator domain

—~

dom(X*) = {f € L2(R; V) | Z—J; e L*(Ri;V)}.

It is straightforward to check that all rational functions f € L2(R; V) belong to dom(X*). For z9 € C4,
the action of the resolvent (X* — zo)~! is easily found to be

f(2) = f(z0)
—

20

(X" =20)"'N)(2) =
for all f € L2(R; V). We remark that X* is the adjoint of the unbounded operator

(Xf)(x) =xf
corresponding to multiplication with x € R and its operator domain is given by
dom(X) = {f € L2(R;V) | xf € L*(R; V)}
={fel2®R;V) | % € L*(Ry; V) and £(0) = 0} .
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Note that X is the generator of the Lax—Beurling semigroup {S(n)}, >0 corresponding to right shifts on
Li (R; V), that is, we have

(S() f)(x) =€ f(x) for f e L2(R;V) andn > 0.

We will sometimes use the notation S(n) = ¢'7X. Note that the strict inclusion dom(X) ¢ dom(X*)
holds, for example, the rational function ﬁ € dom(X*) does not belong to dom(X). Further details on
the generators X* and X can be found in [17] in the scalar-valued case when V is replaced by C, but the
necessary adaptations to our setting are elementary.

In addition to the generator X*, another important operator in our analysis is given by the (unbounded)
linear operator

L :dom(X*) c LI(R;V) >V, f o L(f) = f(0") = Jim, 1.

Note that the definition of I, as the one-sided limit of f(f) as & — 0" makes sense for any f € dom(X*)
by the standard trace theorem for Sobolev functions in H'(R,). An alternative and useful expression
for the action of I, is found by using the approximate identity y . with

€ LE(R;C) fore > 0.

Xel) = 1=
—1EX

Let v € V be a fixed vector. By Plancherel’s identity, we have

tim (. ) = lim = [ (7). w1 dg = (070w = (L)
£ £ 0

Thus, for any orthonormal basis (vy,...,vy) in V with N = dim V, we obtain
N
L(f) = lim Z(f JViXe)Vi - (2.2)
£—0 =

For later use, we also record the following formula

(X" f, /) =~ AL (PR for £ € dom(X"), 23)

which is a simple consequence from Plancherel’s identity and integration by parts.

Finally, we record another elementary fact involving the operators /. and X* as follows. Let f €
Li (R, V) be given. As before, we suppose that (vy, . . ., vy ) is an orthonormal basis of V with N = dim V.
Thus we can write

N
F) =) v
k=1
with fi (x) = (f(x), vi)y € L2(R;C) for k = 1,..., N. Since f(£) = 2., fx (€)vk, we find

N e fe@) ul
fle = Y tim( [ e L el = Y im 5660 v v
k=1 °TV\JR =1°"

1 +iex
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By taking the inverse Fourier transform, we obtain, for any z € C,, that

I
f(z)= E./o e‘z‘f(kzf l%(S(f)*f,VkXQVk d¢

N o0
= — lim (/ (el2E716X 1 vkxs>d§)Vk
— 0

271'1 F—)O Z<(X ZId)_lf’ Vng)Vk

In view of (2.2), we therefore deduce the identity

f(2) = —1+[(X —2d)7'f] 2.4

which is valid for any f € L2(R;V) and z € C,.

3. Lax pair structure

In this section, we will largely extend the results from [14], where a Lax pair structure for (HWM)
was discovered. In fact, we will consider the generalized matrix-valued equation (HWMy) in this
section.

Letd > 2 and 0 < k < d be fixed integers. We consider solutions U : [0,T] x R — M;(C) to the
initial-value problem for the generalized matrix-valued half-wave maps equation which is given by

8,U = —%[U, ID|U], U(0) = Uy € H* (R; Gr (C9)).. (HWM,)

For local well-posedness of (HWM,) with initial data in the inhomogeneous Sobolev-type spaces
H: (R; Gry (C4)) with s > 2, we refer the reader to Section 5 below. Note that in (HWM,) we use
[X,Y] = XY — Y X to denote the commutator of d X d-matrices and the operator |D| is supposed to act
on each component of the matrix-valued function U.

We introduce some notation as follows. We recall that V) either denotes C¢ or M;(C), equipped with
their natural inner products and norms. For a bounded matrix-valued function F € L*(R; M;(C)), we
let sy denote the corresponding multiplication operator acting on L2(R; V), that is, we set

(urf)(x) = F(x) f(x).

This distinction between F and its multiplication operator ur will be needed for better clarity in this
section.?

Given amap U : [0,T] xR — Grx(C%) and some time ¢ € [0, 7], we denote the corresponding
(bounded) multiplication operator by

:uU(t) : L2(R7 V) - Lz(Ra V)a f = :uU(l‘)f

Since U(¢,x)* = U(¢,x) for a. e. x € R, we readily see that uy(,) = uz([) is self-adjoint.
We have the following general result about (HWM,) that establishes a general Lax pair structure.

2Further below, we shall omit this distinction between F € L* (R; M4 (C)) and its corresponding multiplication operator yup
acting on L2(R; V).

https://doi.org/10.1017/fms.2025.10136 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2025.10136

Forum of Mathematics, Sigma 17

Lemma 3.1 (Lax equation). Let s > % and suppose U € C([0,T], HS(R; Gry (C4)) is a solution of
(HWMy). Then for any operator Ly € {pu(), L, I1_}, it holds

d
—L =[B , L ,
PTA 0] [Bu(), Lu]

with the operator

i i
By = _E(ﬂU o[D|+|D]|o uy) + SHIDIU-

Remarks. 1) From the assumed regularity of U = U(¢,x) above, we readily infer that the pseudo-
differential operator By is of order one with operator domain dom(By) = H'(R; V), which is found to
be essentially skew-adjoint, that is, there exists a unique skew-adjoint extension with Bj; = —By. See
Appendix D for details.

2) The fact uy ;) together with orthogonal projections I1. are Lax operators for the same By allows
us to restrict the Lax structure to the Hardy space L2 (R;V) involving Toeplitz and Hankel operators;
see below for more details.

Proof. We divide the proof into the following cases.
Case: L = uy. Using (HWM,;), we directly find

i i
Oy = _z[ﬂUyﬂ\DlU] = E[IJ\DlU,ﬂU] . (3.1

In view of the expression for By, it remains to show that
[ty o [D|+|D| o py, pu] =0. (3.2)
Indeed, by using that (uy)? = uy2 = Id since U? = 14, we readily check that

[y o [D] +|D] o py, pul = (py © [D] +|D] o py) o py — py o (uy o |D| + D] o py)
=uyo|D|louy+|D|—|D|—-puyo|D]ouy=0.

Case: L =I1.. Here it is convenient to show that the Hilbert transform H is a Lax operator for
By. The claim then readily follows for I1. = %(Id F iH), since Id commutes with any operator. Since
%H = (, we need to show that

[Bu,H] =0.
From the well-known product identity
H(f8) = (Hf)g + f(Hg) + H(HfHg)
and using that H|D| = —d,, we readily find that
[H, uipul = —po,u — Hua,uH.
Hence we get

[H.[D]opy+uye|D|] =Ho (|D|opy+pye|D]) = (ID]opy+puye|D])oH
=—0xopuy+HouyoHIy —HIx o uy o H+ py o dx
=pyody —0xouy+HouyodH-HIyopuyoH
= [pu. 0x] + H[pu, 0x]H
=-pp,u—HopusyoH.
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Therefore, we find

i

i
[H.Bul = 3[H.D] o u + s © D] = 5 [H. ]
i i
= 5(-rou—HopguoH) - S(-pau —HopguoH) =0.
This completes the proof of Lemma 3.1. O

From the Leibniz rule for commutators [X,YZ] = Y[X, Z] + [X,Y]Z and the corresponding rule
for derivatives 4 (XY) = XY + XY, we immediately observe from Lemma 3.1 that all finite linear
combinations of products involving the operators {uy, I1;, I1_} are Lax operators too. For instance, in
view of H = —iIl, +ill_, we recover the following Lax operator of commutator-type with

Ly = [H, py] = Hypy — puH,
which was already found in [14]. By taking traces of powers of Ly, we obtain the conserved quantities
Tr(|Ly|?) = const. for0 < p < co.
Thus, by adapting Peller’s theorem, we obtain the a priori bounds

Tr(|Lun 1) ~p ||u(l)||£1/,, ~ ||U(0)||§1/,,
p 14

for the homogeneous Besov-type norms || - || 51/, for solutions of (HWMy).> However, these a priori
P

bounds are not known to provide sufficient control to deduce global-in-time existence of solutions.

In order to further exploit the Lax pair structure attached to (HWM,), we make the following
observation involving operator analysis on Hardy spaces. Notice that, for a bounded matrix-valued
function F € L*(R; M;(C)), that the corresponding Toeplitz and Hankel operators with symbol F can
be written as Ty f = [1,(upf) and Hp f = I1_(ur f), using ug for the corresponding multiplication with
symbol F. Now, by using Lemma 3.1 together with Ty = IL,uyll; and [By,I1:] = 0 (by Lemma 3.1
too), we can easily deduce the following fact.

Corollary 3.1 (Toeplitz Lax Structure). For U = U(t, x) as in Lemma 3.1, we have the Lax equation

d

— +
2 Tue = [BU(t)’ TU(r)] :

Here By = I, Byll, is the compression of By onto L2(R; V) which is given by

B+——1(T oD+DoT)+iT
v="5Tu v)+3Tip

with D = —i0y.

Remarks. 1) Note that the compressed operator By is a differential operator as |[D|f = Df = —idx f
for f € (H' nL2)(R; V).

2) Fort € [0,T], let U(¢) : L2(R;V) — L2(R;V) denote the unitary operator generated by the
skew-adjoint operator By (1) SO that

%U(t):BB(t)L{(t) forr € [0,T], U(0)=1d. (3.3)

3For 0 < p < 1, we only have that || - ”Bl /p is a quasi-semi-norm, since the triangle inequality fails in this case. In our analysis,
P

we only need the case p = 2.
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For existence and uniqueness of this operator-valued initial-value problem, we refer to Appendix D. As
a direct consequence of Corollary 3.1, we find that Ty, and Ty(o) are given by unitary conjugation:

TU(t) = U(Z‘)TU(O)Z/[(I)* fort e [O, T] .

In particular, we obtain the invariance of the spectrum o (Ty()) = o (Ty(p)) for ¢ € [0,T].

3) Of course, the Hankel operator Hy ;) also satisfies a corresponding Lax equation with BB «
replaced by the “twisted” compressed operator I1_ By, IL;. But in what follows we shall only wor
with the Lax equation for Ty(;), which allow us to conclude all the necessary facts for our arguments
developed below.

For later use, we record the following commutator relations, where we remind the reader that we
occasionally use A.B to denote matrix product AB on M;(C) for better readability.

Lemma 3.2. Let U = Uy, + V € M;(C) & (L™ N L?)(R; My(C)). Then, for every f € dom(X*), we
have Ty f € dom(X*) and

(X, Tl f = 5-TLV.L(f).

Moreover, it holds that

X' TS = 5-Tu(LV. L) + 5-TLV- L (To )

Proof. First, we note that [X*, Ty_] = 0, since Us, € M4(C) is a constant matrix. Also, we evidently
have that Ty_ f € dom(X*) whenever f € dom(X").

Thus it remains to discuss the commutator [X*, Ty] = [X*, Ty] with V € (L n L?)(R; M4(C)).
Indeed, by adapting the proof in [17][Lemma 2.3] to the matrix-valued symbol V, we find that

(X' TV = 5-TLVL(f)

noticing that Ty f € dom(X™) for any f € dom(X*). We leave the details to the reader.
The commutator identity for [ X, TI%] simply follows from the first identity and the fact that [A, BC] =
B[A,C] + [A, B]C.

4. Spectral analysis of Ty

As in the previous sections, we let ) either stand for the Hilbert spaces C¢ or M,(C) for some given
integer d > 2. The aim of this section is to derive some fundamental spectral properties of the Toeplitz
operator

Tu: Li(R;V) - Li(R: V), f > Tuf =TL(Uf).
Throughout the following we will always assume that
Ux) = Uso + V(@) € He (R: My(©)) = Mg(C) & HE (R: My (C))
together with the pointwise algebraic constraints
Ux)*=U() and U(x)’ =1, fora.e.x €R.

As a consequence, we see that the corresponding Toeplitz operator Ty = Ty; is self-adjoint and bounded
with operator norm ||Ty|| < 1. Moreover, we readily check that the following properties hold.
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(i) U, = Uy and U% = 1,.
(i) U,V € L¥(R; My(C)) with [|U]|z=~ = 1 and [|V||L> < [[Us|lL + ||U]|> = 2.
(iii) V=V, +V: with V, =TI,V and Vi =TLV.

Fredholm property and invariant subspaces

Recall that
Hy:Li(R;V) - L2(R;V), Hyf =I1_(Uf)

denotes the corresponding (block) Hankel operator with matrix-valued symbol U. For later use, we
remark that the adjoint Hankel operator is given by

Hy : L2(R;V) — LA(R;V),  Hyf =L (Uf).

Remark. Here we used the fact that U(x)* = U(x) almost everywhere. For general matrix-valued
symbols F € L*(R; M4(C)), the adjoint Hankel operator is Hg, f = I, (F* f) for f € L*(R; V).

We have the following general fact, for matrix-valued symbols U satisfying the assumptions stated
above.

Lemma 4.1 (Key Identity and Fredholmness). We have the identity
Tt =1d-Ky onLi(R;V),
where the self-adjoint operator
Ky = HjHy : LE(R; V) — LE(R; V)
satisfies 0 < Ky < 1d and it is trace-class with
Tr(Ky) = Tr(HyHy) = const. - ||U||Z% .

Moreover, the Toeplitz operator Ty is Fredholm with index 0.

Proof. Let us consider the case V = C4, where we remark that the proof for VV = M,(C) is analogous.
Suppose that f € L2(R;C%) is given. Using that ,u% = wye = py, = Id holds on L2(R;C%) and
U*(x) = U(x) for a. e. x € R, we observe that

Ty(Tuf) = ML (UIL.(Uf)) = L. (U(id - 1)U )
=1,/ - I, (U(IL_Uf)) = f — HyHy .

since we trivially have that T, f = f for f € L2(R;C¢). This proves the claimed identity.
Consider now the bounded and self-adjoint operator

Ky := H{Hy : L2(R;CY) — L2(R;CY).

Clearly, we have that Ky > 0 is non-negative. Also, we notice that || Ky|| < ||[Hy||*> < ||U]|z~ = 1, which
shows that Ky < Id holds in the sense of operators. Next, we observe that Ky is trace-class with

Tr(Ku) = Tr(HyHu) = [1Hullys = - IIUIP @.1)
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where ¢ > 0 is some numerical constant. Here ||A||gzs denotes the Hilbert—Schmidt norm of a bounded
operator A : Hy — H, with separable Hilbert spaces H, H», that is, we have

1Al s = > (Aen, Aen)n, ,

n=1

where (e,)nen is an arbitrary orthonormal basis of Hj. For the last equation in (4.1), we give an
elementary proof taken from [14]. Using the orthogonal decomposition L?(R;C¢) = L2(R;CY%) &
L% (R;C%), we consider the commutator of U viewed as multiplication operator on L?(T; C%) with the
Hilbert transform H. This can be written as a 2 X 2-matrix of operators such that

0 —iIL, UIl-

HUl=linum o

) (L2(R;CY) @ L2 (R;CY) — L2(R;CY) @ L2 (R;CY).

On the other hand, from the singular integral formula for H, we easily see that [H, U] has the integral
kernel hy(x,y) = %%;J(y) € L*>(R x R; M4(C)). Hence its Hilbert-Schmidt norm as an operator
acting on L*(R; V) can be directly computed as

1 [Ux) - UM}
H, UL = llhull? =—//—Fdd,
”[ ]”HS ” U”LZ(RXR;Md(C)) 7{2 oI |)C—y|2 xay

where | - | denotes the Frobenius norm of matrices in M;(C). Next, by using that U = U* holds, we
see that ||hU||%{S = ||H+UH,||%15 + ||H,UH+||12,1,S = 2||HU||%{S. Recalling the formula (2.1), we deduce
that the last equation in (4.1) holds.

It remains to prove that Ty is Fredholm with index 0. Indeed, we readily see that Ty is Fredholm since
Ty is invertible modulo compact operators, which directly follows from the identity Ty Ty = TIZJ =1d-Ky.
Since Ty is self-adjoint, its Fredholm index must be 0. O

In view of the general identity established in Lemma 4.1, it is natural to introduce the following
closed subspaces

9o :=ker(Ky) and ) :=ran(Ky) 4.2)

which yields the orthogonal decomposition

Li(R:V) =00 H 4.3)

As a direct consequence, we obtain a decomposition of the Toeplitz operator Ty into invariant subspaces
in the spirit of the celebrated Sz.—Nagy—Foias decomposition for contractions on Hilbert spaces [34]
(also referred to as Langer’s lemma in [24]), which in turn is a generalization of the well-known Wold
decomposition for isometries on Hilbert spaces. Note that Ty is a contraction, because its operator norm
satisfies ||Ty|| < ||Ul|L~ = 1, where in fact we have equality in view of the identity in Lemma 4.1 above.

Proposition 4.1. The subspaces $o and $1 are invariant under Ty. Moreover, the restriction Tylg, is
unitary, whereas the restriction Tylg, is completely nonunitary (c.n.u.), that is, there is no nontrivial
invariant subspace in $); on which Ty is unitary.

Proof. Since the operator Ky : L2(R;V) — L2(R;V) with 0 < Ky < 1 is compact and self-adjoint,
we can write

N
Ku= ) 4;(.¢/)¢;
j=1
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with N = rank(Ky) € NU {oo}, 2; € (0,1] for j = 1,..., N, and the corresponding eigenvectors
(¢)) ]11 , form an orthonormal basis of $; = ran(Ky). By the identity lej = Id — Ky and from elementary
spectral calculus for the self-adjoint restrictions Ty| Ey, ON the finite-dimensional subspaces E,; =
ker(Ky — 4;1d) C $1, we deduce that

N
Ty=) ei\T=4;(.00¢; on$ (4.4)
j=1

with some g; € {1} for j = 1,..., N. Evidently, we have that §, is invariant under Ty and we see that
Tylg, is c. n. u. Because otherwise Ty|g, would have an eigenvalue 4 € {+1} on some finite-dimensional
subspace E,, contradicting the above explicit formula since 4; > 0 holds.

Since $o = ker(Ky) = 9; and by self-adjointness of Ty, we see that Ty($o) C Ho. Furthermore
from T} = Id — Ky, we readily find 7|, = Id|g,, which implies that the self-adjoint operator Tylg, is
also unitary. O

Thanks to the formula Té = Id — Ky and the decomposition obtained in Proposition 4.1, we deduce
that the spectrum of 7Ty decomposes as

o (Ty) = oe(Ty) U o4(Tv) ,
where the essential and discrete spectra of Ty are given by

oe(Ty) = o(Tylg,) C {1}

oda(Tv) = oa(Tulg,) ={ejy1 -4 | j=1,...,rank(Ky)},

with the sequences (g;) C {£1} and (4;) c (0, 1] taken from (4.4) above.

Remark. As an aside, we remark that the property of the Toeplitz operator 7y having nonempty
discrete spectrum is due to the fact its symbol U(x) is matrix-valued. By contrast, a classical result
due to Widom [36] states that any Toeplitz operator T, : L2(R;C) — L2(R;C) with a scalar-valued
symbol ¢ € L*(R;C) has a spectrum o (T,,) which must be a connected subset in C, which shows that
04(T,) = 0 in this case.

As a next step, we find some explicit elements in the invariant subspace $;. The use of this fact
will become clear later on when proving our global well-posedness result for (HWMy). Recall our
assumption that

U=U.+V e My(C)@®H?(R; My(C)). (4.5)
For later use, we make the following observation. For better readability, we use B.A to denote the
product BA of two matrices B, A € M;(C).
Proposition 4.2. Let V = M ;(C). For any constant matrix A € My4(C), it holds that TI,V.A € $.
Proof. Since Ky = H{;Hy, we find that ker(Ky) = ker(Hy), which yields that $; = ($0)* = ran(H;,) )

Hence we have to show that I1,V.A € ran(H;,) ) holds for any constant matrix A € M4(C). Indeed, by

recalling y . = € L2(R;C) for & > 0 and hence ¥, € L*(R;C), we notice

T-iex
lim Hi(x ,A) = lim I, (U.x ,A)
&e—0 e—0
= lim (U + ILV +TLV).YA)
= lim IL (L V)¥z).A = ILV.A,
e—
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because of lim,_o I, (f¥,) = f in L2(R;V) by dominated convergence. This shows that IT,V.A

belongs to $; = ran(Hy). O

Next, by using the well-known fact that kernels of Hankel operators are invariant under the Lax—
Beurling semigroup {S(77) },>0, we obtain the following result.

Lemma 4.2. It holds that S(7)9o C Ho and S(n)*H1 C H1 foralln > 0.

Proof. Let f € $o = ker(Ky) = ker(Hy). For any > 0, we immediately observe that

Hy(S(n)f) = -(US (1) f) = (" U)
= I (e""TI-(Uf)) = I (e"*Hy(Uf)) = 0.

Thus we find S(n) f € Ho for any f € 9. This proves that S(17)$Ho C Ho.
Since o L 9, we directly see that S(n)*f € $; for any f € £ and n > 0 with the adjoint
Lax-Beurling semigroup {S(17)*}, >0 acting on L2(R; V). O

Remark. As a direct consequence of the well-known Lax—Beurling theorem (see the version in [25] for
a direct application to our setting) about invariant subspaces of S(77), we can deduce the following fact:
If 9 = ker(Ky) # {0} is nontrivial, there exist a subspace V' C V and a function

® € LY(R;End(V';V)) with O(x)*O(x) =1dy, fora.e.x € R
such that
$o=OL(R:V) and §; = (OLI(R;V)*.

The matrix-valued function © is called a (left) inner function and the subspace $; is thus the model
space generated by ®. However, we will not exploit this fact in the present paper.

Spectral properties for rational data

Recall that §; = ran(Ky). We have the following characterization when the subspace $,; is finite-
dimensional, corresponding to the fact that the compact operator Ky : L2(R; V) — L2(R; V) has finite
rank.

Lemma 4.3 (Kronecker-type theorem). Let U € L (R; M;(C)) be of the form (4.5) with U(x) = U(x)*
for a.e. x € R. Then Ky : L2(R; V) — L2(R; V) has finite rank (i.e., we have dim §; < oo) if and only
if U is a rational function.

Remark 4.1. Since Ky = H{jHy = Id - Té is a Lax operator for (HWM,), we see that rationality is

preserved along the flow. For (HWM) with target S = Gr;(C?), this feature was already observed in
[14].

Proof. Since dimran(H{;Hy) = dimran(Hy), it suffices to consider the Hankel operator Hy :
L2(R;V) — L%(R;V). Furthermore, since U, € M4(C) is constant, we see that Hy, = 0
and hence Hy = Hy_+v = Hy. Thus it remains to discuss Hy with the matrix-valued symbol
Ve (H% N L®)(R; M4(C)) for the rest of the proof.

We first recall the following general Kronecker-type theorem valid for Hankel operators acting on the
Hardy space L2 (T;H) on the torus T = dD, where H is a given separable complex Hilbert space (not
necessarily finite-dimensional). Correspondingly, we use P, and P_ = Id — P, to denote the Cauchy-
Szegd projections on L?(T; £); see [32] for a general background. As usual, we use B(H, K) to denote
the Banach space of bounded linear operators from 7 to another complex Hilbert space K. From
[32][Chapter 2, Theorem 5.3] we directly deduce the following result.
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Theorem 4.1 (Kronecker’s theorem on L2 (T;H)). Let H,K be separable complex Hilbert spaces
and assume ® € L®(T;B(H,K)). Define the Hankel operator He : L2(T;H) — L*(T;K) by
Hof =P_(®f). Then rank Hg < oo if and only if P_® : T — B(H, K) is a rational map of the form

where A\ is a finite subset in D and the k(1) are positive integers and T, , € B(H, K)\ {0} are finite-rank
operators, A € A\, and 1 < n < k(Q).

Let us now take the finite-dimensional spaces # = K = V in the previous result with either }V = C¢
or V = My(C). For any ® € L>(T; M;(C)) given, we deduce the equivalence

Hg = P_®P, has finite rank if and only if P_® € L™ (T; M;(C)) is rational.

Now using the standard conformal map w : D — C, with w(¢) = IW’ let us define the map

° 1
une = L2

—i 2 (.
N P \/Ex+if —) for f € L°(T; V),

X+i
which is known to be unitary operator from L?(T; V) to L*>(R; V) with the property that /(L2 (T; V)) =
L2(R;V); see [32][Appendix 2.1]. We easily verify that

=U"HyU with® =V o w,

see, for example, [32][Chapter 1, Lemma 8.3]. Since compositions with w and w! preserve rationality
and in view of the identity TI_V = (P_(V o w)) o w™!, we deduce

Hy has finite rank if and only if [I_V : R — M;(C) is rational.

Finally, by recalling that I,V = (I1_V)*, we conclude that V = (II_V)* + I1_V is a rational function if
and only if Hy has finite rank. O

We now show that, for rational matrix-valued symbols U, the subspace $; is also an invariant
subspace for the unbounded operator X*, which is the generator of the adjoint Lax—Beurling semigroup

(S =0 = {7 }50.
Proposition 4.3. If U € Rat(R; Gri(C%)), then $; € dom(X*) and X*($1) € $H1.

Proof. By Lemma 4.2, we recall that the adjoint Lax—Beurling semigroup S(7)* acts invariantly on
$1. Moreover, by Lemma 4.3, we know that dim§); < oco. By standard arguments from semigroup
theory, it follows that the generator X* restricted to the finite-dimensional invariant subspace £, is
bounded and thus its domain dom(X*|g, ) is thus all of §;. In particular, we have $; C dom(X*) with

X*(91) € H1. o

5. Local well-posedness and explicit flow formula

In this section, we derive the explicit flow formula valid for (HWMy) for sufficiently smooth solutions.
In fact, this formula will play an essential role for obtaining the main results of this paper. Let us also
remark that similar explicit flow formulae have been recently derived for other completely integrable
equations which feature a Lax pair structure on Hardy spaces such as the cubic Szeg§ equation [13], the
Benjamin—Ono equation [10] and the Calogero—Moser derivative NLS [15, 2, 21].
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Local well-posedness for sufficiently regular data
We start with a result on local well-posedness for the matrix-valued (HWMy) for sufficiently regular
initial data of the form

Up(x) = Us + Vo(x) € My(C) ® H*(R; My(C)), 5.1
satisfying the constraints

Up(x) = Up(x)*, Up(x)>=1, fora.e.x €R. (5.2)

In what follows, we will always assume that

> =
573

In particular, the initial datum Up : R — M4(C) is of class C' by Sobolev embeddings. In view of (5.2),
we easily conclude that Tr(Uy(x)) can only attain integer values, whence it follows Tr(Ug(x)) = const.
on R by continuity.* As a consequence, we deduce that there exists some integer 0 < k < d such that

Uo(x) € Gre (C?)  forx e R.

We have the following result.

Lemma 5.1. Let s > %, d > 2, and assume Uy : R — M4(C) satisfies (5.1) and (5.2). Then, for any
R > 0, there exists some T = T(R) > 0 such that for every Uy = Uy + Vg as above with ||Vo|lgs < R,
there exists a unique solution of (HWM,) of the form

U(1) =Un + V(1) € Ma(C) ® C([0,T]; H*(R; Ma(C)))

and we have U(t,x) € Gri(C9) for all t € [0,T] and x € R with some integer 0 < k < d.
Furthermore, the H? -regularity of Vo with o > s is propagated on the whole maximal time-interval
of existence of U(t), and the flow map Vo + V(t) is continuous in the H -topology.

Remark. For proving the above local well-posedness result, the Hermitian constraint in (5.2) is the
relevant one. However, the second constraint in (5.2) will be essential to obtain a global well-posedness
result below based on the Lax pair structure, which involves the use of both pointwise constraints stated
in (5.2).

Proof. We postpone the detailed proof of Lemma 5.1 to Appendix D. O

Explicit flow formula

Inspired by the very recent work [10] on the Benjamin—Ono equation, we next derive an explicit flow
formula for solutions of (HWM,) based on its Lax pair structure acting on the Hardy space. Note that,
in this formula, we choose the vector space V = M;(C) for the Hardy space L2 (R; V).

Lemma 5.2 (Explicit Flow Formula). Let s > %, d > 2 and U(t) = Uy + V() € My(C) @

C([0,T]; H*(R, M4(C)) be as in Lemma 5.1 above. Then it holds that

1
ILV(t,2) = ﬁL[(x* +1Ty, — 2Id) 'L Vo] forz e Crandt € [0,T].

Here Ty, : L2(R; V) — L2(R;V) denotes the Toeplitz operator Ty, f = I, (Ug f) with V = My(C).

4The fact that Tr(Up(x)) = const. almost everywhere is even true for s = 1/2, since any integer-valued map Tr(Up) €

.1
H 2 (R;R) necessarily satisfies Tr(Ug((x)) = const. almost everywhere; see, for example, [5].
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Before we turn to the proof of Lemma 5.2, we need some commutator identities as follows. Recall that

i i
By = _E(IJU|D| +|D|uy) + SHIDIU-

In fact, since we can restrict to the Hardy space L%(R; V), it will be convenient to work with the
compression of By to the Hardy space L2 (R; V) denoted by

B, =L BylL, = —%(TUD + DTy) + %T|D|U with D = —id .

Note that D > 0 on L2(R;V) with its operator domain dom(D) = H!(R;V). The Lax equation for
Tuer : L2(R, V) — L2(R, V) can thus be written as
2 o = [BUry Tun] -
dt
We have the following key commutator identity.
Proposition 5.1. For any f € dom(X*) N HL(R; V), it holds that
(X", Bylf=Tuf.
Proof. Using the fact that [X*, D] = ild and by Lemma 3.2, we calculate
[X*,TyD + DTyl f = [X*,TylDf + Ty[ X", D] f + [X*,D]Tyf + D[ X", Tyl f

= in+v.1+(Df) +iTyf +iTuf + iD(H+V.1+(f))
2r ‘ 2
= 2Ty f + ~—TIL.(DV).L(f).
2r

where also used that 7, (D f) = 0 holds. By applying Lemma 3.2 once again,

i

2 L (DV).L(f) .

. i
(X" Tiplf = 7 IL(IDIV).L(f) =
In view of these identities, we easily conclude the claimed identity. O
We are now ready to turn to the proof of Lemma 5.2.

Proof of Lemma 5.2 (Explicit Flow Formula). We divide the proof into the following steps. We remind
the reader that we take V = M;(C) in the following.
Step 1. Recalling identity (2.4), we write

1
IL,V(,z) = 2—m1+((x* —zId)" ', V(¢r)) forz e C,and s € [0,7T].

Let F € M;(C) and z € C, be fixed from now on. We find
1
(ILV(1,2), F)y = 5(L((X" = 21d) 'LV (1), F)y

1 . -1
=ﬁ‘1911)r})<(X - Z1d) 7' LV (1), Fxe)

= L : * * -1 *
= S i (U0 (X = ) TLV,UG (Fre))
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where we also use that /()" : L2(R; V) — L2(R; V) is a unitary map for any ¢ € [0, 7], which is given
by the solution of the initial-value problem

%Z/I(t) = B{M)Z/{(t) forr € [0,T], U(0)=1d.
See Appendix D for details. Using the identity
U (X" = 2Id)™ = U@ XU - 21d) U 1)",
we conclude
MLV (1,2, F)y = 0 lim (00" X U() = 20 U0 LV 0), U0 (Fie))

forany z € Cy,t € [0,T] and F € M4(C).
Step 2. We will now discuss the individual terms which appear in the expression derived in Step 1
above. First, we notice that

CUW XU = UG X, B U = U Too (1) = To,.

where we used Proposition 5.1 together with the fact that Ty () = U(¢)Ty,U (¢)* holds thanks to the Lax
evolution. By integration on the interval [0, 7], we get

U)X U@) = X" +1Ty, - (5.3)
Next, we observe

%(U(t)*(F)(a)) = =U[D)"(By,) (Fxs)) =o(1),

where 0(1) — 0in L? as € — 0 uniformly with respect to ¢ € [0, T]. To see this, we remark
i
2
5 %IL(DU).F - %IL(DU).F 0 ase—0

i i
BG(FXS) = ETU(FDXs) + ED(TUFXS) - T|D|U(FX£)

in L?(R; V) uniformly in ¢ € [0, T]. Therefore, by integrating in 7, we conclude
UD) (Fxs) = Fxs+o(1) (54)

with 0(1) — 0in L2(R, V) as & — 0 uniformly in 7 € [0,7].
It remains to discuss the last term from Step 1. Here we claim that

U@ (T1, V(1)) =1, Vo . (5.5)
Since U (0)* = Id, we need to show that the time derivative of the left-hand side vanishes. Indeed, we note

C U LY 0) = U0 (~Byy TLV() + TV ().

Now, by the Lax equation %TU(;) = [B;'J (1)’ Ty ] and if we let E = 14 denote the identity matrix in
M;(C), we find

d
ETU(t)(EXe) = B{J([)TU(I) (Exe) - TU(t)BB(,) (Exe)
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For the first term on right-hand side, we observe
By Tuw (Exe) = Byy(,,(ILV(1) inLiase —0

uniformly in ¢ € [0, T]. Furthermore, in the same way as in the discussion showing that BE ) (Fxe) —0
as € — 0 for any constant matrix F € M4(C), we conclude

TU(t)BE(,) (Exe) — 0 in Ler ase —> 0

uniformly in 7. On the other hand, we have

d
ETU(t)EXS — QILV inL2ase— 0

uniformly in ¢ € [0, T]. In summary, we infer that 0,11, V(f) = By(,)I1,V(¢) holds, whence it follows

S U LV = U0 (B ILV() + 4 TLV () = 0.

This completes the proof of (5.5).
Step 3. Combining the results from Step 1 and Step 2 above, we conclude, for any F' € M;(C) and
z € C,, that

(ML V(t,2), F)y = zim lim (U (1) XU (1) = 21d) U (1) LV (1)), U1)" (Fxe))

1
= — im{(X* + Ty, — zId)"'TI F
27Ti Sli)no<( +1 UO Z d) +V07 X8>

1 i} _
= ﬁ(L[(x + 1Ty, — 21d) "' TL V()] F),, .

Since F € M4(C) is arbitrary, we deduce the claimed formula for IT, V(z, z) € V.
The proof of Lemma 5.2 is now complete. O

6. Global well-posedness for rational data
We are now ready to prove global well-posedness for (HWM,) with rational initial data

Up € Rat(R;Gri(C%))

forany d > 2 and 0 < k < d. The main argument rests on exploiting the explicit flow formula derived
above. First, we start with the following general result, which in fact does not require rational initial data.

Lemma 6.1. Let d > 2 be an integer. Suppose W € L™ (R; M4(C)) has the following properties
W(x) = W(K)* a.e, W) =W+ Vo(x) € My(C) @ L>(R; My(C)).

Then X* + Tw acting on L2(R; My(C)) has no real eigenvalues, that is, its point spectrum satisfies
op(X*+Tw)NR =0.

Proof. Let x € R. Since X* is closed, we find that £ := ker(X* + Tw — xId) is a closed subspace
in L2(R; M4(C)); see also Section 2 for general properties of X* as well as ??. Moreover, from the
eigenvalue equation

(X*+Tw-x)f=0
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we see that £ ¢ dom(X*). By taking the imaginary part of the inner product with f and using that
Ty = Tw is self-adjoint and that x is a real number, we conclude that Im(X* f, f) = 0. Recalling the
identity (2.3), we deduce

L(f)=0 forfef.

In view of Lemma 3.2, we also notice
[X*, Twlf = 2LH+VO.1+(f) -0 forfe&,
Vi

which shows that X*f € £ for all f € £. Thus £ is an invariant subspace for X*. For the semigroup
{8(7)"} 20 generated by X*, we thus deduce

S f=e"fe& forall feEandally>0.
But this implies that, for every f € &,
0="1.(S(n)"f) = Fn) forally 20,
Hence we see that f = 0 for all f € £. Therefore, the subspace
& =ker(X* + Tw — xId) = {0}

is trivial for any x € R. |

Proof of Theorem 1.5
We are now ready to prove global well-posedness for (HWMy) for rational initial data
Us € Rat(R; Gr (C9))
where d > 2 and 0 < k < d are given integers. We note that
Up = U + Vg € Gri(C4) @ H®(R; My (C))
holds. Hence, by the local well-posedness result from Lemma 5.1, there exists a unique maximal solution
U(1) = U + V(1) € C([0, Tinax): Gric(C) @ H™ (R; My (C))

of (HWMy) with initial datum U(0) = Uy and maximal (forward) time of existence Tpax € (0, +00]
such that the following implication holds:

Thax < +o0 = lim ”‘[(t)”H2 =+00. (6.1)

t /" Tiax

Thus to show that Tp,ax = +0c0 holds true we argue by contradiction and we suppose that Tax < +00.
We now claim that

sup  |[V()|lg2 < +o0, (6.2)
1€[0,Tmax)

which implies that Tj,,x = +co must hold by (6.1). To prove (6.2), we first note that V(¢,x) = V(¢,x)*
for ¢t € [0, Tmax) and x € R. Therefore V(¢) = I, V(¢) + (IL,V(¢))* and hence it suffices to show that

sup  |[TLV(8)||g2 < 400 (6.3)
te[OsT;nax)
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In view of the explicit flow formula in Lemma 5.2, we define
1 —
EF[Up](z,2) := TLr[(X* + 1Ty, — zId)_llLVo] fort >0andz € C,, 6.4)
i

where Ty, : L2(R; M4(C)) — L2(R; M4(C)). Let us check that EF[Uy] is indeed well-defined for all

¢t > 0and z € C,. By Lemma 4.3 (Kronecker-type theorem), the subspace $; = ran(Ky,) € dom(X*)
is finite-dimensional. By Propositions 4.2 and 4.3, we deduce I1,Vy € $; and that

M(t) =X"+1Ty, : 91 — H

is an endomorphism on the finite-dimensional subspace £;. Moreover, by Lemma 6.1 with W = Uy,
we see that the eigenvalues of M (t) cannot be real, that is, o(M (¢)) N R = 0 holds, which implies that

o(M(t)) cC_ forallt = 0.

Hence the resolvent (X* + Ty, — zId)‘l 91 — 9 exists forall 1 > 0and z € @,. Moreover, by
continuity of eigenvalues of M (¢) with respect to 7, we deduce that, for any compact interval I C [0, o),
it holds that

(X* + Ty, — z1d) ' |lg, g, < C(I,Up) forallt e IandzeC,,

with some finite constant C(7,Upy) > 0. Since I, : $; € dom(X*) — M4(C) is bounded (as a linear
map on a finite-dimensional Hilbert space), we deduce EF[Up](t, z) is a rational function in z for any
t > 0, whose poles belong to a compact subset K = K (I, Up) ¢ C_ when t € [ for any given compact
time interval I C [0, o0).

To summarize, we have shown that, for any given compact interval I C [0, co), there exists some
constant C = C(I,Up) > 0 such that

<C

+
o] [Im |
whenever « is a pole of the rational map z — EF[Up]|(t,z) with # € I. By possibly enlarging the
constant C > 0, we obtain the L*°-bound with

sup |[EF[Up] (¢, x)|[r < C fortel.

x€R

Since $; has finite dimension, we easily deduce that the degree of the denominator of the rational
functions z — EF[Up] (¢, z) can be uniformly bounded for ¢ € I. Hence, by applying Lemma 6.2 below,
we deduce

sup IEF[Uo] ()l < C(1,Uo)
te

with some finite constant C (I, Uy).

Since I1,V(¢) = EF[Uy](¢) for t € [0, Thax) and by taking a compact interval I C [0, co) with
[0, Tmax) C I, we conclude that (6.3) holds true. This completes the proof that the maximal (forward)
time of existence must be Tjx = +00.

Finally, by the time reversal symmetry of (HWM) with

U(t,x) — =-U(~t,—x),

which maps solutions to solutions (and evidently preserves rationality in x), we deduce that solutions of
(HWM,) with rational initial data also uniquely extend to all negative times ¢ € (—co, 0].
This completes the proof of Theorem 1.5.
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Proof of Theorem 1.2

This is a direct consequence of Theorem 1.5. Indeed, let uy € Rat(R; SZ) be given and define Uy =
Uy - o € Rat(R;Grl(Cz)). By Theorem 1.5, there exists a unique global solution U = U(z,x) of
(HWM;) with initial datum U(0) = ugy. Hence

u(t,x) = %Tr(U(t,x)O') = %(Tr(U(t,x)o-l),Tr(U(t,x)o'z),Tr(U(t,x)0'3))

is the claimed unique global-in-time solution of (HWM) with initial datum u(0) = uy.
We close this section with the following auxiliary result used above.

Lemma 6.2. Let R c C(X) be a subset of rational functions. We assume that there exists C > 0 such
that the following properties hold.

1. If a is a pole of some R € R, then

|| + <C.
[Im(a)]
2. Forevery R € R, R(x) — 0asx — oo and
IRIL=®) < C .

3. There exists an integer N such that the degree of the denominator of every R € R is at most N.

Then, for every integer k > 0, it holds that

sup [|R||gx gy < oo
ReR

Proof. Given R € R, write

D
0(x) = ]_[(x —aj), PeC[X], deg(P) <D <N .
J=1

P(x)
o(x)

R(x) =
Because of properties (1) and (2),
D
o N
[max |P(x)] < Corgl;(l H(x aj) | <C+0O)" .
j:

Consequently, all the coefficients a; of P satisfy

sup |aj| < B(N,C),
j<D

for some constant B(N, C) depending only on N and C. Similarly, from property (1), all the coefficients
of Q are uniformly bounded by a constant depending only on C and N. Moreover, from property (1), for
every x € R,

D/2
0 = (Il - CPP+C2)

Notice that the k-th derivative R™) is a sum of a finite number — depending only on k — of terms of the
form

pmim) - olmr)
Qr+1
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where 0 < r < k and m + m; + ...m, = k. Notice that the degree of the numerator is at most
(r+1)D — k — 1, and that its coefficients are all bounded by a constant depending only on &, N and C.

Consequently,
2t
IR < Ak.N. C) Y2 e<(rilyD-k-1 /R (= CR+c2pim &
with some constant A(k, N, C) > 0. This completes the proof. O

7. Soliton Resolution and Non-Turbulence

In this section we prove our next main result Theorem 1.7, which shows soliton resolution and non-
turbulence for rational solutions of (HWM,) under the spectral assumption that the Toeplitz operator
Ty, : L2(R;C%) — L2(R;C%) has simple discrete spectrum.

Preliminaries

Letd > 2 and 0 < k < d be given integers. In what follows, we suppose that Uy € Rat(R; Gri (C%))
holds, that is, the map Uy : R — M;(C) is a rational matrix-valued function satisfying the pointwise
constraints

Up(x)* =Up(x), Up(x)>=14, Tr(Up(x))=d -2k forxeR.

In the trivial case of constant initial data Uy(x) = U, we directly obtain Theorem 1.7 with N = 0.
Hence for the rest of the proof, we will assume that Uy is nonconstant.

For the following discussion, we need to clearly distinguish between the Toeplitz operator Ty, acting
on the Hardy space L2(R; V) with V = C?¢ or V = M,;(C), respectively.

From Lemma 4.1, we recall the general formula

TG, =1d— Ky, onLi(R;V), (7.1)

with the trace-class operator Ky, = H{JO Hy, : Ler(R; V) — L%(R; V). Since Uy is rational, the operator
Ky, is finite-rank by Lemma 4.3 and we have the finite-dimensional invariant subspace for Ty, given by

$1(V) :=ran(Ky, : L2(R; V) — LA(R; V), (7.2)

where we use the notation $;()) instead of $; to keep track of whether we choose V = C< or

VY = M;4(C). We introduce the following short-hand notations
T :=Ty,ls, (Mq(c)) and T:= TU0|551 (cdy - (7.3)

Note that T = T* and T = T* are self-adjoint endomorphisms on the finite-dimensional spaces
$1(My4(C)) and $;(C%), respectively. From Proposition 4.3 we recall that the generator X* of the
adjoint Lax—Beurling semigroup also acts invariantly on the finite-dimensional subspace $;())). Like-
wise, we use the following notation

G:=X'lg,(myc) and G:=X'g (ca) (7.4)
for the generator X* of adjoint Lax—Beurling semigroup restricted to the invariant subspaces 1 (M4 (C))
and $;(CY), respectively.

Let us now assume T has simple spectrum, that is, we have

o(M) ={vi,...,vy} with N =dim$;(C%). (7.5)
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Note thatv, € (=1,1)forn=1,...,N.Lety, € $ (C%) c L2(R;C?) be a choice of the corresponding
normalized eigenfunctions of T such that

Ton=vagn with [l@allz2 = 1

forn=1,...,N. Clearly, the family (¢,);<n<n forms an orthonormal basis for §;(C%).

We can easily construct an orthonormal basis of eigenfunction for T acting on the matrix-valued
finite-dimensional Hilbert space £;(M4(C)) as follows. For 1 < n < N and 1 < j < d, we define the
matrix-valued functions ®,, ; € L2(R; M4(C)) by setting

®,;=(0,...., ¢@n ,...,0]. (7.6)
——
Jj-th column
We readily check that
T®, ; =v,®,; forn=1,...,Nandj=1,...,d. 7.7

Thus the eigenvalues v, for T are d-fold degenerate in a trivial manner by changing the columns in the
matrix-valued functions ®,, ;.
We have the following fact, whose elementary proof we omit.

Proposition 7.1. The functions {®, ;}1<n<nN,1<j<d Jorm an orthonormal basis of eigenfunctions for
T: 91(Ma(C)) — $1(Mq(C)).

Perturbation analysis as |t| — oo

From Theorem 1.5 we know that the corresponding solution of (HWM,) with rational initial datum Uy
is global in time and satisfies

U(t,x) = Uy + IV (2, x) + (TIV (2, )", (7.8)

where here and in the following we write II = I, for the Cauchy—Szegd projection for notational
simplicity. By the following explicit flow formula from Lemma 5.2, we have

1
V(1) = 1, [(G+¢T—xId)"'TIVy] for (f,x) e R xR, (7.9)

using our definitions of G and T acting on the finite-dimensional subspace $; (M4 (C)). Note that we can

take x € R here, since we have already shown that the rational function ITV (z, z) for z € C, has no poles

on the real axis for all ¢ € R. Recall also that [TV € £ (M;(C)) holds thanks to Proposition 4.2 above.
In order to study the large time limit  — oo, it will be convenient to define

1
M(e) :=eG+T with &:= " (7.10)

for ¢t # 0. In terms of these definition, we can write the explicit flow formula as

nv(s",x) = %h[(M(s) — exId) 'V, ] . (7.11)

Inspired by the analysis in [15] for the study of N-solitons for the Calogero—-Moser derivative NLS,
we carry out a perturbation analysis of the non-self-adjoint endomorphisms M(g) : $;(M4(C)) —
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91(M4(C)) in the limit ¢ — 0. We have the following facts, where we recall that we always suppose
that the nondegeneracy assumption (7.5) for T : $1(C%) — $;(C%) holds true.

Lemma 7.1. There exists some gy > 0 sufficiently small such that the following holds.

(i) For1 <n < Nand1 < j < d, there exist analytic functions € — v,(g) € Cand € — ®, ;(g) €
H1(M4(C)) for |e| < gy with

vp(e) = v, +ewy, + 0(82), D, i(e) =D, ;+0(),

M(S)q}n,j(g) = Vn(e)qln,j(e) .

SNV,

(ii) For1 <n < N, we have
Wy = (écpn,cpn) and Imw, <0.

Remark. The fact that all complex numbers w, have nonvanishing imaginary part will play a funda-
mental role to obtain a priori bound on all higher Sobolev norms for U(, x), that is, it rules out the
phenomenon of turbulence in the limit # — +oo. This is in striking contrast to the analysis of N-soliton
solutions for the Calogero—Moser derivative NLS studies in [15], where the corresponding perturbative
analysis yields the vanishing of the imaginary parts in the limit # — +co (which corresponds to the limit
g — 0).

Proof. We divide the proof of Lemma 7.1 into the following steps.
Step 1. Let g9 > 0 be a constant chosen later. For || < g, we define the endomorphisms

M(e) =T +£G: $(C%) — $,(CY). (7.12)

Note that M(O) =T=Tris self-adjoint with simple spectrum a'(?) ={vy,...,vn} withacorresponding
orthonormal basis of eigenfunctions (¢, );<n<n- By standard analytic perturbation theory, there exist
analytic functions £ - v, (g) € C and & — ¢, () € $(C?) for I < n < N such that

T(&)en(e) = va(&)pn(e) (7.13)
for |e| < &g, where gy > 0 is some sufficiently small constant. We have

V(&) = v +ew, +0(e%),  @n(e) = n +0(e), (7.14)

Wi = (G, @n) - (7.15)

Since (¢,)1<n<n forms an orthonormal basis for $;(C¢) and by continuity with respect to &, we readily
see that the perturbed eigenvectors (¢, (€))1<n<n also form a (not necessarily orthonormal) basis of
$1(C?), provided that &y > 0 is sufficiently small. By defining

@, i(e) =10,..., @u(e) ,...,0],
——
Jj-th column

we easily verify that (i) holds true.
Step 2. It remains to prove item (ii). Thus we claim, forany 1 <n < N,

Imw,, =Im(Ggn, ©,) <0. (7.16)
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Indeed, let 1 < n < N be given. From the general identity (2.3), we recall that
~ 1 )
Im (Gon. gn) = = Le(pn)]” <0, (7.17)

with I.(f) = limg_o- f(f) and f € dom(X¥). [Note that ¢, € dom(X¥), since ¢, is a rational
function.] To prove (7.16), we argue by contradiction as follows. Let us assume that

L(gn) =0. (7.18)
By the commutator formula in Lemma 3.2, we deduce

. i

[G,Tlg, = 2ITHVo.L(cpn) =0. (7.19)

Thus from fgol, = v, We see that ?égan = vnégon. But since T has simple spectrum by assumption,
we conclude Gy, = ayp, for some constant @ € C. By taking the Fourier transform, this yields

idigan@) = aFa(&) for£>0. (7.20)

Thus we find §(£) = Ae™'%¢ for & > 0 with some constant A # 0 (since ¢,, # 0). Moreover, we infer
that Ima < 0 since @, € L*>(R,). But this implies that

Li(gn) = ‘fll_r)r& ‘zn(é:) =A=#0,

contradicting our assumption that I, (¢,) = 0 holds. This shows (7.16) and completes the proof of
Lemma 7.1. o

Proof of Theorem 1.7

We are now ready to give the proof of Theorem 1.7. Adapting the notation from above, we proceed as
follows.

Asymptotic behavior as t — +oo
Recall that € = t~! for ¢ # 0. In what follows, we shall always assume that |¢| < &, with the constant

g0 > 0 from Lemma 7.1 above, which amounts to considering times ¢ with |t| > Ty where T = e L.

SN=IV,15]=

is, we write
N d
MVo= > > an (&)@ ;(e) (7.21)
n=1 j=1
with some coefficients @, ; () € C. From Lemma 7.1 and the fact that ex € R does not belong to the
spectrum o-(M(¢)) = {vi(¢),...,vn (&)} € C_, we conclude that
1 T, & ap 1(8)
(M(g) — exId) ' TIV,, = Z Z — @, (s) for|s| <erandx€R. (7.22)
s va(e) —ex
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In view of the explicit formula (7.11) together with & = #~! and the properties stated in Lemma 7.1, we
obtain that

N o, ,(s) & A
v(z,x) = 1+ Z;]Z OB —®,,(e)| = ; s (7.23)
Here we set
(@) =tv, T =ty +w,+0@@ ) eC forlt] > Ty, (7.24)
and A, (t) € M;(C) are the matrix-valued functions defined as
1 ¢ -1 -1
An(t) = —5— ;an,j(z V[ @, ()] for |t = Tp. (7.25)

Note that, by choosing T > 0 possibly larger, we can henceforth ensure that

It

|20 (t) = 2 (8)| = = -min|v, —v,,| >0 for|t| > Ty and n # m, (7.26)
2  n#m

implying that the poles z1(¢), ..., zn (t) € C_ are pairwise distinct whenever |t| > Tp.

Next we show, after discarding possibly trivial zero terms, that all the matrices A;(#) € M4(C) are
nonzero and nilpotent of degree 2. Moreover, their limits as + — =+co both exist, coincide, and are
nonzero as well.

Proposition 7.2. There exists an integer 1 < M < N such that, after possibly relabelling
{An(1), zn (D}, it holds that

& At

ILV(t,x) = Z{ s

fJor|t| =2Tyandx e R.

Here the matrices A,(t) € My(C) satisfy A,(t) # 0 and A, (1)? =0 for |t| > Tp.
In addition, it holds

A1) = A, +0@7Y)

with some nonzero limits A, # 0 satisfiying A2 =0for1 <n < M.

Remark. In the special case of (HWM) with target S?, corresponding to the target Gri(C?) in the
matrix-valued case, we will see below that actually M = N must always hold. This observation is based
on the simple algebraic fact that nonzero matrices A € M, (C) with AZ = 0 must have rank(A) = 1. See
below for more details.

Proof. Step 1. We first show that A,,(r)?> = 0 holds for 1 < n < N and |¢| > Tp. Indeed, we know that

O _An(D) St Al
U(t,x) = Uy + An + for |t] > Tp (7.27)
nZ:; — za(t) Z X =Z,(2)
with the pairwise distinct poles z1(7), . . ., z,(t) € C_ and some constant matrix U, € Gry (C¢). From

the algebraic constraint U(z,x)? = 1,4 and by equating the terms proportional to (x — z,,(¢))~ to zero,
we conclude that

An(l‘)2 =

for|t| >Topand 1 < n < N.
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Furthermore, we readily see that we have existence and equality of the limits
tlim An(t) = Ilim An(t) =2 A, € My(C).
——00 —+00

This directly follows from the properties in Lemma 7.1 which yields that

1
Jim A1) = =5 = hmZan,u VL[ (17)] ———Zanju[obnj]

with the coefficients @, j = (ITVo, @, ;). Moreover, since ®,, ;(™!) = ®,, ;+0(¢7"), we readily deduce
that

Ay()=A, +0(t7).

Moreover, from A, (¢)? = 0 for |¢| > Ty, we readily deduce that the limits satisfy A2 = 0 as well.
Step 2. By plugging (7.27) into (HWM,), we obtain the following differential equations for the
matrix-valued functions A,,(¢):

[An(2), Am(1)]
An(r) = n;l EROEENDIE for |t| > Toand 1 <n < N, (7.28)

where [X, Y] denotes the commutator of matrices in M;(C). For details of the calculation that derives

(7.28), we refer to the proof of [3][Theorem 2.1]; the generalization to (HWMy) is straightforward. We

also note that the expression on the right-hand side in (7.28) is nonsingular for |¢| > Ty thanks to (7.26).
‘We now claim that

A (To) #0 = A, (t) # 0fort > Ty and tlir+n A,(t) #0. (7.29)

Indeed, let ||A|| = (Tr(AA*))'/2 denote the Frobenius norm of a matrix A € M4(C). Since |4, (¢)|| < C
fort > Ty and 1 < m < N with some constant C > 0 (by existence of limits shown in Step 1) and from
(7.26), we obtain from (7.28) the estimate

d

1
I—An(DIl < t—zllAn(t)ll fort > Tp. (7.30)

dt

Suppose now that A,,(7Tp) # OandletT € (Tp, +oo]. Then by integrating the estimate above, we conclude
that

T d T dr
—log||A, ()]l dt =log([|An(T)]]) —log([|An(To)l) < — S o <400
Ty dt T t

which rules out A, (T) = 0 for T € (T, +co]. This proves the implication (7.29).
Step 3. Define the integer 0 < K < N by setting

K=#{1<n<N:A,(Ty) =0}

and we let M := N — K. Now if M = 0, then U(z,x) = Uy = U, is a constant solution to (HWMy).
But this implies that Ky, = 0 and hence $;(C%) = {0} is trivial, which contradicts our assumption that
N =dim $;(C%) > 1. Thus we see that M > 1 holds.

Thus, after relabelling {A,,(Ty), zn (TO)},I,Vz | if necessary, we see that

M

IV (Ty, x) = Z

n=1

An(TO)
X —2Zn (TO)
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with A,,(Ty) # 0for 1 < n < M. By (7.29), we deduce that A,,(¢) # Oforalls > Tyand 1 < n < M and
lim; 400 Ay (2) = A, # 0 for 1 < n < M. This proves statement of Proposition 7.2 for positive times

t > Tp.
Finally, since lim;_,_o A, () = lim; 40 A, (t) forall 1 < n < N by Step 1, we complete the proof
of Proposition 7.2 for negative times t < —Tp. O

Completing the proof of Theorem 1.7
We are now ready to complete the proof of Theorem 1.7, which we divide into the following steps.
Step 1. In view of Proposition 7.2 above, we define

M
U*(1,x) = Z Q,, (x = vut) — (N = 1)Uy (7.31)
n=1
with the rational functions
A A*
Q,, (x) :=Us + L L (7.32)

X =y, +id, +x—yn—i6n '
with the nonzero matrices A, = lim|;| A, () € My(C) and where we set
yn:=Rew,, 0,:=-Imw,>0 for n=1,...,M. (7.33)
For the difference
R(7) :=U(t) - U*(1) € H®(R; My4(C))
we claim that

thP IR(t)||gs =0 foranys >0. (7.34)

Indeed, since R(z, x)* = R(¢, x) and thus R = IIR + (ITR)*, it suffices to consider IIR. We note that

TR(t, x) i An (1) An
,X) = —
n=1 x_Z"(t) X —Yn — Vpt +i0,
:iAn(r>—An+i An A,
n=1 X = zn(1) =l X—=2zy(t) X —yp—vpt+id,

=:r1(t) + ().

By recalling that A,,(t) — A, = O(+™") and taking the Fourier transform, we see that

M, oo 12
i () llgs <O Z(./o (£)¥5e729¢ df) —0 as f— +co0,
n=1

where we also used that Imz,,(¢) < -6 < Ofor |t| > Ty and 1 < n < M with some constant § > 0.
Furthermore, we find

M=

) 1/2
||V2(t)||Hs <C (/ <§>ZS|e—izn(t)§: _ e—i(yn+vnt+i(5n)§|2 df)
0

n=1

0 1/2
<C (/ <é\;>2se—26§|e0(1‘1)§ _ 1|2 d{f) —0 as f— +oo,
0

Mk

]
—

n
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by dominated convergence and by making use of the fact that z,,(f) = y, + vt — i6, + O(¢+”') and
0p >0 >0forn=1,..., M. This completes the proof of (7.34).

Step 2. Next, we show that each rational functions Q,,, yields a profile for a traveling solitary wave
for (HWM,) with velocity v,,.

First, we verify that Q,, : R — Gr;(C9) holds. Indeed, for any 1 < n < N and x € R fixed, we
observe that

Aj Aj

+
x=yj— (=)t x—yj—(vj—vat

N
Ut x +vat) = Qy,, (x) + |

Jj#*n

+ R(1,x)

—Q,, (x) as |[t| = +oo,

which follows from (7.34) and the fact that v; # v, for j # n. From this we easily conclude that
Q,, (x) € Gri(CY) for all x € R.

Next, we prove that each Q,, € Rat(R; Gri(C%)) is a traveling solitary wave profile for the velocity
v,. By taking the limit € = =1 — 0in (7.21) and (7.25), we obtain (using the notation in the proof of
Proposition 7.2 above) that

N
HVQZZ

M=~

d
1
Q'n,j(bn,ja An:_%;a’n,jl+((bn,j)'

n=1 j=1
Let (ey,...,eq) be the canonical basis of C¢. Then D, ;= e]T. ¢n and therefore
1 [ !
Ay =_% ;an,jej I+(90n),

or, equivalently, we can write

1

d
An = (atlndoal(gn) - with i o= 5 ;ame, eClforn=1,...,M.

Note that A, # 0 with A2 = 0. Hence 1, € C? and I,(¢,) € C? are nonzero vectors with
(Mns I+ (¢n))ca = 0. In particular, we see that rank(A,) =1for1 <n < M.
Now we reformulate the eigenfunction identity

TUo‘Pn =Vn®Pn

for the Toeplitz operator Ty, : L2(R;C4) — L2(R;C9). Indeed, let us apply I, to both sides while
using the following elementary lemma.

Lemma 7.2. Let f, g € L2 be rational functions. Then

L(fg) =0 and L(T(f3)) = /R fgd.

Proof. This simply follows from by using the following fact: For all 4~ € dom(X*), we have I, (h) =
limg o+ (h, s )p2 With yg(x) := —L O

l-iex "

From Lemma 7.2, we infer

1 (Tuyn) = Unals () + / (ITV0)" @ dx = Una Ly () + 210,
R
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because, using that ¢, is normalized in L2,

/fb*p’jtpn dx=e¢;6np .
R
The eigenfunction identity Ty, ¢, = va¢, therefore implies

Ul (¢n) = vuli(@n) — 2min,. (7.35)

Applying the matrix U, to both sides of the above identity, we get

1
Usottn = =i = 5= (1 - V2) L (@) (7.36)

Recall that I, (¢,) and 7, are nonzero vectors in C?¢ with (5,, I.(¢,))ca = 0. We denote by P, =
span{n,, I, (¢,)} the two-dimensional plane in C¢ generated by these two vectors. We notice that U,
preserves P, and hence it preserves P;;, since U}, = Us,. It is now easy to check that the kernel of Hq,,
is given by

X —y,—1id
ker(Ho,,) = T3 5550 Ly (gn) @ LL ()1 @ (LI(R) © Py)
n n

and that its orthogonal subspace in L2 (R; C?) is generated by

U0 = ——L(en).

X =y, +id,
Furthermore, from (7.35), (7.36) and the identity

AnAL + ALA,

UOOA A Uoo = ’
n A 25,

we get [[14(¢n) 2, = 475, and

TQ\,,, Un =valn .
Finally, a direct calculation using again (7.35) and (7.36) leads to
—2iv,Qy, () = [Qy,, [DIQy, ] (x) ,

which precisely means that Q,,, (x — v,?) is a traveling solitary wave for (HWM,) with velocity v,,.
Step 3. We next show that the integer 1 < M < N given in Proposition 7.2 must satisfy

M=N
where 04(Ty,) = {v1, ..., vn}. To see this, we recall from Proposition 7.2 that
M M
An(1) An(1)*
U(t,x) = Us + + — for [t| > T
(0 =Unt ) Gt Li oz, =T
n=1 n=1
with nonzero matrices A;(7),..., Ay () € My(C) such that A,(¢)> = 0 and pairwise distinct poles
z1(t),...,zpm (t) € C_. Furthermore, from (7.25) and the arguments in the beginning of Step 2 above,

we deduce that

An(1) = (o nn(D)cali(@n (1)) for 2] = Ty
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with nonzero vectors 77,,(¢), I, (¢, (1)) € C¢ such that (17, (¢), I, (¢n(t)))ca = 0. In particular, we
conclude that rank (A, (7)) = 1 for |¢| > Ty. Hence we can apply Lemma B.1 (see also the remark there)
to deduce that rank(Ky(z,)) = M.

On the other hand, thanks to the Lax evolution, we get that Kyz,) = U(To)Ky,U(Tp)* with some
unitary map U (Ty) : L2(R; C?) — L2(R;C?). This implies rank(Ky(r,)) = rank(Ky,) = N, whence it
follows that M = N.

Step 4. Finally, we observe that ||U) (7)||;;s < C for all € R with some constant C > 0 depending
on s > 0. Furthermore, in view of (7.34) and U € C(R,; H""), we readily deduce the a priori bounds

sup [U(0)lgzs < C(Uo, 5) < o0
teR

for any s > 0.
The proof of Theorem 1.7 is now complete.

8. Refined analysis for target S°

We now consider (HWM) with target S2. The goal of this section is to refine the general Theorem 1.7 on
soliton resolution for the target S* = Gr;(C?), leading to Theorem 1.3. Moreover, we will establish that
the spectral condition of simplicity of the discrete spectrum oy (Ty,) holds for a dense subset of rational
initial data in the case of the target S?, as formulated in Theorem 1.4. The proof of this density result
will make essential use of the stereographic projection S> — C U {0} to find a suitable parametrization
of rational maps from u : R — S? and the corresponding Toeplitz operators Ty with rational matrix-
valued symbol U = u - 0. Our arguments will be based on analyticity properties to finally conclude
Theorem 1.4. We expect that the density result stated in Theorem 1.4 can be generalized to (HWM)
with target Gry (C?). However, the algebraic and analytic challenges would require a vast extension of
the following analysis, which we haven chosen not to pursue here.

For the reader’s convenience, we recall (HWM) with target S? is equivalent to (HWMy) with d = 2
for matrix-valued maps of the form

U =u@ o=, (x‘)”fi‘b)tz ) ”1(2; (i;‘;(x) € Gri(C?)

where u = (uy, us,u3) : R — S%.

Parametrization by stereographic projection

Letu:R — S2bea map and, as usual, we set U = u- 0. For the rest of this subsection, we will consider
the case V = C2, that is, we consider the Toeplitz operator

Ty : L3(R:C?) — LI(R:C?)
acting on C?-valued functions in the Hardy space L2. Likewise, the operators Hy and Ky = H{;Hy act

on L2(R; C?) throughout the following. By using the (inverse) stereographic projection

2Rez 2Imz zz-1

c=cu s?, , , ,
(oo} = zz+1 zz+1 zz+1

we obtain the following explicit description in the case of rational maps from R to S2.

Theorem 8.1. Letru = (uy,us,u3) : R — S? be a rational map. Given an integer N > 1, the following
statements are equivalent.
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(i) dim $; = rank(Ky) = N.
(ii) The least common denominator of uy, uy, us has degree 2N.
(iii) There exists a rational function R € C(X) of the form

P(x)
o)’
where P € C[X] is a polynomial of degree N and Q € C[X] is a nonzero polynomial of degree at

most N — 1, such that P and Q have no common factors such that, up to rotation on the sphere S?,
we have

R(x) =

2R(x)

_ R(X)R(x) -1
RXR(x)+1’

u3(x) = ROR() +1

up(x) +iuz(x) =

Remarks. 1) We use C(X) to denote the field of rational functions with one variable with coefficients
in C. Likewise, we use C[X] to denote the ring of complex polynomials over C. The variable X either
represents an element x € R or z € C. _

2) For a polynomial T € C[X] with T(x) = I/V: ot ;x7, we denote its complex conjugate by T (x)

Zj.vz 0 fjxj obtained by complex conjugation of its coefficients. Likewise, for a rational function R

P/Q € C(X), we denote its complex conjugate by R = P/O.
Proof. The proof of Theorem 8.1 is given in Appendix B. O

In view of Theorem 8.1 we introduce, for an integer N > 1, the following subsets of rational functions

RN = {% € C(X) |degP =N,degQ <N-1,0 #£0,gcd(P,Q) = 1}.

For u € Rat(R;S?), we can henceforth assume that u(co) = ez by rotational symmetry on S2. By
Theorem 8.1, we have the canonical equivalence of sets

Ky :={u € Rat(R;S?) | u(c0) = e3, rank(Ky) = N} = Ry

by means of the (inverse) stereographic projection in Theorem 8.1 (iii) above.
Next, we analyze the topological properties of R more closely. For P/Q € Ry, we can assume
without loss of generality that P is a monic polynomial, that is, we denote

Px)=x" +pixV '+ . +py withpyeCfork=1,...N.
The polynomials Q € C[X] will be written as
0(x)=qixN '+, . +gy withggeCfork=1,...,N,

where (q1,...,qn) # (0,...,0). Evidently, we can identify the pair of polynomials (P, Q) € C[X] X
C[X] above uniquely by elements in CV x (CV \ {0}). In particular, the set Ry can be naturally
regarded as a subset in C*"V. We have the following result.

Lemma 8.1. The set Ry € C(X) can be canonically identified with a nonempty, open and connected
subset Ay in C*V.

Proof. We divide the proof into the following steps.
Step 1. Elements P/Q € Ry can be canonically identified with pairs (P, Q) € C*V of the form

P=(p1,....pn) €CN, O=(q1,....qn) €CN \ {0},
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such that P and Q have no common factor as polynomials. Let Ay c C?V denote the set of such pairs
(P, Q). By the fundamental theorem of algebra, we can write P(x) = H}V:l (x—¢&j) whereéy,...,ény €C
denote the roots of P counted with their multiplicity. In order to take into account possible permutations
of the roots, we introduce the quotient space

Cim=C"/~
with the equivalence relation (£1,...,én) ~ (a(1)s - --»Eq(nv)) for all permutations oo € Sy. We
use [£1,...,&N] to denote elements in Cgm. It is a classical fact that the map which assigns to any

polynomial P of degree N its roots modulo permutations,
r:cN > Cgm, P [&,...,&N],

is continuous. Let us define the map
N
F:CVx @V \{op) >cC, (P.0)~ [0 P)),
j=1

where [£1(P),....én(P)] € Cgm denote the roots (modulo permutations) of the polynomial P. Clearly,
we have

F(P,0)#0 < P and Q have no common factor.
By continuity of the map F, we deduce that the set
An ={(P,0) e CN¥ xCN \ {0} : F(P,Q) # 0}

is an open subset in C* . Moreover, it is evident that A is nonempty.

Step 2. Next, we prove that Ay C C>V is connected. Since Ay is open, this is equivalent to being
pathwise connected. For (P, Q) € Ay, we define the set

N
Vp={0ecCV: F(P,0)=0}={Q eC" || [ Q& (P)) =0}.
Jj=1

As a zero set of a nontrivial polynomial in Q = (g1, ...,qn) € CV, we see that Vp is an algebraic set
in CV with 0 € Vp.5 Regarding its complement, we claim that

CN \ Vp is connected . (8.1)

Since CN \ Vp is open, this claim is equivalent to pathwise connectedness of this set. Let 0, Q0 € CN \Vp
with Q # Q be given and consider the set

L={0+{(0-0)|{eC},

which corresponds to the complex line in CV that connects Q and Q. Since we have L ¢ Vp and Vp is
the zero set of a polynomial in Q € CV, there are only finitely many points of intersections of L with
Vp, that is,

LNVp={z1,...,2x}

SIn fact, we verify that Vp = Uj.\’: 1 Vj with the linear subspaces V; = ker ¢; with the linear forms ¢; : CN — C given by

i(Q)=0Q1& PN+ . +0ON_1&7(P) +ON.
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for some z,...,zx € CN. However, the set L \ {z1,...,zx} = R*\ {p1,..., px} with finitely many
points py, ..., px € R?is pathwise connected. Thus there exists a continuous map y : [0, 1] — CN \Vp
with y(0) = Q and y(1) = Q. This proves (8.1).

Next, we suppose (P, Q) € Ay and (P, Q) € Ay are given. We prove that (P, Q) and (P, Q) can
be connected by a continuous path in Ay as follows. We consider the sets

W={P}x(CN\Vp) and W ={P}x(CN\Vjs).

Evidently, we have that (P,Q) € W and (P,Q) € W. Let Q, = (0,...,0,1) € CN corresponding to
the constant polynomial Q. (x) = 1. By (8.1) and the evident fact that Q. € (CN \ Vp) N (CN \ V;),
we can find two continuous paths in Axs that connect (P, Q) with (P, Q.) and (P, Q) with (P, Q.),
respectively. Furthermore, we easily construct a continuous path in Ay which connects (P, Q,) and
(P, Q.). This shows that Ay c C?V is pathwise connected.

This completes the proof of Lemma 8.1. O

With the results derived above, we are now ready to give the proofs of Theorems 1.3 and 1.4 for
(HWM) with target S2.

Proof of Theorem 1.3 (soliton resolution for target S°)

Suppose ug € Rat(R;S?) satisfies the assumptions of Theorem 1.3 and let Uy = uy - o €
Rat(R; Gri (C?)) be the corresponding initial datum for (HWM,) with d = 2.

By applying Theorem 1.7 and using the identification Gry (C?) = S? via the use of the Pauli matrices
o = (o1, 03, 03), we obtain that

tlir+n lu(®) —u*(1)||gs =0 foranys >0,

with
N
u*(t,x) = quj(x -vit) = (N - e .
=

Here each q,;, € Rat(R; S?) is a profile of a ground state traveling solitary wave for (HWM) with
velocity v; and it is given by
A A%
LA ;.
X—yj+ié; x-—y;—id;

qy; (X) = Ue +

The proof of Theorem 1.3 is now complete.

Proof of Theorem 1.4 (density of rational data with simple discrete spectrum)

Letu € Rat(R;S?) be given and set U = u - o € Rat(R; Gr(C?)) as usual. We recall that the discrete
spectrum o4 (Ty) of the Toeplitz operator Ty : L2 (R; C?) — L2(R;C?) is found to be

ou4(Tv) = o (Tulg,)

with the finite-dimensional subspace $); = ran(Ky) = ran(Id — TIZJ). We are interested in the case when
04(Ty) is simple and therefore we define the set

Rats(R;S?) = {u € Rat(R;S?) | oq(Ty) is simple} .

We have the following result (stated as Theorem 1.4 in the introduction).
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Theorem 8.2. The subset Rats(R; S?) is dense in H? (R, S?).

Proof. We divide the proof into the following steps.
Step 1. For a given integer N > 1, we define the set

Kn = {Ky : Rank(Ky) = N with u € Rat(R;S?) and u(+o0) = €3} .

From Theorem 8.1 part (iii), we recall that Xy is canonically identified with set of rational functions
Ry € C(X) via the (inverse) stereographic projection. By Lemma 8.1, we can canonically identify
Ry with a nonempty, open and connected subset Ay ¢ C?V . Let us write R = P/Q = (P,Q) € Ay
in what follows.

Next, we define the map u : Ay — L*(R;R?) with

2Re(P(x)0(x)) 2Im(P(x)Q(x))
P(x)P(x) + Q(x)Q(x) P(x)P(x) + Q(x)Q(x)’

P(x)P(x) - Q(x)Q(x)
P(x)P(x) + Q(x)Q(x)

(u(P,Q))(x) :=

withx € R.

Note that, for any (P, Q) € Ay, the map x — (u(P,Q))(x) belongs to Rat(R;S?) and it evidently
satisfies (u(P, Q))(£o0) = e3. Correspondingly, we obtain amap U : Ay — L*(R; M,(C)) by setting

U(P,Q) :==u(P,Q) 0. (8.2)
By Theorem 8.1, the map
K: Ay — B(L3(R;C?), (P,Q) —K(P,Q) = H}) p o, Hu(r.0) (8.3)

is injective and and its image satisfies K(Ayx) = Ky .
Step 2. We claim that

K: Ay — B(L?(R;C?)) is real analytic

with the usual identification that Ay < C?V = R*V . Indeed, since the expressions in (8.2) and (8.3)
are linear and quadratic, respectively, this amounts to showing that

u: Ay — L (R;R?) is a real analytic map .

Indeed, let (P, Q) € An be given. We show that u is real analytic in an open neighborhood around
(P, Q) by showing that is the restriction of a complex analytic mapping. For £ > 0, we consider the
open set

Q. = {(P1,P2,01,02) € C* | |[(P1,P2,01,02) - (P,P,0,0)| < &}
and the map @ : Q, — L®(R;R?) defined as

P1(x)02(x) + P2 (x)Q1(x) 1 P1(x)Qa(x) — P2(x)Q1(x)
Pi(x)P2(x) + Q1(x)Q2(x)” 2i P1(x)P2(x) + Q1(x)Q2(x)
P1(x)Py(x) — Q1(x)Q2(x)
Pi(x)P2(x) + Q1(x)Q2(x)

Note that if € > 0 is sufficiently small, the denominator P (x)P,(x) + Q1(x)Q2(x) # O for all x € R
for (Py, P2, Q1,0>2) € Q. and hence the map 0 : Q, — L*(R; RS) is well-defined. Clearly, the map

G(Ptha Q19 Q2)(x) =

withx € R.
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i:Q, —» L°(R;R% is C! and satisfies the Cauchy—Riemann equations and hence it is complex
analytic. In view of the fact that

u(,¢) =00, 7.¢.8) for (1.7.4.8) € Qs

we conclude that u : Ay — L®(R;R?) is real analytic.
Step 3. Since the image K(Ay) = Kn belongs to the subspace Fy of bounded operators in
B(L2(R;C?)) with finite rank N, we see that the maps

Av - R, (P,0) - Tr(K(U,P)™)

are well-defined for any integer m > 1. In fact, these maps are real analytic as being the composition of
real analytic maps.

Let pk(p,p) (1) denote the characteristic polynomial of the endomorphism K(P, Q) : $1 — $; on
the N-dimensional subspace | = ran(K(P, Q)). Applying the Plemelj—Smithies formula (see, e.g.,
[19]) in the theory of Fredholm determinants, we obtain that

N
Pr(p.o)(A) = det(Ald = K(P, Q) = Y (-)*Cr(K(P, 0))a*,

k=0

with the coefficients

Tr(A) k-1 0 e 0

Tr(A?) Tr(A) k-2 :

A)=— . . . .
CulA) = gy dett : S O

Tr(A*=1) Tr(A*2) ... Tr(A) 1

Tr(A*)  Tr(A*1) ... Tr(A?) Tr(A)
where k = 0,...,N. This shows that the coefficients of pk(p,p)(4) are real analytic functions of

(P,Q) € An. As a consequence, the discriminant function
b: Ay =R, (P,Q) — d(P,Q) :=disc(pk(r,0))

is also a real analytic function on the open and connected set Ay ¢ C*V = R*N_ Moreover, we have
d(P,Q) # 0if and only if K(P, Q) : H1 — 9 has simple eigenvalues, which by the identity in Lemma

4.1, is equivalent to having simple spectrum of Tj( P.o) = Id — K(P, Q) on $;. Thus we find

(P, Q) # 0 if and only if the discrete spectrum O'd(TS(P’Q)) is simple .
Defining the set
Ay ={(P,Q) € Ay | 3(P,Q) # 0},
we conclude from the real analyticity of the function b on the connected set Ay that either

Ap is a dense and open subset in Ay ,

or it holds ,ZN = 0, in which case we must have d = 0 on A . However, by an explicit construction in
Lemma C.2 below, we conclude that ® # 0 on Ay . Hence we have shown that

O-d(TS(P,Q)) is simple for all (P, Q) € Ay
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with some dense and open subset An C An . Note that, by self-adjointness of Ty, the simplicity of
o’d(lej) implies that o4 (Ty) is simple as well. Hence we deduce that

da(Ty(p,@)) is simple for all (P, Q) € An .

Step 4. We are now ready to finish the proof of Theorem 8.2. Let u € Rat(R; S?) be given. Note that
lim,_, .0 u(x) = p for some unit vector p € S2. By rotational symmetry, we can henceforth assume that

pPp=e¢€3.

Let N = Rank(Ky) and &, = ran(Ky). If N = 0 (which corresponds to the constant map u = e3) then
dim $; = 0 and thus o4(Ty) = @ which is trivially simple. Also if N = 1, we have dim §; = 1 and thus
o4(Ty) is evidently simple.

Henceforth we assume that N > 2 holds. Note that there is a (unique) point (P, Q) € Ay such that

U=U(P,Q) and Ky=K(P,0)eKy.

By density Ay C Ay, we can find a sequence (Pg, Q) € Ay such that (Pr,Qx) — (P,Q) in C2N.
Letting Uy = U(Pg, Qk), we conclude that

04(Ty, ) is simple for all k € N.

Moreover, from (Py,Qx) — (P,Q) in C?V it is easy to see that ||U; — U”H% — 0 as k — oo.

Equivalently, in terms of the rational functions u; = (.1, U, U 3) € Rat(R;S?) with
1
Wi, = ETTCZ(UkO'j) forj=1,2,3and k € N,

we deduce that |Jug — UHH% — 0 as k — oco. This proves the density of Rats(R;S?) c Rat(R;S?) as
stated above. The proof of Theorem 8.2 is now complete. O

A. Density of rational maps
Letd > 2 and 0 < k < d be given integers. Recall that

Rat(R; Gri(C%)) = {U ‘R — Gre(C%) | U(x) is rational in x € R}

denotes the set of rational maps from R into the complex Grassmannian Gry (C¢), which we identify
with the set of matrices®

Gr(CH={U eC™ | U*=U,U*> =14 and Tr(U) = d — 2k} .
Furthermore, we recall the space

H? (R: Gry (C%)) = {U € H} (R;C9%4) | U(x) € Gry (C?) fora.e. x € R} ,

equipped with Gagliardo semi-norm || - ”H 1 given through

Ux)-U
ol , _|||D|2U||L2:_//| (x) - (zy)le "
" lx =yl

where |A|p = (Tr(A*A))'/? denotes the Frobenius norm of a matrix A € C4<,

6Recall also that, via U = 14 — 2P, we have the canonical equivalence Gry (C4) = {P € C9%4 | p* = P = P2 and Tr(P) =
k} in terms of self-adjoint projections P on C¢ with rank (P) = k.
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Theorem A.1. Rat(R; Gry (C4)) is dense in H? (R; Gr (C4)). That is, for every U € H? (R; Gry (C9)),
there exists a sequence U, € Rat(R;Gry(C%)) such that |U,, — U”H% — 0asn — oo
Before we give the proof of Theorem A.l below, we obtain the following fact.
Corollary A.1. Rat(R; S?) is dense in H? (R; S?).

Proof. By Theorem A.1, the set Rat(R;Gr;(C?)) is dense in H: (R; Gr{ (C?)). Recall that, thanks to
the linear relation U = u - o with o = (071, 03, 03) denoting the standard Pauli matrices, we can easily
check the equivalence of norms ”U”H ;- ||u||H ! and we thus conclude. O

Next, we turn to the proof of Theorem A.1. Here it is convenient to first prove the corresponding result
in the periodic setting as follows. Let T = R/2xZ denote the one-dimensional torus. Correspondingly,
we define the space

H2(T;Gre (C9)) = {U € H2 (T;C™d) | U(f) € Gry(C?) fora.e. 1 € T},
endowed with the H 3 -norm for maps from T into Cdxd 1 ikewise, we also define
Rat(T;Gri (CY)) == {U: T — Grr(C?) | U(z) is rational in z = e witht € T} .

It is easy to see that Rat(T; Gre(C4)) ¢ H? (T; Gre(C4)) holds. In fact, we will show the following
result.

Theorem A.2. Rat(T; Gri(C9)) is dense in H? (T; Gry (C%)).

Proof of Theorem A.2. First, we recall the following general result due to Brezis—Nirenberg [60] for
Sobolev spaces of functions with values in smooth and closed (i.e., compact with no boundary) mani-
folds. Indeed, we have that Gry (C¢) is a smooth and closed manifold of real dimension 2k (d — k). Now
from [6][Lemma A.12] we obtain the following result; see also [30][Section 2] for a recent and detailed
discussion of density of smooth maps in Sobolev spaces in the setting of manifolds.

Lemma A.1. C®(T;Gry(C%)) is dense in H? (T; Grg (C9)).
To complete the proof of Theorem A.2, it remains to establish the following result.
Lemma A.2. For every U € C®(T; Gry(C%)), there exists a sequence
Un € Rat(T; Gre (C))
such that ||Uy — U||H% — 0as N — oo.

Remark. The proof below can actually be used to prove density with respect to the || - ||z7s-norm for all
s> 0.

Proof of Lemma A.2. Let U € C®(T;Gri(C?)) be given. We define the map P € C*(T; Gr;(C%)) by
setting P(¢) := %(]ld —U(t)). We have

P(t) =P(1)* =P(t)> and rank(P(r)) =k forallseT.
We claim that there exists a smooth map G € C*(T; C4*k) such that

P(1)G(t) =G(r) and rank(G(z))=k forreT. (A.1)

https://doi.org/10.1017/fms.2025.10136 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2025.10136

Forum of Mathematics, Sigma 49

To prove this claim, we use a result in [33][Theorem 6], where the following result is shown (up to
trivial modifications of notation and changing the period of 1 to 27).

Proposition A.1. Let A € C*(R; C¥9) with A(t + 2) = A(¢) for all t € R and assume that
rank(A(?)) =m forallt € R
with some constant m < d. Then there exists B € C*(R; Cdx(d’”’)) such that
B(t+27)=B(t), A(t)B(t)=0, rank(B(t))=d-m forteR.

By applying Proposition A.1 to A(t) = 14 — P(z) where m = d — k, we complete the proof of claim
(A.1) by setting G(¢) := B(z).
Let us now return to the proof of Lemma A.2. We claim that

P(t) = G(H)[G()*G()]'G(1)* forteT, (A.2)

Note that, since rank(G(z)) = k for G(¢) € C?*k we obtain that G(¢)*G(t) € C¥*¥ is invertible for any
teT.

To show (A.2), let P(7) denote its right-hand side. Evidently, we have P(r)* = P(¢) and P(¢) = P(r).

Notice that v € ker(P(¢)) if and only if (G()*G(1))"'(G(r)*v) € ker(G(r)). Hence ker(P(r)) =
ker(G(7)*) and by orthogonal complements we find ran(P(¢)) = ran(G()).

On the other hand, we have rank(P(z)) = k = rank(G(¢)) and ran(G(z)) c ran(P(¢)) since
P(1)G(¢) = G(t). Hence ran(P(1)) = ran(G(¢)).

We readily conclude that ran(P(7)) = ran(P(z)). But this implies that the self-adjoint projections
P(7) and P(¢) must be identical. Hence (A.2) holds true.

For N € N, we let Gy (¢) be the truncated Fourier series of G € C*(T; Cka), that is,

Gn (1) = Z G e

|n|<N

with coefficients G,, = - 02” G(t)e " dt € C¥ for n € Z. Clearly, we have Gy € Rat(T; C4*k)
together with the fact that

IGnN —=Gllgn =0 as N — . (A3)

By Sobolev embeddings, we have the uniform convergence |Gy — G||L~ — 0 as N — oco. Recall that
G(1)*G(t) € CF** is invertible for all # € T. Thus we deduce

Gy (1)*Gn (1) € C js invertible for all € Tand N > No,

with some sufficiently large constant Ny > 1. Also, this shows that rank(Gy (¢)) = k for all ¢+ € T and
N > Np.
For N > Ny, we now define the sequence Py : T — C*4 by

Py (1) = Gn(D[GN (1)'Gn ()]G (1)".

Evidently, we have Py (f) = Py (1)* = Py (1)? for any ¢ € T. Moreover, we find that rank(Py (7)) = k
fort € Tand N > Ny. Thus Py : T — Gri (C9) forall N > Nj.

Now, recall that Gy € Rat(T;C?*). But this implies that the right-hand side in the definition of
the maps Py (¢) is also rational in z = e’ € S, that is, we have

Py € Rat(T;Gri(CY) forall N > Ny .
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Now, from the convergence (A.3) together with the fact that the Sobolev space H'(T) is an algebra, it
is straightforward to derive

Py (1) =GN (1)[GN(1)'Gn (D] Gy (1)
- GO[GH)*GH)]'G(r) =P(t) in H' (T;C>?).

Finally, we see that the sequence Uy = 14 — 2Py € Rat(T;Gri(C%)) satisfies |[Uy — UllH%
2PN — P|| ;- 0 as N — oo. The proof of Lemma A.2 is now complete. O

Thanks to the elementary embedding H' ¢ H > this implies that ||Py — P||H 1 > 0as N — oo.

The proof of Theorem A.2 now follows immediately from Lemmas A.1 and A.2. O
With the help of Theorem A.2, we are now ready to prove Theorem A.1.

Proof of Theorem A.1. We will make use of the known conformal invariance of the Gagliardo semi-
norm || - ”H 1. In what follows, we will identify maps defined on T as maps defined on S! by means of
z=¢’ e S witht e T.

Let

SRS\ (i}, xm il
X +1

denote the inverse stereographic projection from R to S \ {i}. Assume that U : R — Grx(C9) and
U:S — Grg (C‘l) are related by U = U o S. A well-known calculation’ shows that

1 [U(x) - U(y)|?
1o? , =—/ —ded
H2(®R) 27 R lx — vl
1 U -0
10(t) - O(s)|% gt ds = ||U||2

- Z T 2—2cos(t—s)

Thus for a given map U € H? (R; Grg (C4)), we set U(z) = (U o S7')(z) which is defined for almost
everyz€S. ThenUe H 3 (T; Gr (C9)) by the above integral identity. By Theorem A.2, there exists a
sequence Uy € Rat(T; Gri(C?)) with

0< 0y - U||H (T)_”ﬁN_ﬁ”H%(T)_)O as N — .

Note that the sequence of functions
Uy = Uy oS € Rat(R; Gri(C%))
since S preserves rationality. Finally, we deduce that

||UN _U”H%(R) = ||UN _U”H%(T) —0 as N — 0.

This completes the proof of Theorem A.1. O
B. Stereographic parametrization

In this section, we give the proof of Theorem 8.1. Hence we always assume that u : R — S? is a rational
map and, as usual, we denote U = u - o : R — Gr;(C?) for the corresponding rational matrix-valued

"This can be traced back to J. Douglas’ seminal work on the Plateau problem [9].
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map. Note that here we always consider Ty : L2(R; C?) — L2(R;C?), that is, we take V = C2. Also,
the operators Hy and Ky = H{;Hy are always understood as acting on L2(R; C?) in what follows.
We first collect some auxiliary results as follows.

Lemma B.1. Assume u : R — S? is a rational function of the form

N —_

S; S;
u(x):uoo+z J
. X —=2Zj X —=Zj

J=1

with some integer N > 1, Uy € S%, s1,...,sy € C3\ {0}, and pairwise distinct poles z1, . .., zn € C_.
Then it holds Rank(Ky) = N.

Remark. By a straightforward extension of the proof below, we obtain the following result: Let U €
Rat(R; Grr (C%)) be of the form

N 4. N A*
U(x) = Uy + 4 !
*) Zx—zj Zx_zj
J=1 J=1
with some integer N > 1, Uy, € Grk(C"), nonzero matrices Aq,...,Ay € Myi(C) with A; = 0 and
rank(A;) = 1, and pairwise distinct poles zi,...,zy € C_. Then we have rank(Ky) = N for the

operator Ky = HyHy : L2(R;C%) — L2(R;CY).
Proof. Since Ky = H{;Hy, we have dimran(Hy;) = dimran(Ky). Therefore, we need to determine the

rank of the adjoint Hankel operator Hy; : L (R; C?) — L2(R;C?) with

N

Hyf =TL(Uf) =TL| " xi‘jz.f for f € L2(R; C?)
J=1 /

with the matrices A; =s; - 0 € M>(C). From the constraint u(x) - u(x) = 1, we readily deduce that the
nonzero vectors s; € C3\ {0} satisfy s;-sj =0forall j = 1,..., N. To see this, we recall 0o, - U = 1 and
that the poles {z; }j.V: | are pairwise distinct, so that an elementary expansion in partial fractions yields

N S; §j N Sk §k
I=u(k)- ulk)= uw+Z(X_Z'+X——Z') . u°°+z(x—zk+x—2k)
— J J

=1+ i 5 5 + rational terms not containin ! forany j =1 N
j:1 (.x—Zj)2 g (x_zj)z yJ e ey .
Hence we conclude that s; - s; = 0 for all j = 1,..., N. Next, by elementary algebra for the Pauli

matrices, we find Af = (s; -s;)1> = 0 and hence each matrix A; € M,(C) has exactly rank one. On the
other hand, we easily verify that

1
T ——
+(x vl )
In particular, we see that f + I1,((x — £)~! ) has rank one for £ € C_. Since each matrix Aj. has rank
one and in view of

= ]{(ngu for f € L>(R;C*) and { € C_.

S 1
of =ILU) = ) AIL|l——f],
Hyf = TL(Uf) ; J ((x_zj)f)

we deduce the upper bound rank(Hy;) < N.
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It remains to show that rank(Hy;) > N holds. Take vectors v; € C? with Ajv;#0forj=1,...,N.
Now we consider the functions fi, ..., fy € L2(R;C?) given by

N .
fin= [] =221

X—Zkx—-7;

k=1, k#j
An explicit calculation shows that
A;fiz))
2 A EAAS P
vli= zj
Since A;fj(z;) # 0 and zi,...,zy € C_ are pairwise distinct, we see that rank(Hy;) > N. This
completes the proof. O

The next lemma addresses the case of nonsimple poles occurring in the rational map u : R — §?
and we derive a lower bound for rank(Ky).

Lemma B.2. Suppose thatu : R — S is of the form

_ She Sj.k Sj.k )
u(x) = ue + ;;((x—z])" (x—z,)k

with someintegers N > 1,1 < p,m; < N, vectorss; i € C3\{O}, and pairwise distinct 71, . ..,Zn € C_.
Then it holds that

p
Rank(Ky) = N = ij .
j=1

Proof. As before, we need to bound rank (Hy;). We adapt the second part of the proof of Lemma B.1 as
follows. For any £ € C_ and any integer k > 1, we obtain by Taylor’s formula that

k-1

1 O
H*((x—wf) Z O=0F

=0

for any f € L2(R;C?). Now we choose j € {1,...,p}and k € {1,...,m;}. We claim that there exists
fi.k € L2(R;C?) such that

f“’)(zi) =0 fori#jandfe€{0,...,m; -1},
@), N _ . (k=1) _ —
f «(27) —OandAJ,mJ.fj’k (zj)#0 for£e{0,...,mj—1}and £ # k-1,
with the rank-one matrices A; x =s; x - 0 € M>(C). Indeed, just choose

~ (x _ Zj)r—l
Jia(x) = l_[ o Z Gz, ik

i=1,i#j

with nonzero vectors v; . € C? such that A; ;Vj.kk # 0 and with the other v x , determined by
induction on r. Then

]rf]k(zj)
Hy(fj50 = (k - 1)|Z(x_zj)r K+l
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It remains to observe that these rational functions are linearly independent as j € {1,...,p} and
k € {1,...,m;}, which is elementary in view of the leading singularity in (x — z;). O

We are now ready to give the proof of Theorem 8.1. For the reader’s convenience, we recall that the
statement of Theorem 8.1, which is now labeled as Theorem B.1 here.

Theorem B.1. Let u = (u1, us, u3) : R — S? be a rational map. Given an integer N > 1, the following
statements are equivalent.

(i) dim $; = rank(Ky) = N.

(ii) The least common denominator of uy, uy, u3 has degree 2N.
(iii) There exists a rational function R € C(X) of the form

_ P(x)
Q)

where P € C[X] is a polynomial of degree N and Q € C[X] is a nonzero polynomial of degree at
most N — 1, such that P and Q have no common factor such that, up to rotation on the sphere S,
we have

R(x)

() 4 i) = —2RE) o RORG@) -1
ROR(x) +1° RNR(x)+1

Proof of Theorem B.1. We divide the proof into the following steps.

(ii) = (iii). Assume u = (uy,us,u3) : R — S?is a rational map with the least common denominator
given by a polynomial D € R[X] of degree 2N. (Note that D must have even degree, since uy, us, u3
are real-valued rational functions with no poles in R.) Moreover, up to a rotation on S?, we may assume
that u3(x) — 1 as |x| — oo, so that there exist polynomials Q; € R[X] such that

0;(x)

forj=1,2,3,
D(x) or j

uj(x) =

where Q1, 0> have degree at most 2N — 1 and Q3 has degree 2N, with the same leading coefficient as

D. Now the condition u% + u% + u% = 1 means that

Qi +03+03=D",
or equivalently
(Q1+i02)(Q1 —iQ2) = (D - 03)(D + Q3) .

Since Q3 and D have the same leading coefficient, the degree of D + Q3 is 2N and the degree ¢ of
D — Q3 is at most 2N — 1. Denote by d the degree of Q| +iQ». Since Q| and Q, are real polynomials,
d is also the degree of Q| —iQ, and hence

2d =6 +2N.
This implies
N<d<2N-1.

Furthermore, we recall that D is the least common denominator of uq,us,u3 which means that
01, 02, 03, D have no common factor, or equivalently the polynomials

01+i02,01-102,D - 03,D + Q3

have no common factor.
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Now, we claim that O + iQ> and D — Q3 have at least d — N common zeros — counted with
multiplicities. Indeed, assume that @ € C is a zero of D — Q3 of multiplicity m > 1. We distinguish the
following cases depending whether @ € R or ¢ R.

If @ is real, then « is in fact a zero of Q| and Q», hence it is a zero of Q1 +iQ, and Q| —iQ, with the
same multiplicity y. Since a cannot be a zero of D + Q3 (otherwise Q1 +iQ», Q1 —i10Q2, D — 03, D + Q3
would have common factor), we infer that 2y = m.

If @ is not real, then « is a zero of Q| +iQ, or Q| —iQ>. Since « is also a zero of the real polynomial
D — O3, we can choose the zero 8 € {a, a} having the maximal multiplicity u as zero of Q) +iQ;. This
shows p > 7.

Summing up, we have found a common factor of D — Q3 and Q1 +iQ, with degree at least equal to
half of the degree of D — O3, namely d — N. Therefore we can write

01+i0, P ®B.1)

D-0Q; 0

where P and Q are polynomials in C[X] with no common factor, and P has degree d — r, Q has degree
2(d — N) — r for some r > d — N. Notice that deg P > deg Q.
Next, we prove that equality r = d — N holds. Indeed, from (B.1), we conclude

Q1 _PQ+PQ Oy  PQO-PQ Qs PP-Q0
D pPP+Q0 D i(PP+QQ0) D PP+0Q0
This implies that u, us, u3 have a common denominator of degree equal to 2 deg P. Hence
2(d—-r) 22N,
which implies r < d — N, leading to the desired equality » = d — N. By defining the rational function

_ P(x)
T 0(x)

we conclude that (iii) holds. This completes the proof of the implication (if) = (iii).
(iii) = (ii). Suppose we are given a rational function

R(x) e C(X),

_ P
o)’

where P is a polynomial of degree N, Q is a polynomial of degree at most N — 1, and P, Q have no
common factor. The formulae

R(x)

R+R R-R RR-1
Ul = — . u = —, Uz = —
RR+1 i(RR+1) RR+1

clearly define a rational map u = (uy,up,u3) from R with values in S2. Furthermore, we see that
|P|? + |Q|* is a common denominator of uy, u, u3 and its degree is 2N. Let us prove that |P|*> + |Q|?
is the least common denominator of uy, u,, u3. We argue by contradiction. Suppose there is a common
factor of the polynomials

PQ +PQ,PQ ~ PQ.PP -~ Q0. PP+Q0
or equivalently of the polynomials
PQ.PQ.PP,QQ.
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Since P, Q have no common factor, there exist polynomials U, V such that
UP+VQ=1.
Therefore the polynomials
U(PP)+V(PQ) =P, U(PQ)+V(QQ) =0

would have a common factor, which yields a contradiction. This proves that (iii) implies (ii).
(ii) = (i). Let us assume that u = (1, u2, u3) : R — S? has a least common denominator of degree
2N. We claim that

Rank(Ky) = N . (B.2)

Indeed, if u : R — S? has only simple poles (i.e., the assumptions of Lemma B.1 are satisfied), we can
directly apply Lemma B.1 to conclude that (B.2) holds.

To deal with the case of multiple poles occurring inu : R — S?, we need the following approximation
result.

Lemma B.3. Let P € C[X] be a polynomial of degree N > 1, Q € C[X] be a nonzero polynomial
of degree at most N — 1, and assume that P, Q have no common factor. Then there exist sequence
P, 0, € C[X] such that P, Q,, have no common factor and

degP, =N, degQ,<N-1, P,—>P, Q0,—0 inC[X].

Furthermore, the zeros of |Pn|?> +|Qn|* are simple for every n € N.

Proof of Lemma B.3. Consider the set A of pairs of polynomials (P,Q) € C[X] x C[X] such that
deg = N,degQ < N — 1 and P, Q have no common factor and P is monic. By Lemma 8.1, we can
identify A with a connected open subset in C*V. On the set .4, the condition that the discriminant of
|P|?> +|Q|? is different from 0 is an open dense subset. This completes the proof. )

Suppose now that u : R — S? has multiple poles and the least common denominator of uy, us, u3
has degree 2N. By Lemma B.2, we must have

Rank (Ky) > N.

On the other hand, by the proven implication (ii) = (iif), there exists a rational function
_ P
O(x)

with degP = N, degQ < N — 1 with Q # 0 and Q, P have no common factor, such that (up to
rotation on S?) the rational function u = (uy, 42, u3) is given by the inverse stereographic projection
applied to R(x). Now, let us take sequences P,,Q, € C[X] as provided in Lemma B.3. Define
R, (x) = P,(x)/Qn(x) € C(X) and consider the sequence of rational maps u™ : R — S? with
components

R(x)

e C(X)

2Ry (x)
|Ry ()] +1°

|Rn(x)|* — 1

(n) . (n)
+ = —_— .
u, (x) iu, (x) R,F+1

ué") (x) =

Since |P,|?> + |Q,|* has only simple zeros, we see that each rational map u'™ has only simple poles.

Applying the known implication (iii) = (ii), we conclude that u§”>, ué"), ugn) for all n have a least

common denominator of degree 2N. Thus for every rational map u” : R — S? we can apply Lemma
B.1 to conclude that

Rank (Ky,) =N foralln e N.
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On the other hand, since u"” (x) — u(x) pointwise and [u” (x)| = 1, we see that Ku,f — Kuf in
L*(R,C?) for every f € L2(R,C?) by dominated convergence. From this we easily deduce that

N =liminf Rank(Ky,) > Rank(Ky) .

This completes the proof that (B.2) holds whenever u;, us,u3 have a least common denominator of
degree 2N.

(i) = (ii). Suppose now that Rank(Ky) = N holds for some integer N > 1. Let D € R[X] denote
the least common denominator of u1, u;, u3. Since D has no zeros in R, we must have that deg D = 2m
for some integer m > 1. We claim that

m=N.

Indeed, if u : R — S? has simple poles (in the sense of Lemma B.1), we can use Lemma B.1 directly
to deduce that m = N must hold.

If u : R — S? has multiple poles, then deg D = 2m where m > 1 is the number of poles of
u counted with multiplicity. By the same argument using approximation with simple pole rational
functions u™ : R — S? as in the previous step, we conclude that Rank(Ky) = m. Hence m = N is also
true in this case.

The proof of Theorem B.1 is now complete. O

C. Construction of Ty with simple discrete spectrum

The aim of this section is to construct, for given N > 1, rational maps u € Rat(R; SZ) such that the
corresponding Toeplitz operator Ty : L2 (R; C?) — L2(R;C?) has simple discrete spectrum

oa(Tv) ={vi,...,vn},

where v; € (=1,1) for j = 1,..., N are arbitrarily given simple eigenvalues. To achieve this, we will
use a perturbative construction by using N simple traveling solitary waves for (HWM) with different
velocities v; € (=1, 1) that are sufficiently far separated from each other.

For a rational map u € Rat(R; S?), we henceforth assume without loss of generality that

U, = lim u(x) =e; = (0,0,1) € §?

|x|—00

by rotational symmetry on the sphere S2. For a given velocity v € (-1, 1), we define the unit vector
n, € S? by setting

n, :=(0,V1-v2,v) sothatv=n-u,. (C.1)
For later use, we also define the unit vectors n, 1,n, 2 € S? with
n,;:=e =(1,0,00 and n,;:=n, xn,;=(0,v,-V1 -12). (C.2)

Thus (ny,n, i,n, ) forms a (positively oriented) orthonormal basis of unit vectors in R3? whose use
will become clear below.
Furthermore, it will be convenient to consider poles z € C_ of the form

z=y—-ieC_ withyeR. (C.3)
Next, we construct a rational function q, , : R — S? of the form

Sy

s
Q. (x) = e3+ —— + ——
X—2Z X—2Z
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with some complex vector s, € C*\ {0}. By plugging this ansatz into the pointwise constraint
|qy .z (x)|> = 1 for x € R and equating all terms proportional to (x —z)~! and (x — z)~? to zero, we easily
find the following constraints equivalent to the condition |q, , (x)|? = 1:

sy -s, =0 and sv-(e3+s—v_)=0, (C4)
-2

where a-b =a by + arby + azbs fora,b € C3. In view of [3][Lemma B.1], we make the ansatz
Sy =8y (nv,l + inv,Z)

with some complex number s, € C* and with the real unit vectors n, ; and n,, » from (C.2) above. This
automatically ensures that the first constraint in (C.4) holds. Next, by recalling that z — 7 = —2i for the
pole z € C_, the second equation in (C.4) becomes

. Sy (n 1 —in 2
sv(nv,1+1nv,2)- e3—% =0.

Since (n,,; +in, ») - (n,,; —in, 2) = 2, we readily find that s5,, € C* is given by
sy = —i(n,,; —in, 5) - e3 =iVl —v2. (C.5)

In summary, we find that

Sy

S
qy,;(x) =e3+ — 4 =
X—2Z X —2Z

with

i
sy =iVl =v2(n, 1 +in, 5) = V1 =2 -v : (C.6)
V1 -2

We remark that the simple pole rational function q,, , : R — S? yields a traveling solitary wave solution
u(t,x) = qy,z(x —vr)

of (HWM) with velocity v and limy|— u(, x) = e3, which follows by a direct calculation which we
omit here.
We have the following main result.

Lemma C.1. Let N > 1 be an integer and let vy, . ..,vN € (=1, 1) be given. Then there is a sufficiently
small constant gy = €9(N) > 0 such that the following holds.
Let z1,...,zn € C_ be pairwise distinct poles of the form (C.3) and define
1

g=—-— >0 and Z=(21,...,2Nn).
minja |2k — 2|

Then if & < &, there exists a rational map uz : R — S? of the form
N N <
Sj.z Sj.z
uz(x) =e3+ Z + Z =
Hx-z Ha-y

with some s; z € 3\ {0}. Moreover, we have that

sjz=8y,+0(e) forj=1,...,N,
where s,,; € C3\ {0} is given by (C.6) with v = V.
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Proof. We arrange the proof into the following steps.

Step 1. Let zi,...,zy € C_ be pairwise distinct with Imz; = -1 for j = 1,..., N and set
€ = 1/minjz¢ |zi — zj| > 0. We denote Z = (z1,...,zn)- For € € (0,&0) with g9 = g9(N) > 0
chosen below, we need to find s; z,...,Sy 3 € C3\ {0} such that the following nonlinear constraints
are satisfied:

Sj,z'Sj,ZZO forj=1,...,N, €7
N oo N5

sz - e3+z - +Z 2 1-0 forj=1,...,N. (C.8)
k;tjzj_zk =l Zj — 2k

In fact, these conditions follow simply by a partial fraction expansion for the constraint uz (x) - uz (x) = 1
with our ansatz for uz (x) stated above. As for (C.7), we recall from [3][Lemma B.1] the algebraic fact
that any s € C \ {0} with s - s = 0 can be written as

s = s(nj +imp)

with a complex number s € C* and real unit vectors n;,n, € S? such that n; - n, = 0. In fact, this
representation is unique modulo U (1)-rotations in the plane spanned by n; and n; with a corresponding
phase rotation of s;.

Next, we define the vectors

sj :=sy, € C?\ {0} given by (C.6) with v = v;

and we fix corresponding real unit vectors n; 1,m;» € §? as defined in (C2) withv =v; € (-1,1).
Thus we have

S; = Sj(llj,l +il’lj,2)

with some complex numbers s; € C* to be determined for j = 1,...,N.
For the vectors Sz to be found, we make the ansatz

Sy = Sj’z(an + il’lj,z) with S;z € Cc*.
Note that the vectors n; ; and n; » are fixed and only depend on v; but not on the poles (z1,...,2n).
Clearly, the first set of constraints (C.7) is automatically satisfied by our ansatz for s; z. Thus we only
need to show how to solve (C.8) in the rest of the proof, provided that the constant g9 = £9(N) < 1 is
sufficiently small.

Step 2. In order to solve (C.8), we devise an iteration scheme as follows inspired by the discussion

in [3]8. First, let us write (C.8) as

5. -
J-Z _ . .
Sjz |Mje+ — | =0 with m;;:=e3+
2j =%

N —_
Sk.,z Sk.,z
( L
oy j— 2k T —Zk

If we recall thats; z = s; z(n;,| +in;2) and z; — Z; = —2i, we find the equation

= sj,;((nj,l +inj,2) ‘m; z + is

E-~(n~1 —in~2)
7,2\ J>
L ) 1) =0,

Sj’z(nj,l + inj,z) . (mj’z — n

8In [3], a different sign convention for the poles z; and spin vectors s; are used. The reader should be aware of this when
comparing with our formulae here.
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which has the unique nontrivial solution

Sj,z = —i(nj,l - inj,g) . ﬁj,z

Since m; ; does not depend on s; z, this suggests the following iteration scheme: If st E) is given, we

define the next iterate s("+1) by

N (n) s +ing o) E,in;(nm —ing2)

1 ,Z
(nj— ) = —1(nJ 1 —an 2) €3 +Z + p— =
J,Z Z — Tk 3j— 3k
k#j J

Thus we need to solve the fixed point equation
5z = F3(52)

with the variable 53 = ($1.z>--.,Sn,z) and the given parameters Z = (z1,...,2n), Where the map
F; : CN — CV is defined by the right-hand side of the iteration scheme above. Recalling that
sj=—i(n; | —in; ) - e3 from (C.5), we find

F:(5z) =5+ Az(5z) + B; (sz)
where 5§ = (s1,...,5n5) € CV and Az, B; : CN — CV are linear maps with operator norms
I Azllen en + [1Bzllen ov < Ce < Ceo (C.9)

with some constant C > 0 depending only on N. Hence by taking gy := 1/(2C), we see that, for any
g€ (0,&0),themap G :=1d—A; - Bz() : CN — CNV is invertible by using the Neumann series. Hence
5¢ = G71(5) is the unique solution of the fixed point equation 53 = F;(53) provided that & € (0, &9)
holds.

Step 3. It remains to show that

sjz=s;+0(g) forj=1,...,N.

Sinces; ; = s; z(n; 1 +in; ») with vectors n; 1, n; > independent of &, this claim is equivalent to proving
that

#g =5+ 0(8)
with the notation from Step 2. But from the fixed point equation and estimate (C.9) we readily find
Iz ~ Sllew = 1Fz(52) — Sllov < Ce.

with some constant C = C(N) > 0. Furthermore, since s; # 0 for all j = 1,... N, we conclude that
s;z#0forall j =1,...,N, provided that & € (0, g9) with &y = £9(N) > 0 sufficiently small.
The proof of Lemma C.1 is now complete. O

With the help of Lemma C.1 we are now able to prove the following result. Recall that U = u - o for
amapu:R — S2.

Lemma C.2. For any integer N > 0, there exists a rational map u : R — S? with exactly N simple
poles such that the discrete spectrum O'd(TIZJ) is simple.

Remark. Recall that, by self-adjointness of Ty, the simplicity of o'd(Té) implies that o4 (Ty) is simple.
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Proof. For N = 0, this is trivially true by taking the constant function u(x) = e3 and noticing that
Rank(Ky) = 0 and hence o4(Ty) = 0. If N = 1, we take the stationary solution (i.e., a half-harmonic
map)

2% x%-

u(x):( et ;)eRat(R s?,

which has Rank(Ky) = 1 with simple discrete spectrum oy(7Ty) = {0}. Hence it remains to discuss the
case N > 2, which will be proved in the following steps.

Step 1. Assume N > 2 in what follows. Let zq,...,zy € C_ and vy,...,vy € (-1,1) be as in
Lemma C.1 with the additional assumption that

vi#Fve forj#k.
Consider the rational map uz : R — S? given by Lemma C.1 with & = I/minjzx |z — z&| € (0, &9),
where g9 = g9(N) > 0 denotes the small constant from Lemma C.1. In particular, the rational map

: R — S? has exactly N simple poles.
Note that the rational matrix-valued function Uz = u; - o is given by

U: (x)—(r3+Z Az +ZX_Z,

with the nonzero matrices 4; > € C?>*2 given by Az - 0. Note that A2 = 0 which follows from

S

T = 0. Thus the mlpotent matrices A; ; € MZ(C) have rank one and we can write

Ajz=e;z( &z
with some nonzero vectors e z,§; z € C?\ {0} such that
||€J-’z||C2 =1 and <ej,2’§j,2>(c2 = 0

Note that span{e; z} = ran(A; ;) and we readily check that

e -
91 =ran(Ky,) = ran(Hl*]z) = span{x 1 <

with the operator Ky, = Hy;_Hu, : L2(R;C?) — L2(R;C?).
Step 2. For later use, we recall that the constraint equations (C.7) and (C.8) can be rephrased in terms
of matrix-valued functions as follows:

A7:=0. BjzA;z+A;:B;:=0 (C.10)
forall j =1,..., N, where we define the complex 2 X 2-matrices
N N *
A 2 Al
Bjzi=oyt )y — gy B 11
k7 TRk ho BT Rk

Because of A ;
deduce

= 0 and by (C.10), we see that A ; = 0. Since ker(A; ;) = span{e; >}, we

j.2€).2 JZ JZJZ

Bjzejz=bjzejz
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with some eigenvalue b; > € C. Since [l¢; z||c2 = 1, the eigenvalue b > is evidently given by

bjz=(Bjzejz ejz)c
<Ak €52, €5, Z>C2 <A]*( ;ej,z, ej,§>C2
={oejze >2+Z I (C.12)
J.22€j,z/C & 2 — 2k 2 — 2 s

where we also used the simple fact that (A* ejz ejz)c2 = 0because of A; ze; z = 0. Next, by partial
fraction decomposition and A ze; z = 0, we obtam

N N
€jz Ak Z €j.z
Tu- I ||os +
\x-—2zj - X — X =
Zj W re RS %
N A* e

_ o3¢ +Z Arzejz | k202
x-zj H-uw)-z) A @ -w)E-z)

N *
Apz Az A zejz
5D Z Z
Zj — 2k Zj — Zk x—z, (zk —zj)(x — zx)

k#j =1

N N
B;ze;: Apzejz _ bjzejz Arzejz

J>27],2 J-2%].2
-z - g)e-w) x-z - ) - )

for any j = 1,..., N and with the eigenvalues b; z from above. Let T € CV*N denote the matrix of
) Since ||, -

<1, we

NI

x-z1° "’xz

1 91 — 91 with respect to the basis B = (

see that the matrix T € CV*V is of the form
T =diag(byz,...,byz)+B
with some matrix B = B(zy,...,2n5,V1,...,Vs) such that
IBlley cv = O(e),
where we recall that € = 1/min 4 |2; — z«|. Furthermore, from (C.12) we deduce that
bjz=(03¢;z.€jz)c2+0(8).

Next, we recall that A; = — A; =s; - 0 as € — 0 by Lemma C.1. Notice that s; is given by (C.6) with
v =v; and an elementary calculation shows that ran(A ;) = span{e;} with the unit vector

1 [ )
ej=—(. 1+VJ)EC2.
V2\iyl—v;

Thus we conclude that

(o3¢ 7€) 2)c2 = (o3¢, €5)c2 =Vv; ase — 0,

whence it follows that b; z — v;ase — 0.
In summary, we have shown that the matrix T € CNXN for Ty. : $H1 — H1 with respect to the basis

B= (e‘—z N .2 ) is of the form

x=z1°" "7 x—zN

T=diag(v1,...,vN)+M
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with some matrix M = M(z1, ..., 25, V1, ..., vn) € CVXN such that
IMllcv ey =0(g) >0 as & — 0.
Step 3. Let
pr(z) =det(T—zIy) =z +an_ 12V '+ .. +ag

denote the characteristic polynomial of T € CN*V_ Since

1in}) IT —diag(vi,...,va)llevev =0,
&—
we deduce that ay — ¢ ase — Oforallk =0,...,N — 1, where

N
p@) =N +enyaiN TN 4= ﬂ(z—vj)
J=1

is the characteristic polynomial of diag(vi, ..., vn). Note that p(z) has simple zeros due to v; # vy for
J # k by assumption. Hence the roots {4, }j.\’: , of T are also simple, provided that & > 0 is sufficiently

small, and we have 1; — v; as & — 0. Since v? * vi for j # k by our assumption above, we also
find that /13 # /li for j # k provided that & > 0 is sufficiently small. This shows that Téz |, has simple
spectrum if & > 0 is sufficiently small and, by self-adjointness of Ty., this implies simple spectrum of
Tu.lg, if € = 1/minjzx |z; — zi| > 0 is sufficiently small. Since 04(Tv.) = o (Tu.ls, ), this completes
the proof of Lemma C.2. O

Remark. To conclude our discussion, let us remark that there exist rational data u : R — S? with
nonsimple discrete spectrum o (7Ty). For instance, take a solitary wave profile q : R — S given by a
Blaschke product of degree m > 2 and set Q, = q, 00 Then it is easy to see that the Toeplitz operator
To, : L2(R;C?) — L2(R;C?) has discrete spectrum 04(Tg,) = {v} where the eigenvalue v is m-fold
degenerate.

D. Local well-posedness

In this section, we prove local well-posedness for (HWM,,) for sufficiently regular initial data as stated in
Lemma 5.1. Also, we will show well-posedness for the initial-value problem formulated in (3.3) above.

Proof of Lemma 5.1

Lets > %, d > 2 and assume that Uy : R — M;(C) is of the form
Uo(x) = Uss + Vo (x) € My(C) ® H* (R; My(C)) = H{(R;: Ma(C)).,
satisfying the pointwise constraints
Up(x) =Up(x)*, Up(x)’=1,4 forx eR.

Note that Uy, € M,4(C) is a constant matrix with U, = U, and U2 = 1.
Now, for R > 0 given and assuming that ||Vy||gzs < R, we wish to prove existence and uniqueness of
the solution

U(1) =Us + V(1) € Ma(C) © C([0,T]; H*(R; Ma(C))

of (HWM,) with initial datum U(0) = Uy, where T = T(R) > 0 is chosen sufficiently small. Once this
solution is constructed, it is elementary to check that U(z, x) satisfies the pointwise constraints above
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for all x € R and times ¢ € [0, T']. Furthermore, as explained before Lemma 5.1 above, we deduce that
U(t,x) € Gri (C9) for (t,x) € [0,T] X R with some integer 0 < k < d.
Step 1 (Setup). To deal with the quasilinear equation (HWM,;), we use the following iteration scheme.
Suppose we are given an initial datum
Uyp=Usx+ Ve My;(C)o H (R; H* (R; My(C)) D.1)
with values in the Hermitian d X d-matrices, that is, we assume

Up(x) = Up(x)* forx eR, (D.2)

and with some constant Hermitian matrix U, = U}, € M;(C). Note that Vo(x) = Vo(x)* must be
Hermitian valued, too.
Now, let R > 0 be arbitrary and let 7 = T(R) > 0 to be chosen later. We construct the sequence

U™ = Uy, + V™ € My(C)® C([0,T]; H* (R; Mg(C))) withn e N
by means of the iteration scheme

8,um :—%[U("),|D|U("”)] fort € [0,T], UMD (0) = U, (D.3)

and we take U@ (r) = Uy It is straightforward to show that, given U™ e My(C) @
C([0,T]; H*(R; M4(C)), there exists indeed a unique (Hermitian-valued) solution

U™ = U, + V) € €(]0,T]; Ma(C) ® H* (R; My(C))

of (D.3) with initial datum U+ (0) = Up; see Lemma D.1 below and its proof for details. Also, since
U = Uy, + V with the constant matrix Us, € M;(C), we have

G,V("“):—%[U("),|D|V("+'>] fort € [0,T], V@D (0)=V,.

Step 2 (Bounds). We assume that ||Vy||gs < R holds. We claim that the following a priori bound
holds

sup [V ()|lgs < 2[|Vollgs foralln e N, (D.4)
t€[0,T]

provided that 7 = T(R) > 0 is chosen sufficiently small.
We prove the bound (D.4) as follows. We use (D)* to denote the regularized fractional derivative

of order s given by (W) &) = (1+ &P 2f(g—‘). Omitting the dependence on ¢ for notational
convenience, we find (where the assumed regularity suffices to justify the following manipulations):

d

E”<D>SV(H+1)||§2 = 2Re<<D>S(9,V(n+]), <D>sv(n+l)>
= Im<(D>S [U(n)’ |D|V("+1)], <D>sv(n+l)>
= Im< [U("), |D|(D>SV("+1)], <D>sV(n+1)>

+1m([(D)*, U DIVD (DY VD) = 1411

Here we also used the trivial fact that |D| and (D)* commute. Next, we assert that the term 7 can be
written in exact commutator form with
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1= 2 im([[U™, 1, IDIDY VD, (Dy V). (D)

Here [U, -]F = UF — FU denotes the pointwise matrix-commutator for matrix-valued functions U, F :
R — M4(C). To see that (D.5) holds true, let us write U = U” and W = (D)*V*D for the moment.
Then

1 =Im([U, |[D|W], W) = Im([[U, ], |D|]W, W) + Im(|D|[U, W], W)
=Im([[U,],|D|JW, W) + Im(W, [U, |D|W]) = Im([[U, ], |D|]JW, W) - I,

where the second last step we used that |D| = |D|* is symmetric together with the fact Tr([U, A]B*) =
Tr(A[U, B]¥) for matrix-valued functions U,A,B : R — M4(C) provided that U = U* is Hermitian.
This proves (D.5).

Next, by a classical commutator estimate due to Calderén applied to (D.5) and recalling that 8, U™ =
axv<">, we deduce

11 < CllaV ™ [l= (DY VD7, < CIKDY VI [KDY VDI,

where in the last step we used the Sobolev inequality ||0x f|lL= < C|{D)*~'0xfll;2 < CIKD)* fll;2,
since H*~!(R) ¢ L*(R) thanks to s > %

To estimate the second term /1 above, we use Cauchy—Schwarz and apply the classical Kato—Ponce
commutator to [(D)*,UM™] = [(D)*, V" ]. This yields

111) < |[(DY*, VT IDIVE* D [ 2 (DY VD | 2
< CUKDY VI DIV Vs + 118V [l IDY* DIV V) D) VI 2
< CI(DY VP2 [(DY VD2,
where in the last step we used again the Sobolev inequalities |0,V ||z« < C|(D)*V"™||;> and
DIV || o < CI(DY VD |12 in view of s > 3.
Combining the estimates for / and /1, we obtain the differential inequality

d ) ! )
L@V O, < DY VD Wl ID» VD )2, (D.6)

Next we define the quantities

M, (T) = sup ”(D)SV("(t)”i2 withn e N,
t€[0,T]

From (D.6) and Gronwall’s inequality we obtain
M1 (T) < My - €7 VMT) (D.7)
since My := M (0) = ||(D)SV0||i2 for all k£ € N. Clearly, we have the bound
My - *“TR < 4My (D.8)

for some sufficiently small time 7 = T(R) > 0. From My(T) = My < R? and (D.7)—(D.8), it follows by
induction that

M,(T) <4My foralln e N.

Since My = || (D)SVOHi2 = ||V0||12,P , we obtain the claimed a priori bound (D.4).
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Step 3 (Cauchy Property in L?). We demonstrate that the sequence (V"),cy is Cauchy in
C([0,T]; L*(R; M4(C)), provided that T = T(R) > 0 is small enough. Indeed, let n > 1 be given. We
find

1
8,(VerD = V) = 2 ([U, DIV ] - (U0, DV
2i
_ %([Uw, IDI(VOD Z )] 4y yn-D), |D|V<">]) ,
i
where used the simple fact that U — U*=D = v _ v(*=D Hence we get

i“v(nn) _yvol’ = 2Re<(9,(V(”+1) _ vy yim V<">>
dt 2 ’

2
L

- Im<[U<">, ID|(VIHD _y () yoD V<")>

+ Im<[v<"> —vr=D | pvm, v _ V<">>
< C>IONV = [VED - V2,)

+CUV? = VDL IDIVE e IV = VO 1)
< COVE(IVI = VO + KV = VD12

with the constant K > 0 from the a priori bound (D.4) above. Since V"*D (0) — V(") (0) = 0, we learn
from Gronwall’s inequality that

sup [V (1) =V (1)|l,2 < CTVK sup [V (1) = VD (@)|l,2 .
tel0,T] te[0,T]

By choosing T = T(R) > 0 even smaller to ensure that CTVK < %, we deduce that the series

[oe]

sup [[VO*D (1) = VO (1)||,2 < +00
=0 t€[0,T]

is geometrically convergent. In particular, the implies that the sequence (V("),cy is Cauchy in
C([0,T]; L*(R; M4(C)).

Thanks to the a priori bound (D.4), this yields that (V(™),cy forms a Cauchy sequence in
C([0,T]; H*(R; M4(C)) for 0 < § < 5. Moreover, we readily check that its limit

U := U, + lim V™ € M4(C) & C([0,T]; H*(R; My(C))

solves (HWM,) with initial datum U(0) = U.
Step 4 (Continuity of Flow in H*). It remains to show that

Ve C([0,T]; H* (R; My (C)) .
Note that, by previous discussion, we can only deduce that V € C,, ([0, T]; H*(R; M4(C)) holds, that
is, for t, — ¢ we only have that V(¢,,) — V(¢) in H®. To extend this to strong continuity, we can

make use the idea of frequency envelopes, which was recently generalized as an abstract interpolation
resultin [1].
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Indeed, for real 7 > 0, we introduce the Sobolev spaces Hy; of matrix-valued maps with Hermitian
values by setting

Hj; ={F € H(R; M4(C)) | F(x) =F(x)" fora.e. x € R},

equipped with the norm || - [|g. Let Bg = {F € H}; | ||F|lgs < R}. From Step 2 and Step 3, we obtain
the map

®: Bg — C([0,T]; HY), Wo> W= lim W™

n—oo

using the iteration scheme with initial data Uy = Uy + W(. Moreover, from the previous discussion, we
deduce the following bounds

(B1) [|®(Wo) — ®(Wo)||Cr H® < Col[Wo — Wollgo for all Wo, Wy € B,
(B2) 19(Wo)llc, s+ < 2|[Wollgs+i for all Wy € Bg N HH,

with some constant Cyp > 0. Indeed, the weak Lipschitz estimate (B;) follows from the arguments in
Step 3, whereas the bound (B;) simply follows from repeating Step 2 with s > % replaced by s + 1 and
by choosing T = T(R) > 0 possibly even smaller. From [1] we now conclude that

(Vo) € C([0.T]; Hyy)

and that we have continuous dependence of the map V( +— ®(Vj) on the initial data in Bg.

Step 5 (Conclusion). Thus far we have proved local-in-time existence of solutions for (HWM,)
for initial data in H*® with s > % and satisfying the Hermitian condition (D.2). Moreover, by a direct
calculation and using the regularity of the solutions, we readily check by a Gronwall-type argument that
uniqueness holds for C([0, T]; H®) for a given initial datum U(0) = Uj.

Also, a direct calculation (which we omit) shows that the pointwise constraint Uy (x)? = 1 is also
preserved by the flow.

Finally, the claimed propagation of higher Sobolev regularity also follows from the previous estimates.
Indeed, let o > s > % and suppose that Vo € Hj . Inspecting the arguments in Step 2, we deduce that

IKDYTVD)I7, < CUIV @)l + IIDIVO =) IKD) TV ()]l
< CIIVO s KDYV ()l

12>

where we used the Sobolev embedding H*(R) c L*(R) for s > % By Gronwall’s inequality, we readily

deduce that the maximal times of existence of H? and H*-solutions with o= > s > % coincide.

This completes the proof of Lemma 5.1.
In the proof above, we need the following auxiliary result.

Lemma D.1. Let s > %, d>2,andU=Uyx+V e C([0,T]; My(C) ® H*(R; My(C))). Then, for every
Vo € H*(R; My(C)), there exists a unique solution U=Un+V € M4(C)aC([0,T]; H*(R; My4(C))) of

8,0 = _%[U, IDIU]  on [0,T] and U(0) = U, + V.

Moreover, if I~J(O,x) = ﬁ((),x)* and I~J(0,x)2 = 14 for all x € R, then ﬁ(t,x) = I~J(t,x) and
U(t,x) = U(t,x)* forall (t,x) € [0,T] X R.
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Proof. Since Uy, € M;(C) is constant matrix, it suffices to show existence and uniqueness of Ve
C([0,T]; H*(R; M4(C))) solving

o,V = _% [U,|DIV] with V=V,. (D.9)

We construct approximate solutions of this linear equation by the following scheme. For ¢ > 0, we
introduce the smoothing operator

Jo=(1+&D)™" with allpz 2 < 1and ollgs e < &7

By standard arguments, we obtain a unique solution V.eC ([0,T]; H*(R; M4(C))) of the initial-value
problem

OV, = —%[U, IDIJ.V.]  with V.(0) =V,

using that |D|J. : H® — H® is a bounded map together with the fact that #*(R) is an algebra for s > %

Now, by adapting the discussion from the previous discussion, we derive the estimate
d = —~
E”(D)SV(I)”;} < C(IU, -1, IDV Il 212 + KDY V1) IKDY V7

using also again the Kato—Ponce estimate together with the fact that ||(D)*~! |D|J8V||Lz < (D)SVIILz.
To bound the commutator term, we note that if @ = a(x) denotes multiplication by a Lipschitz function
then

[a,1D1J] = |DI[a, (1+&|D))™'] + [a, D] (1 +¢|D))™!
= —&|D|(1 + D))" [a, IDII(1 +£lD)™" + [a,ID]I(1 + €D

Thus by Calderén’s commutator estimate and the facts [|g|D|(1 + &|D|)"!|l;22 < 1 and ||(1 +
g|D|) Y22 < 1, we deduce

ITU, 1, IDVelll2p2 < ClldxVliLe < CIKD)* V|12

since s > 32.Because of sup;co.7] IKD)*V(#)|l2 < +o0, integrating the previous differential inequality
yields the bound

sup (DY Vo (0)ll2 < e“T (DY Voll (D.10)
t€[0,T]

which is independent of £ > 0. Moreover, this bound and the equation for V. imply that
18,V e()llz2 < CIO@ = 1D Vellr2 < CUI0 L= + (DY VOl ) KDY Ve (0)l2 -
Hence it follows that

sup 16, Ve (0)llz2 < CI(DY* Voll 2
t€[0,T]

independent of & > 0. Thus, by standard compactness arguments (see, €.g., [7][Proposition 1.1.2]), we
deduce that (Vgn) converges for some sequence &, — 0 to some limit V € C,, ([0, T]; H(R; M;(C))
solving

8,V = —%[U, IDIV]  with V(0) =
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By mimicking the arguments in the previous proof using the abstract interpolation result, we actually
deduce strong continuity, that is, we have V e C([0,T]; H* (R; My(C)). Uniqueness of the solution
follows from a simple Gronwall argument in the same fashion when deriving (D.10).

Finally, we remark that the conversation of the pointwise constraints follows by a direct calculation,
which we omit. This completes the proof of Lemma D.1. O

We conclude this section by showing existence and uniqueness for the operator-valued initial-value
problem (3.3) that appears in the discussion of the Lax structure which reads

QU(1) = By U(r) fort e [0.T], U(0) =1d. (D.11)

for the operator-valued map U : [0,T] — B(L2(R;V)). As usual, we use B(H) to denote the Banach
space of bounded linear maps H — H with a given Hilbert space H. Recall that

i i
B{ = E(TUoD+DoTU)— 5T,D|U (D.12)

with D = —id, denotes the compression of By on the Hardy space L2 (R; V). Recall that for solutions
U e My;(C) ® H (R; M;(C)) with s > % as given by Lemma 5.1, the operators {BB([)},E[O,TJ
are a family of (essentially) skew-adjoint operators on L2(R;))) with operator domain H!(R;V) =
L2(R; V) N H'(R;V); see also the remark below. Recall that we either take VV = C4 or V = M,(C)

equipped with their natural scalar products.

Lemma D.2. Let s > % and d > 2. Assume U = Uy, +V € My(C) & C([0,T]; H*(R; M4(C)) is a
solution given by Lemma 5.1. Then there exists a unique solution U : [0,T] — B(L2(R;V)) of (D.11)
with the following properties.

(i) The map [0,T] — L2(R; V) with t +— U(t)¢ is continuous for every ¢ € L*(R; V).
(ii) The equation d,U(t) = BB(t)Z/l(t) holds in H;'(R; V) for any t € [0,T].
(i) U(t) : L2(R; V) — L2(R; V) is unitary for all t € [0,T].
(iv) For ¢ € HL(R;V) ndom(X*), we have U(t)p € HL.(R; V) Nndom(X*) fort € [0,T].

Remark. In particular, the proof below shows that, given a time-dependent U = Uy, + V € M;(C) &
H*(R; M4(C)) with some s > 3/2 and satisfying U(x) = U(x)" for all x € R, the operator By :
H!(R;V) c L2(R;V) — L2(R;V) is essentially skew-adjoint, that is, there exists a unique extension
with (By;)* = =By, since it is found to be the generator of a strongly continuous one-parameter unitary
group on L2(R; V).

Proof. For notational convenience, we shall write L2, H! and H;! for L2(R;V), H!(R;V) and

H;'(R; V), respectively.
Step 1. We first show that, for every Fy € Li, the initial-value problem

8 F = BLF, F(0) = F (D.13)

has a unique solution F € C([0,T]; L2(R;V)) and we have ||F(¢)||,> = ||Foll,» fort € [0,T].
For & > 0, we introduce the smoothing operators

Jei=(1+&D)™' : L2 - H! with ||J,|l;2 ;2 < 1and ||[Jg|l 2 < 70

Consider the approximate initial-value problem

& Fy=J:B{J:Fe, Fo(0)=Fp, (D.14)
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which has a unique solution F, € C L(10,T7; Lf_) by standard arguments. Since J¢By;)J ¢ is a bounded
skew-adjoint operator for every ¢ € [0, T], we readily find

1Fe(@)llz2 = [IFoll -

By the equation, this implies that 8, F. € C([0,T]; H;') uniformly in & > 0. Hence the family {F}.~0
is uniformly equicontinuous in C([0,T]; H;') and uniformly bounded in C([0,T]; L2). By a standard
compactness argument (see, e.g., [7][Proposition 1.1.2]), we can find a suitable sequence &,, — 0 with
the limit F := lim, o Fe, € C([0,T]; H;') N C,, ([0, T]; L2) which satisfies

OF =ByF, F0)=F. (D.15)
We now claim that
IF(Olz2 = |Foll2  forz € [0,T]. (D.16)
Indeed, we calculate
d +
UF (). F(0) = 2Re( [V, BY ) [F(0.F(1)) (D.17)

Using that [Jz, D] =0, [Jg, AB] = A[Jg, Bl + [Je, AlB and [J, A] = —J:[eD, AlJ ¢, we find
Ves Bl = =3 (UeleD, TolDJ o + DIo[eD, Tolde) = 3 U, Tippul = Lo + 1L,

Next, we claim that

Ieo — 0 foreverycpeLi ase — 0. (D.18)
By Leibniz’ formula, we find

elloore < CelloxUllpelld el 2 1Dl p2 < Ces™ = C

independent of £ > 0. Furthermore, it is easy to dominated convergence (and taking adjoints) that
I.o — 0in L2 as & — 0 for every ¢ € H!. By density of H. ¢ L? and the uniform bound
[[{gllz2— 12 < C, we readily deduce that (D.18) holds. Next, we observe that

I1llp2op2 < CIT el DUl < €

independent of € > 0. Also, by dominated convergence (and taking adjoints) we see that I/, — 0 in
L2 as & — 0 for every ¢ € H!. Again, we conclude

I, — 0 foreverygoeLi ase — 0. (D.19)

Going back to (D.17) and using (D.18) and (D.19), we find by integration

JoF(0), F(1)) = (JoFo. Fo) + /0 gu() dr

with g-(#) — 0in L2 as & — 0 for every ¢ € [0, T]. Since also ||g.(¢)||;2 < C, we can use dominated
convergence when passing to the limit £ — 0 to find

(F(t), F(t)) = (Fp, Fy) forallz e [0,T],
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which is the desired identity (D.16). Finally, we also remark that conservation of the L?>-norm implies
that the strong continuity F € C([0,T]; L?). Uniqueness of solutions in this class for the linear equation
0, F = ByF directly follows from L2-conservation as well.

Step 2. We define the map U : [0,T] — B(L?2) by setting U(t)Fy := F(t) for Fy € L2, where
F € C([0,T]; L?) is the unique solution of §;F = By F with F(0) = Fy. By L?-conservation, we see
that [|U(t)Fyll;2 = ||Foll;2 and hence U(t) is an isometry on L2 for any ¢ € [0, T]. Furthermore, by a
time reversal argument for the Schrodinger-type equation (D.13), we see that U(¢) is also surjective on
L2. Thus U(¢) is a unitary map on L2 for any ¢ € [0, T]. This proves (iii), whereas the items (i) and (ii)
are directly verified.

Step 3. It remains to show property (iv). For ¢ € H!(R;V) N dom(X*), we can show, by using an
approximation argument (whose details we omit) with the family of operators J, = (1 + D)~ and
R. = (eX*—i)~! with & > 0, that the solution F € C([0,T]; L?) of 8, F = ByF with F(0) = ¢ satisfies
F(t) € HL(R; V) ndom(X*) for ¢ € [0, T]. Since F(t) = U(t)¢ this shows that (iv) holds true.

This completes the proof of Lemma D.2. O
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