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Abstract

The framework for accelerated spectral refinement for a simple eigenvalue developed in
Part I of this paper is employed to treat the general case of a cluster of eigenvalues whose
total algebraic multiplicity is finite. Numerical examples concerning the largest and the
second largest multiple eigenvalues of an integral operator are given.

1. Introduction

Spectral refinement for a simple eigenvalue has been widely used in the literature.
However, if a simple eigenvalue A is not well-separated from the rest of the spectrum,
then for numerical stability it is advisable to consider the cluster of eigenvalues which
are close to k and to refine them together. Spectral refinement for a cluster of eigen-
values is considered in [1,2,4-6,13]. In the case of a simple eigenvalue, Dellwo [11]
proposed two accelerated refinement schemes which significantly improve the rates
of convergence, and in [10], the authors have given a general acceleration procedure.
However, so far as we know, accelerated refinement for a multiple eigenvalue, or more
generally for a cluster of eigenvalues, has not been reported. In Part I [10] of this paper
we introduced a general framework for constructing accelerated refinement schemes
for a simple eigenvalue and showed that this approach provides accelerated analogues
of many well-known refinement schemes for a simple eigenvalue.

The purpose of the present work is to show that the framework developed in [10]
for a simple eigenvalue can be utilized to resolve a multiple eigenvalue or, more
generally a cluster A of nonzero eigenvalues, whose total algebraic multiplicity is
finite. This technique is illustrated by considering the fixed-slope Newton scheme.
It may be noted that the q th order (q = 2, 3, . . . ) spectral refinement for a simple
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eigenvalue produces a column vector of length q whose first component is expected to
approximate a suitable eigenvector. For this reason and also for the purpose of ensuring
convergence of the refinement scheme, the first component of the initial eigenvector
iterate is normalized appropriately and error estimates are obtained for its iterates.
While the same principle can be extended to the case of a cluster of eigenvalues, we
propose a normalization of a basis of the approximate spectral subspace rather than
a normalization of the first components of the basis elements. As in the case of a
simple eigenvalue, the main results are first proved for the case when min{|X| : k 6
A} > 1. This restriction is then removed by considering a scaling of all the operators
involved in the process. The scaling is based on the knowledge of a lower bound for
min{|A.| : k € A}. Since each k in the finite set A is assumed to be nonzero, it seems
natural to expect that some (not necessarily sharp) lower bound for min{|A.| : k € A}
is available. Finally, the effectiveness of higher order refinement for a cluster of
eigenvalues is illustrated by numerical examples involving an integral operator with
multiple eigenvalues.

2. Refinement for a cluster of eigenvalues

Let X be a complex Banach space and BL(X) denote the Banach space of all
bounded linear operators on X along with the operator norm. Let A be a cluster of
nonzero eigenvalues of T whose total algebraic multiplicity is m < c© and which is
isolated by a curve T from the rest of o(T) and from 0. Then 0 £ T U Int T and
o(T) n Int T = A. As in [9] and [10], for n = 1, 2 , . . . , let An = T - Ttt and for
a positive integer q, consider Xq = {[xu ..., xq]' : Xj e X, j = 1 , . . . , q) and the
operators T, : X, - • X,, Tq,n : X, - • X,, T™ :Xq^-Xq given by

T,j[*i,... , xg] =[Txi, X\,... , xq-\\ , [x\,... , Xq] eX9,

T
'eXq,

T
l , [xU ... ,Xq]'

J

respectively. The spectral projection Pq associated with T9 and A is given by

"gl^li • • • i Xql = \.PX\, S\X\, . . . , Sq—\X\] , \.X\, . . . , Xq\ G Xq,

where P is the spectral projection associated with T and A, and

2ni Jr V
dz< 7 = 1 9 — 1-
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It follows that the map Jq : R(P) -> R(Pq) given by

Jqx = [x,SiX,... , 5,_,JC]', xeR(P),

is a surjective isomorphism. The adjoint P* of P? is given by

p ; [ x * , . . . , x ; ] ' = [P*X\ + s\x*2 + ••• + s ; _ x x * q , o , . . . , o ] ' .

It is easy to see that the map Kq : R(P*) ->• /?(P*) given by

Kqx* = [x*,0,... ,0] ' , x*eR(P*),

is a surjective isomorphism.
We work under the hypothesis (H) made in [10], that is,

(H): the sequence (|| Tn\\) is bounded and ||(7 - rw)2|| -* 0 as n -» oo.

Then for all large n and all q = 2, 3 , . . . , T lies in p(T9,n) as well as in p(T£°).
Moreover, if ra(An) < min{|z| :z € r}, then a(T^>) flint T = Aforall^ = 2 , 3 , . . .
(see [9, Proposition 3.2 (b)] and [10, Proposition 2.2 (a)]). Let P,,n and P£° be the
spectral projections associated with T?n and A9,n = cr(T,n) n IntT, and T^n) and A,
respectively.

PROPOSITION 2.1. Assume r/taf min{|A| : U A) > 1. Then for all large n and all
4 = 2 , 3 , . . . ,

max ||(T, - z^r'Hoo < Q, max ||(T?,n - zl,)"1!!* < C2 and

max| |(T<")-ZI,)-1 | | 0 0<C3

/or so/ne constants C\, C2 and C3, independent ofq and n.
Further, for all large n and all q =2,3,...,

rankP9,n = rankP, = rankP^' = m.

In fact, we have

^ = R(Pq).

PROOF. The existence of constants C\ and C2 was proved in [9, Theorem 3.3]. Also,
by [9, Theorem 3.5 (a)], rankP,,n = rankP, = rank P = m for all large n and all
q = 2, 3 , . . . . The existence of a constant C3 was proved in [10, Proposition 2.2 (b)].

Now we show that R(Pq) C R(Pq
n)). For this purpose, we first prove that (Tq —

T ^ P , = 0. For [JCI, . . . , xqY € X,, we have

CTq-Tq
n))Pq[xu... ,xq]'=\( AnP-J2A{TnSj, - A « - ' 7 ' 5 , _ , J J C 1 , 0 , . . . ,0
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By the identity (2.1) of [10], we see that

since 0 lies outside Y. Thus (T, - T^n))P9 = 0 for all q = 2, 3 . . . .
But then

(P, - P<n))P, = - ^ r jT [(T, - d,)"1 - (T<n> -

= - J ^ T f (T<n) - z l , ) " 1 ^ - T,

= o.
This shows that /?(P9) c ^(P^n)). Next, by [10, Proposition 2.2(c)],

rankP^n) = rankP9>n = rankP,.

As both R(Pq) and R(Pq
n)) have the same finite dimension and one is contained in the

other, it follows that they are equal.

We now introduce some convenient notation, which is consistent with the notations
used in [8] and [9].

Consider the linear space X = {[xi,... , xm] : x, e X9, t = 1, . . . , m) consisting
of all q x m arrays of elements of X. For x = [x i 5 . . . , xm] in X-q, let

||x||oo = max{||x1||00 l|xm||oo}-

Then Xq is a Banach space. When q = 1, we denote Xt simply by X_.
For x = [xi , . . . , xm] €- X and anmxm matrix A with complex entries atj, i, j =

1, . . . , m , define

[ m m ~|

^ a ( - , i X / , . . . , ^ a / , m x , -

,--i fei J
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Then

-^ I I A I I o o l l ^ l l l ,

where ||A||i is the operator 1-norm of A:

|| A ||i =max

Consider the linear space X* = {[x*,... ,x*m] : x* e X* i = 1,... , m) and for

Then X* is a Banach space.
For x* = [x*,... , x*m ] € X* and anmxm matrix B with complex entries buj, i, j =

1 , . . . , m, we have

where || B ||oo is the operator oo-norm of B :

= max I y^ \bij | : i = 1, . . . , m \ .

We identify X* with the adjoint space of Xq.
For x € X9 and x* e X*, let [x, x*] denote the m xm matrix whose (/, j) th entry

is (x;, x*>. Then

ll[x.x*]||i < llxlUllx'lli.

Also, for mxm matrices A and B with complex entries, we have

[xA,x*B] = B"[x,x*]A,

where BH denotes the conjugate transpose of the matrix B.
For T e BL(Xq), let T : Xq -*• Xq be denned by

T[x, xm] = [Tx,,. . . ,Txm].

Then T 6 BL(Xq) and HHU = HTU*,. It is easy to see that

[Tx, x*] = [x, Tx*], x e X , , x ' € X ; .
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Also, if A is an m x m matrix with complex entries, then

Let</>i,... , 4>m be a basis of the spectral subspace R(P) associated with the operator
T and the cluster A C f f ( T ) \ {0}. Let (p*,... , <p*m be the basis of R(P*) such that

Consider

± = [</>!,..., 4>m] € X and £ = [<Pl...,<p*JzX*.

Then [0,0*] = Im, where lm is the mxm identity matrix. Let <J>9 = J_q<j> and
<&* = K_q(p*. Then ft gives an ordered basis of R(Pq) and ^ * gives the ordered
basis of R (P*) such that

Also, | | * ; || , = ||^*||,.
By analogy with the accelerated fixed-slope Newton scheme for approximating a

nonzero simple eigenvalue A of T, we consider such a scheme for approximating the
given cluster A of nonzero eigenvalues of T.

By [9, Theorem 3.5(a)], rankP,,n = rankP, = m for all all large n and all
q = 2, 3, Let {<&,,„,i,. • • , *9,n>m} be an ordered basis of the spectral subspace
R(Pq,n) associated with T,,n and A,,n = o(Tq,n) D Int F. There is a unique ordered
basis {d>; n , , . . . , <D;IBI J of fl(P; „) such that

<*«.»J' *J.»..-> = S'V - ' . ; - 1 m-

Let *,_„ = [*, .„ ,„ . . . , <&,,„,„] e X , and *% = [<&;„,„ . . . . * ;„ ,„ , ] e X*,. Then

It follows that

Since /?(Pgn) is invariant under T,,n, we have

for some mxm matrix L9 „ with complex entries. In fact,
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As the matrix Lq ,„ represents the operator Tgn|S(p?n) with respect to the ordered basis
Qq.n.u • • • . ®q,n,m of R(Pq,n), the spectral decomposition theorem shows that

a(Lq,a) = a(T,,n|R(P,n)) = a(Tq,n) n Int T = A,,H.

If z € p(Tqn), then it is easy to see that

(lq,n - zlqr
l*q,n = ®q,n(Wn - zlmyl and

We define J8f,,„ : X? -* X, by

and the block-reduced resolvent E, iB : X? ->• X? associated with T,n and Aqn by

, - z/m)-'rfz, x € X,.

(2.1)

*• 2ni

Then by [8, Proposition 1.1], we have

(i) The operators Tg „, Pq n, Jf?-n and E,,n commute;

(iii) £,,„£,,„ = 0.

Proceeding exactly the same way as in the case of a simple eigenvalue treated in
[10], we obtain the following fixed-slope Newton scheme of order q: for a fixed n
large enough and a fixed q = 2, 3 . . . ,

LJW := Lq,n, ^ \ := * ? „ and for; = 1, 2 , . . . ,

Since P9 n E?,n = 0 for all;' = 1,2,..., we have
so that

Let *«>„ = [4>«i,p . . . , <!>«)_„] and 09
0] „ . . . , 0«> m denote the first components

of <&£,„ . . . , *y>im, respectively. Then the first row £«>„ = [ 0 ^ , , . . . , 0«>iM] of
the <7 x /n array <t>̂ ' 'n e Xg is supposed to approximate a basis of the spectral subspace
R(P) associated with 7\ and the weighted arithmetic mean of the eigenvalues of the
m x m matrix L^n is supposed to approximate the weighted arithmetic mean of the
eigenvalues of T belonging to A.

P d)^' = P AW"') = . . . — P * = d>
— q,n—q,n —q,n—q,n ±-q,n—q,n —q,n'
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3. Error estimation

We first consider the case when min{|A| : A. e A} > 1. Then the curve F
isolating A from the rest of the spectrum of T and from 0 can be so chosen that
min{|z| : z e T} > 1.

LEMMA 3.1. Suppose that min{\X\ :Xe A] >e > 1. Let cx = maxz6r \\(.T-zl)~l\\

and consider constants C2, C3 ensured in Proposition 2.1.

(a) Then for all q = 2,3,...,

< max J l , ^ ^ - 1 ||0||oo,
2TT J ' - "

forn = 1 ,2 , . . . ,

- <I> ||oo < C—-— for all large n,

where C = c,C2C3max ( l , l(T)cJ2n\((UT)/2Tt)\\<b\\0O)2\\(b*\\\ and

J C\||*,,„IU||*;„||, /or all large n.

(b) / /M, , n = [*,, *;_„] anrf A ĝ,n = [$ , ,„ , * * , ] , /Aen ^ , n M 9 , n - • lm as n -> oo,
uniformly in q = 2,3,

PROOF. We can assume that min{|z| : z e F} > e > 1.
(a) S ince ^ = J_q^ = [Jq4>\,..., Jq<pm], the (j, i) th en t ry of the qxm a r ray <S>_q

is given by

Sj-i4>i = - — : /
2ni Jr

(T-zI)-l4>i j
— rfz, 7 = 1 , . . . , q, i = 1 , . . . , m,

zJ~l

where </> = [ 0 i , . . . ,<pm] and So = P . Since 0, € 7?(P), i = 1 , . . . ,m and
|z| > e > 1 for all z € f, we see that

||*,||oo < max{l, | | 5 , | | , . . . , ||5,_,||}||0||oo < max

Next,

Jl, ^ ^ - j MU

u ..., (T<n) - Tq,n)Jq<t>m],
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where for i = 1 , . . . , m,

[9]

2n Jr
A'T f

~2Wr

pt = [A*S,_,0,,O.... ,0]' ,

v± - „ , [T(T-A 9 f

2H Jr z«
Ldz

^dz

Hence

-

The bound for ||P,,n H. is immediate. Also, since O
enough n by Proposition 2.1, we see that

G /?(Pg) = /?(P(
g
n)) for large

p <D - 4>
— 9,n—9 —g

.- —q '—q

= / (T - zl )-'(T(n) - T

= / (T —zl )

W - zl

(" )—T

For z e T, we have

Employing the bound for ||(T(
9
n) — X 9 n )^ 9 | | o o given earlier, we obtain the desired

bound for ||P_nfJ> — *J|oo-
By the definition of S9,n and Lq_n, we have

Hence the bound for ||S9n||oo follows,
(b) We have
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by (a) above. If || A2
n \\ < e2, then for all q = 2, 3 , . . . ,

As (|| An ||) is bounded and || A^ || -+ Oasn -> oo.it follows that \\NqfnMgin—Im\\i -> 0
as n —• oo, uniformly in g = 2, 3 , . . . .

We recall from [10, Theorem 3.2] that in the case of a simple eigenvalue, that is,
when m = 1, the initial choice of an eigenvector <l>9„ of T g n corresponding to its
simple eigenvalue kq „ is made so that the first component <pqn of 4>9n satisfies

0<d< \\<t>qJ\ <c

for some constants c > d > 0, independent of q and n. It was shown in [10, Section 4]
that such a choice can be realized in practice when Tn is a finite rank operator. In order
to be able to implement a refinement scheme for a cluster A of eigenvalues of T, we
propose a normalization of a basis of R(Pqn) (and not just of its first components),
which is akin to orthonormalization of a linearly independent set in a Hilbert space.

THEOREM 3.2. Lef min{|A| : X e A] > e > 1. Suppose that an ordered basis given
by *,_„ = [^Yn.i, • • • , Qq.n.m] of the spectral subspace R(Pq,n) associated with T , n

and Aqn is so chosen that

(0 II*,.JIoo < c and
(ii) for i = 1 , . . . , m, dist(4>9,„,,, span{<J>gn,A : k = 1 , . . . , m, k ^ /}) > d > 0,

/o r a// /arge n, a// q = 2, 3 , . . . a«fif iowe constants c > d > 0 independent of q
and n.

l*tMq,n = [*,,<]>;„],*,,<„) = *,A*-J flm/L,.^, = [ T ( ; ^ g ( n ) , O ; j . Then
[^9 ( n ) ,^* „] = /m and f/iere « a positive integer n\ such that for all n > nh all
q = 2 , 3 , . . . a n d y = 0 , 1 , . . . ,

O ,.() ^ . ^ [b\\(T-Tn)"\\Y ,

for some constants a and b, independent ofq,n andj.

PROOF. By part (b) of Lemma 3.1, the matrix Mq^n is nonsingular for all large n
and all q = 2, 3, Hence &_q (n) is well-defined. Clearly

Let us consider the sequences

i II,), (ll*;,Jli) and
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Since Nq,nMq.n -+ lm as n -*• oo, uniformly in q = 2, 3 , . . . by part (b) of
Lemma 3.1,

, l l , ** , ] | | , < 2||*,,(1|U|*;||1 < 2c\\£

Hence the sequence (||A/~J||i) is bounded uniformly in q and n.
Next, Mg,n = [O9, O* „] with Og = [<&,,,,... , d>,,m] and

a>* = rd>* 0* 1

so that

l l ^ . n | l . . |

Now fixy, 1 < 7 < m. We have

so that for each fixed i = 1 , . . . , m,

, j , *;,„.,-> | dist (<&,,„,,, span{<D,,n>, : t = 1 , . . . , m, k ^ i})

by our assumption. Thus for each i = 1 , . . . , m,

rfK*^.*;«,i>l < l|P,.-*wll» < IIP^IIooll^jlloo < l|P,.nllooll*,lloo.

Hence

i=\

Since ||Pg,n||oo < l(r)C2/2n and (||09||oo) is bounded uniformly in q = 2, 3 , . . . by
part (a) of Lemma 3.1, we see that the sequence (||Mgn|| i) is bounded uniformly in q
and n.

Further,
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Hence the sequence (||4>; J | , ) is bounded uniformly in q and n.
As the sequence (Hffc, „ lloo) is also given to be uniformly bounded in q and n, part

(a) of Lemma 3.1 implies that the same holds for the sequence (||Sg,n||oo)-
Let us now consider the case j = 0. We have

3O = l l^ g "^ 9 i n £.q,n—q'"q,n\\°o

by part (a) of Lemma 3.1. Also,

I — fm — J —I

= [(T(n) — T )<t> , <I>* ] + [T

Since by part (a) of Lemma 3.1,

II(I(,n) -! , ,„)*,,(„)lloo = II(I(,n> - ! , , „ )* ,Af-J l loo 1

and since the sequences (||M~il|,), (!!*;_„||i) and (| |T9n| |) are bounded uniformly
in q and n, we see that there is a positive integer n0 such that for all n > n0 and all
q = 2, 3 , . . . ,

for some constant a independent of q and n.

As ||*,j(n)||oo < H*,llool|Af-iHi, we see that the sequence (||*,i(n)||oo) is bounded
uniformly in q and n. Let b be a positive constant such that

II*;.,,||, < b and HS^Hoo (1 + ||*_,i

for all large n and all q = 2, 3, . . . . Since ||T<"> - TqJU = \\(T - Tn)"\\ - • 0
as n -*• oo, uniformly in q = 2, 3 , . . . , there is a positive integer «, such that
II(T - rn)9 | | < \/b for all n > n, and all ^ = 2, 3 The rest of the proof is the
same as given in [10, Theorem 3.2].

COROLLARY 3.3. Let the assumptions and notations of Theorem 3.2 hold. Let
k denote the arithmetic mean of the eigenvalues in A, counted according to their
algebraic multiplicities, and let (p = [ 0 , , . . . , <pm] give a basis of the corresponding
spectral subspace of T. Define

; j = - L t r a c e LWJ , ; = 0 , l , . . . ,
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and let ^q\ denote the first row of§fi\. Then for all large n, all q = 2,3,..., and

^ C ^i \\(TTnyT\\ {bUT-Tn)"\\Y

for some constants a and b, independent of q, n andj.

PROOF. Noting that min{|X| : X e A) > 1, we obtain R(Pq) = R(Pq
n)) by

Proposition 2.1 for all large n and all q = 2, 3 , . . . , for which we also have

a(T*") n intr = or(T,) n int r = A .

Hence LqM = [T^'fl^,(„>. f£g,J ' s the matrix representation of the operator T£° | ̂ pj-i)
with respect to the ordered basis given by Qq (n) and X = (l/m) trace L9,(n). Thus

Also, since <(>M~l
n is the first row of <J>9 (n) and

we obtain the desired results from Theorem 3.2.

In order to treat the case when min{|A| : X e A] > € and 0 < e < 1, we let
a = 1/e, A = {aX : X € A} and consider the scaled operators T,, t , „, Tq

n) and the
corresponding spectral projections P,, P,,„, P^1', respectively as given in [9, Section 3]
and [10, Section 3].

Note that if Dq : Xq -> Xq is given by

Dq[xu . . . , x , ] ' = [ x i , a j : 2 , • • • , a 9 " " 1 * , ] ' , [ x , j r , ] ' € X , ,

then ̂  fl gives a basis of /? (P,) if and only if 3> q — D_~l O q gives a basis of /? (P9), and

<I>* gives a basis of /?(P*) if and only if O? = ^ 9 ^ * gives a basis of /?(P*). Also,

[<kq, **,] = [*,>**,]• Similar results hold for /?(P,,B) and R(P(
q

n)). If E,.. is the
block-reduced resolvent associated with Tq ,„ and A? n with respect to the basis *,_„,
and E9>n is the block-reduced resolvent associated with Tq%n and A9,n with respect to
the basis 4>g „, then it follows that

hLq-

A l s o , let 4> n = D <I>* n.
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Consider the fixed-slope Newton scheme corresponding to the scaled operators:

:= aLq,n, §Wn := D ^ * ^ and f o r ; = 1, 2 , . . . .

In exactly the same way as in [10, Lemma 3.3], we see that

for j = 0, 1, In particular, the first row of the scaled iterate 4^'n is the same as
the first row of the iterate ®^n-

Hence we obtain error estimates similar to those given in Theorem 3.2 and Corol-
lary 3.3 if min{|A.| : X e A} > e, where the positive number e may be less than 1.

4. Implementation and numerical examples

In this section we show how the refinement scheme (2.1) can be implemented
when each Tn is a bounded operator of finite rank and we illustrate this procedure by
considering multiple eigenvalues of an integral operator. We also demonstrate how
a basis of the spectral subspace associated with T,n and A,n can be chosen so that
each element is bounded and is bounded away from all other elements as required in
Theorem 3.2.

As in [10], we assume that the rank of Tn < n and

Tnx = (x,x*A)xn,i -\ + (x,x*Jxn,n, x e X.

We use the maps Fn, Gn and F,,,, and the matrix \q_n introduced in [10, Section 4].
Further, define £„ : X_ - • C x m and Gn : Cn*m ->• X_ by

F n x = [Fnxu . . . , Fnxm], x_= [xi,... ,xm] € X_,

Gnu = [Gnuu... ,Gnum], u = [«i , . . . ,wm]eC"<m.

We have seen in [10] that the nonzero eigenvalues of the finite rank operator Tq „
and of the qn x qn matrix Aq ,„ are the same. Thus we choose a set A,n of nonzero
eigenvalues of A,n whose total algebraic multiplicity is m and which is supposed
to approximate the cluster A of nonzero eigenvalues of T. Let !/,_„_, Uq,n,m e
O" constitute an ordered basis of the spectral subspace of A,n associated with its

https://doi.org/10.1017/S1446181100011883 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100011883


238 Rafikul Alam, Rekha P. Kulkarni and Balmohan V. Limaye [15]

eigenvalues belonging to Aq „. Since this subspace of C" is invariant under A9n, we
see that if Uqn = [£/,,„,,,... , Uq<n,m] e O"xm, then

for some mxm matrix 6 , , a with complex entries. Since 0 £ A,,n, the matrix ©,„
is invertible. Next, there is a unique ordered basis Vq<nA,..., Vqjlm of the spectral
subspace of A"n associated with {kqj, : Xqn e A9 n} such that

{ U q , n J , Vq,n,i) = V"niUq,nJ = S i j , i,j = 1 , . . . , m .

K V — F V , V 1 <= Cinxm

Hence

If

where M, € C x m denotes the first n rows of ^/ , u2 € C"xm denotes the next n rows

of U_qn and so on, define

-i-q.n

9 - 1

(A; G u,)@~J~l,... , > (AJ G u
\—n—n—II q,n / , \—n—n—q

and

4>* = F* V
—q,n ±-q,n—q,n'

t O g n = [*,,„,!, . . . ,<&q,n,m]. Then it can be seen that <!>,,„,,,... ,*, ,„,„ constitute
an ordered basis of the spectral subspace R(Pq,n) of T,,n associated with A,tB and

so that
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In fact, if **_„ = [*;,„,„ • • • , *; .„.„], then <t>* n,,... , <t>* nm constitute the unique
ordered basis of R(P*n) satisfying [$ 9 i B , ^ , n ] = Im- It is easy to see that

!,.„*,.„ = *,.„©,.» and i ; n o ; n = o;ne»n.

(Compare the case of a simple eigenvalue, that is, when m — 1, treated in [10].)
Let || || „ be a norm on C such that | |FJ | < a and ||Gn|| < yS for some constants

a and fi independent of n. We remark that the boundedness of the sequences (|| Fn ||)
and (||Gn||) depends on the choice of a norm || ||n on C and, in general, this choice
will be dictated by the given norm || || on the Banach space X. We refer to [8] for
various examples of this kind.

For£/ = € C ' w i t h i i , , . . . ,uqinC,let\\U\\oo = max{||M,||B,... , | |M,| |B}

andfor i / = [ [ / , , . . . , Um] € C"1*1", let \\U\\c = max{|| t / , | U . . . , | | I / m | U .

THEOREM 4.1. Suppose that the sequence (||_£/jj|oo) is bounded uniformly in q
and n, and for all large n, all q = 2,3,... and all i = I,... ,m,

dist( [/,,„,,, span{ Uq,n,k :k=l,... ,m,k^ i})>8

for some constant 8 > 0. Then

(i) the sequence (\\Q>_q nlloo) is bounded uniformly in q and n; and
(ii) for alii = 1 , . . . , m, d i s t (* , , B , , - , span{<t>9 „,* :k = \,... ,m,k^i\)>d

for some constant d > 0.

PROOF. Recall that | |Fn| | < a and ||GB|| < p. Let || f / ^ JU < C for all large n and
all <7 = 2, 3 , . . . . Choose n so large that || Aj;|| < 1/2. Then

IIA^IU = max 1, g II Ai||||FB||IIC|| < max

<max{l ,2a )3( l + t)},

where || An|| < t for all n. Let £ = max{l, 2a^8(l + t)). First we find a bound for
| |09,n | | i . LetS,,; denote the ( / , j ) th entry of ©q,n. Since P^q^Hq „ = U^n^q.n, we see
that for each fixed j = I,... ,m,

and hence
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Thus

showing that ||©g,n||i < m^C/S — y.say. Let

i { | | \i € a(@

for all large n and all q = 2, 3, Then Lemma 4.2 of [8] shows that for all large n
and all q = 2, 3 , . . . ,

m(mmym —e
m)

1"^~1" " = n, say.

Hence

q-\ q-\

and for all large n with || A^|| < l/(2^2), we have

ll*,,lloo < ficr,1^^ < ificnii +

Thus the sequence ( | | ^ g „ lloo) is bounded uniformly in q and n.
For each fixed i = 1 , . . . , m, and ak e C for k = 1 , . . . , m, /: ^ /, we have

5 < II £/,,„.,• - <2l t/,,n,l «m Uq,n.m lloo

l ^ . n , ! am*, . n ,m)l loo

.n.l am*,,n.mlloo,

so that

S
dist(<t>9,n,,, span{4>,,n,t : k = 1 , . . . , m, k ^ / } ) > - = d > 0.

Consider the case when min{|X| : X 6 A} > 1. In view of the preceding result, it
is clear that the assumptions in Theorem 3.2 can be realized in practice if we can find
a basis f/9,n,i • • • f/9,n,m of the spectral subspace of A,,n associated with A.q<n which
satisfies the assumptions of Theorem 4.1.

In the case when min{|A.| : X 6 A) > e with 0 < e < 1, we need to consider

the scaled operators T^n and T^n) with a = 1/e. If the scaled basis given by

U_qn = D_~lU.q,n satisfies the assumptions of Theorem 4.1, then for the scaled basis

given by O ? „ = D ~ ' * q „, we have
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(i) lli,,Jloo<c;and
(ii) for each i = 1 , . . . , m, dist(*,,n,,-, span{<t>9ni* : k = 1 , . . . , m, k ^ i)) >

d>0

for all large n, all q = 2,3,... and some constants c > d > 0, independent of
q and n, as desired. Thus in this case we need to have a normalized scaled basis
U_ n = D^lU. „• F°r obtaining such a basis, the only additional requirement is that
a lower bound e for min{|A.| : A. € A} should be available a priori.

Starting with any basis of the spectral subspace of A,n associated with A,n , we
can construct a basis {£/,,„,i,... , Uq,n,m} of this subspace satisfying the assumptions
of Theorem 4.1 as indicated in [8, Theorem 6.2, Section 4].

To illustrate the implementation procedure given above, we consider the space
X = C([a, b\) of all complex-valued continuous functions on the interval [a, b] with
the sup norm. Let T be the integral operator on X given by

Tx(s) = I k(s, t)x(t)dt, x € X, s e[a, b],
J a

where the kernel k is continuous on [a, b] x [a, b]. Note that T is a compact operator
on X. In actual computations, T is replaced by its Nystrom approximation f given
by

~ >(:M)k(s,tjM))x(tjM)), xeX, se[a,b],

where M is very large. Here the nodes t\M),..., tjM) in [a, b] and the weights

w\M),... , WjM) in C are assumed to give a convergent quadrature formula

xeX.

Thus in practice, a nonzero eigenvalue A. of T having algebraic multiplicity m is
replaced by a nearby cluster of nonzero eigenvalues of f having total algebraic
multiplicity m.

Consider the kernel k : [0, 1] x [0,1] -> R given by

k(s, t) = { s - t/2, if 0 < s < t < 1
t/2, if 0 < t < s < 1.

Then for each j = 1 , 2 , . . . , 1/(2/ — l)27r2 is an eigenvalue of T of algebraic
multiplicity m = 2 and ascent 1 = 2. We use the same finite rank approximation Tn

of T as in [10, Section 5].
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We take M = 500 and give numerical results for the largest and the second largest
eigenvalues of T. The initial basis is normalized as required in Theorem 3.2. Let A.
denote the largest eigenvalue l/n2 of T. Also, let

and

where L^n and <^ J, are obtained from the q th order fixed-slope Newton scheme.
Let fx denote the second largest eigenvalue 1/97T2 of T and /l^J, and sjjl denote the
corresponding quantities for /x. The following computations were performed on CDC
CYBER-180/840 with an accuracy of 15 digits.

For the implementation of the q th order scheme for a cluster of eigenvalues of
total algebraic multiplicity m, the size of the matrix eigenvalue problem solved for
initialization is qn. Also, in each iteration a Sylvester equation of the form

AW-WL = C

is solved, where A and L are matrices of order qnxqn and mxm, respectively.

TABLE 4.1. Error estimates for q = 1, n = 30 {qn = 30)

j
0
1
2
3
4
5

1
9
3
9.

k-
85
10
17

6.22

JO) |
" Al,30l
x 10"5

x IO-8

x IO-'2

x IO-'5

7
i

20
9.01
1
1.

17
25

rl,30

X

X

X

X

io-2

10~4

io-7

io-'°

IM-
9.79
2.74
7.25
6.29
4.68
1.28

- /
X

X

X

X

X

X

io-5

io-7

io-'°
io-'2

io-14

io-'4

5

1.24
1.43
1.54
1.63
1.69
1.67

1,30

X

X

X

X

X

X

io-'
io-3

io-5

io-7

io-9

lO-io

TABLE 4.2. Error estimates for q = 2 and 3, n = 5 {qn = 10 and 15)

j
0
1
2
3

1
1

I*-
56
11

1.06
9.86

- ^-2.51
x 10"4

X 10"7

x 10-'°
x 10"14

9
2
3

93
12
68

1.06

X

X

X

X

)

10-3

10-5

io-8

lO-io

1*-
8.03
1.04
1.95

— >
X

X

X

10"6

IO-9

10-13

3
7

32
46

2.43

r3°i
X

X

X

10
10
10"

4

- 8

-11

Table 4.1 gives error estimates for q = 1 and n — 30. The size of the matrix
eigenvalue problem solved for initialization as well as the size of the coefficient
matrix A in the Sylvester equation solved in each iteration is qn = 30.

Table 4.2 gives results for the largest eigenvalue X when n = 5, and q = 2 and 3.
Here the eigenvalue problems solved are of sizes qn — 10 and 15, respectively.
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TABLE 4.3. Error estimates for q - 2 and 3, n = 10 (qn = 20 and 30)

243

j
0
1
2
3
4

1
7
1

M-
.76
.12

5.46
4.
1.

95
11

- /
X

X

X

X

X

#iol
io-5

io-7

io-10

io-12

io-14

2
j

17
1.25
6
1

7.

93
21
87

2,10

X

X

X

X

X

io-2

10"4

io-7

io-8

10""

1/*-
8.36
5.59
3.95

- /
X

X

X

*3.iol

10"6

io-9

io-12

2.
3.
2.

i

72
21
87

0)
3,10

X

X

X

io-3

io-6

io-9

Table 4.3 gives results for the second largest eigenvalue n when n = 10, and q = 2
and 3. Here the eigenvalue problems solved are of sizes qn = 20 and 30, respectively.

From these tables, it can be seen that employing higher order refinement schemes
can be quite competitive.
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