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FRONTS, DOMAIN WALLS AND PULSES IN A
GENERALIZED GINZBURG-LANDAU EQUATION*

by JINQIAO DUAN and PHILIP HOLMES

(Received 17th February 1993)

We discuss the existence and non-existence of front, domain wall and pulse type traveling wave solutions of a
Ginzburg-Landau equation with cubic terms containing spatial derivatives and a fifth order term, in both
subcritical and supercritical cases. Our results appear to be the first rigorous existence and non-existence
proofs for the full equation with all possible terms derived from second order perturbation theory present.

1991 Mathematics subject classification: 58F39, 34C27, 34C35, 34C37, 35Q55.

1. Background and definitions

One way to investigate the dynamics of a pattern formation system modeled by a
partial differential equation (PDE) of evolution type, with a single space variable, is via
the traveling frame reduction. Introducing the traveling coordinate z = x — ct with wave
speed c, we get a boundary value problem for a system of ordinary differential equations
(ODE). The critical points of these ODEs correspond to the plane waves or the zero
amplitude (trivial) wave of the original PDE. The connections, or transitions, between
critical points carry important dynamical information. These connections are a subclass
(i.e., uniformly translating structures) of the so-called "coherent structures" (e.g. Saarloos
and Hohenberg [29, 30]). A heteroclinic connection between the zero amplitude wave
and a plane wave is called a front. We call a heteroclinic connection between two
different plane waves a heteroclinic domain wall. We call a homoclinic connection from
a plane wave to itself a homoclinic domain wall. A homoclinic orbit from the zero
amplitude wave to itself is called a pulse. For example, in binary fluid convection (see
below), these connections correspond to the "boundary layer" between the coexisting
conductive state and periodic, confined convective states.

Several studies have been made of fronts, domain walls and pulses in the classical or
cubic Ginzburg-Landau (GL) equation:

See Holmes [24], Sirovich and Newton [34], Landman [27], Bernoff [3], Doelman
[11, 12], Schopf and Kramer [31] and references therein, for example. Recently,
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78 JINQIAO DUAN AND PHILIP HOLMES

Eckmann and Gallay [16] have proved the existence of heteroclinic domain walls
(which they call fronts) connecting stationary plane wave solutions for (1.1) with
bl = b2 = O. They appear similar in nature to our solutions shown in Figure 6
(Section 7).

In this paper we discuss the existence of front, domain wall and pulse type solutions
for a generalized Ginzburg-Landau equation (Doelman [10]), which is a generic
amplitude equation describing the nonlinear evolution of patterns near criticality.
Specifically, we consider the equation

\\ \u\*u, (1.2)

where xeR1, t>0 and the over bar denotes complex conjugate. The coefficients aj,bj
are real. Observe that the real coefficients of the diffusive and quintic terms can be
reduced to +1 by suitable rescaling; the former must be positive for well posedness, and
the latter negative for global existence of large amplitude solutions. Schopf and
Zimmermann [32, 33] also derived (1.1) in the context of binary fluid convection, and
proposed the addition of higher order terms in the degenerate case when a2 changes
sign.

The two terms |U|2M,,., u 2 ^ appear naturally in the asymptotic derivation. Deissler and
Brand [9] showed numerically that these two terms can significantly slow down the
propagating speed of pulses and also cause the nonsymmetry of pulses. Duan and
Holmes [15] proved a sufficient condition, \b3 — bA\<2, for global existence of solutions
to the Cauchy problem for this equation. This condition appears to be sharp: see Duan,
Holmes and Titi [14]. However, we observe that restricted classes of bounded solutions,
including traveling waves, may exist outside this parameter range. We remark that the
nonlinear Schrodinger (NLS) equation describing the nonlinear evolution of water
waves (Hasimoto and Ono [22], Craig et al. [8]) is a special integrable case of the GL
equation.

In a special case when a3 = a4 = fc3 = fc4 = 0, equation (1.2) becomes the so-called
quintic GL equation

u, = aou + {l +ibl)uxx + (a2 + ib2)\u\2u-{\ +ib5)\u\4u. (1.3)

Thual and Fauve [36], and Fauve and Thual [18] discuss pulses for this equation.
Jones, Kapitula and Powell [26] show the existence of certain fronts in the case that bj
are small. Hakim, Jakobsen and Pomeau [21] discuss fronts and pulses (which they call
solitary waves) with wave speed c = 0. Saarloos and Hohenberg [29] discuss fronts and
pulses. Malomed and Nepomnyashchy [28] also discussed, in this special case, fronts
(which they call kinks) and pulses (which they call kink-antikink, or soliton-like
solutions).

For the general equation (1.2), Saarloos and Hohenberg [30] present a framework for
the discussion of front, pulse and domain wall dynamics. Doelman and Eckhaus [13],
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A GENERALIZED GINZBURG-LANDAU EQUATION 79

Theorem 3.4, find some homoclinic domain walls with wave speed c = 0, via Poincare
maps and Melnikov integrals, extending and correcting the work of Holmes [24].

The reduced ODE system is a spatial system since the time variable is absorbed in
the traveling frame coordinate. In order to find connections (fronts, pulses and domain
walls) in this ODE system, topological and analytical methods are available. A
topological quantity, the Conley index for an isolated invariant set, which is a
generalization of the Morse index for a nondegenerate fixed point, could be used to find
such connections, see Smoller [35]. However, it is difficult to construct isolating blocks
in our case. Therefore we use an analytical approach, see Guckenheimer and Holmes
[19, Chapter 4], Holmes [24], Wiggins [37], Jones, Kapitula and Powell [26], Jones,
Kopell and Langer [25], Doelman and Eckhaus [13], and Campbell and Holmes [5].

In this paper, after reviewing the derivation of ODEs for uniformly traveling waves
and their integrable structure in an appropriate limit in Sections 2 and 3, we prove three
main results in Sections 4-6. Theorem 1 gives conditions sufficient for fronts and
domain walls to exist in case ao<O and generalizes the earlier result due to Jones et al.
[26]. Theorem 2 gives conditions sufficient for the existence of domain walls in case
ao>0 and generalizes the earlier result due to Doelman and Eckhaus [13]. Theorem 3
gives conditions sufficient for the existence of fronts in case a0 > 0 and Theorems 3 and
4 also give conditions sufficient for non-existence of domain walls and pulses. We
conclude and discuss some implications in Section 7.

2. Traveling frame reduction

We first seek the plane waves of the form

(2.1)

with r, k and <o real and z = x — ct. When interpreting the results to follow, we must
recall that typically the parameters a,- and bj are set by the specific application (with a0

playing the role of a distinguished bifurcation parameter), and that the frequency w,
wavenumber k and wave speed c are adjustable, although only two of them are free, in
view of conditions such as (2.3) below. Thus, our task will be to show that plane waves
and connections exist for certain values or ranges of values of, say, co and c.

Substitutions of (2.1) into (1.2) yields

r* + l(b3-b4)k-a2-]r2 + k2-ao=0, (2.2)

co=-ck + blk
2-[b2+(a3-a4)k]r2 + b5r

4 (2.3)

and solving (2.2) for r we get

(2.4)
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We see that, if \b3 —ft4|^2, the amplitude r goes to infinity as k increases. Therefore we
frequently assume the global existence condition \b3 — b4\<2. In order for the square
root sign to make sense, we assume ao> — af/4. In this case, the plane waves exist for k
in a bounded interval [/c,ower, feupper], where

-ao{b3-bA)2+a2
2+4a0

, _ a2(b3-bA)-2J-ao{b3-bA)
W r - (b3-bA)2-4

When — al/4<ao<O, the zero amplitude wave is linearly stable, while it is unstable
when ao>0. In this paper we initially assume that ao<O, since this seems to be the most
interesting case, for in it we have a potential competition between the stable zero
amplitude wave (r = 0) and the large amplitude plane wave (r = r0); see the next section.
However, we also discuss the case ao>0. We also assume that a2>0, otherwise the
cubic GL equation suffices for physical modeling close to the onset of instability (see for
example, Schopf and Zimmermann [32, 33].

We now seek more general, non-periodic traveling waves. Setting u = Be~"°' with
£(z) = r(z)e'J*k(I"", z = x — ct as above, and inserting equation (1.2), we first get,

\ \ \B\'iB. (2.7)

We generally do not have symmetry c-* — c and z-* — z, but, if a3 = a^ = b3 = bA = Q, i.e.,
for the quintic GL equation (1.3), this symmetry does hold. After some manipulations,
we obtain the three dimensional system

r'=(\ + b\)s, (2.8)

bit>5)r
5, (2.9)

' = [b1c-2(l+b2)k']s/r+a0bl-(o-ck+(a2bi-b2)r
:i

'>l)'-4, (2-10)

where ' = d/dt,T = z/(l+bl) and s = r'/(l + bl). The fact that a complex, second order
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(four dimensional) ODE reduces to a three dimensional flow follows from translation
invariance of the original PDE (1.2). We note that the "wavenumber" k is now a
dependent variable which must be solved for, but that the wave speed c and frequency
co retain their character as adjustable parameters.

The (r,s,k) system (2.8)-(2.10) has a singularity at r = 0. In order to overcome this
difficulty we introduce the "blow up" transform or cr-process (Arnold [2]). Letting

v = s/r, (2.11)

we compute v' = s'/r—(l + b\)v2 and (2.8)-(2.10) becomes the desingularized (r,v,k)
system

r'=(l+bl)rv, (2.12)

(2.13)

-2(1+

-b.y. (2.14)

This system has the invariant plane r = 0. Thus, by the a-process, a singular point is
transformed to a (singular) invariant plane.

On the invariant plane r = 0, the (r,v,k) system reduces to

cv-(l+bl)vl, (2.15)

- w - c / c . (2.16)

This system does not depend on a3,a4,b3>b4. (nor on b2 and b5). As in Jones, Kapitula
and Powell [26], we can show that this (v,k) system (2.15)—(2.16) characterizes the
behavior of solutions of (r,s, k) system as r-»0. We will need this characterization when
looking for fronts connecting the zero amplitude wave and plane waves, and pulses
connecting the zero amplitude wave to itself.

3. Integrable structures, symmetry and critical points

In the following, we assume that bl,b2,bs,a3,a4. are all small and denote

e = (bl,b2,a3,a4>b5). (3.1)
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For B = 0, equations (2.12H2.14) reduce to

r' = rv, (3.2)

V'= -ao + k2-cv-v2-a2r
2 + (b3-b4)r

2k + r\ (3.3)

k'=-co-(c + 2v)k-(b3 + b4)r
2v. (3.4)

If, in addition, b3 + b4 = 0, we obtain

r' = rv, (3.5)

V'= -ao + k2-cv-v2-a2r
2 + (b3-b4)r

2k + r4, (3.6)

k'=-co-(c + 2v)k. (3.7)

We remark that if co = 0, the plane k=0 is invariant for the second system above. This
observation is useful in seeking critical points for the desingularized (r,v,k) system for
B,b3 + b4 and co small enough. The zero amplitude wave critical points are
(0, v ± (e, b3, bA, co, c), k * (e, b3, b4, co, c)) with

»±(0,0,0,0,c) = -c±Jc2-4a0
2

k ±(0,0,0,0,^ = 0.

By linear analysis, the critical point (0,v+,k+) has a one-dimensional unstable manifold,
and (0,v~,k~) has a one-dimensional stable manifold, when — a\/A<ao<0. The
associated eigenvectors are normal to the {r=0} plane, for any c. When restricted on
the invariant plane {r = 0}, (v+,k+) is a sink and (v~,k~) is a source, for any c.

For a0>0, this pair of critical points exist if |c|>2x/a^. For c>2y/a0, (0, v+,k+) is a
sink and (0,v~,k~) has a one-dimensional stable manifold with the associated eigenvec-
tor normal to the {r = 0} plane. For c<—2sfa0, (0,v~,k~) is a source and (0,v+,k+)
has a one-dimensional unstable manifold with the associated eigenvector normal to the
{r = 0} plane. When restricted on the invariant plane {r=0}, (v+,k+) is a sink and
(v~,k~) is a source for \c\>2yfa0.

We also have plane wave critical points (ro,0, k0) and (rlt0, fcj, where
r0 l(e,b3,b4,co,c) and k0 ^s,b3,bA,a>,c) satisfy (2.2) and (2.3). In particular,

r2(0,0,0,0,c) =
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/co(0,0,0,0)c) = 0,

M0,Q,0,0,c) = 0.

We refer to r0 as the large, and r, as the small, amplitude plane waves, respectively.
Linearizing (3.5H3.7) at (r0,0, k0) we obtain the eigenvalues

where

y = a\ + 4a0 + a2 Ja\ + 4a0,

and the corresponding eigenvectors (ro.A^O), (0,0,1). By linear analysis in (r,i;,J!c) space,
for — a\IA<ao<0, (ro,O,ko) has a 2-dimensional stable manifold and a one-dimensional
unstable manifold for c>0; one-dimensional stable manifold and 2-dimensional unstable
manifold for c<0; one-dimensional stable manifold, one-dimensional unstable manifold
and one-dimensional center manifold for c = 0. However, when restricted to the plane
{/c = 0}, (ro,0,/co) has both one-dimensional unstable manifold and one-dimensional
stable manifold, for any c. At (r^O./c,) the linearized operator has a pair of complex
conjugate eigenvalues and one real eigenvalue for any c. More precisely, (r^O./c^ is a
stable focus for c>0; an unstable focus for c<0, and has a pure imaginary pair of
eigenvalues and a zero eigenvalue for c = 0.

For ao>0, there is only one plane wave critical point (ro,0,fco) as r\ is negative.
However, it has the same linearized structure as in the —a| /4<a o <0 case.

The global structure of the flow of (2.12)—(2.14) for small E, b3 + bA and a> can be
deduced from that for e = 0, b3 + bA = 0 and a> = 0. If additionally c = 0, then the two
functions

M = r2k (3.9)

are constants of motion, for we compute

E'=-(c(v2 + k2) + cok)r2, (3.10)

M'=-(co+ck)r2. (3.11)

In fact for fc3,b4#0, as Doelman and Eckhaus [13] observe, one can modify the
integrals as follows

b3 + bA)£, (3.12)
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)

to obtain

E'= -(c(v2 + k2)+cok)r2 -b^(co + ck)r*, (3.14)

M'=-(co+ck)r2, (3.15)

which also vanish when co = c = 0.
We may summarize the consequences of these local and global results in the phase

portraits shown in Figure 1 (w = c = 0). In Figure 1 we see examples of the three classes
of solutions (fronts, domain walls and pulses) "in embryo". See also Figures 2 and 3 for
phase portraits when <o = 0 but c>0. The case c<0 follows from that for c>0 via the
symmetry

(r,v,k,w,c,z)-*(r, -v,k, -co, -c, -z). (3.16)

In the remainder of the paper we will use these integrable structures to investigate the
behavior for s, b3 + bA, co small, and for appropriate choices of wave speed c.

4. Fronts and domain walls: ao<0

In the a0 < 0 case, there are various possibilities of connections between any two of
the zero amplitude wave r = 0, the large amplitude wave r = r0, and the small amplitude
wave r = ru as the phase portraits of Figure 1 suggest. Although the small amplitude
plane wave is dynamically unstable (see Doelman and Eckhaus [13], p. 255]), the
existence of connections to and from it does indicate how solutions started near this
wave might evolve: see Section 7.

Our first result summarises much of what we know about connecting orbits and
includes earlier results such as those of Jones, Kapitula and Powell [26].

Theorem 1. Let e = (bi,b2,a3,a4,b5), b3 + b4 and co be small enough. Then,
(1) For aoe(—\a\, — r^al) and any c>0 there is a heteroclinic domain wall connecting

the large amplitude wave (z-* — co) to the small amplitude wave (z-»±oo).
(2) For aoe( — Y$al,0) and any c>0 there is a front connecting the zero amplitude

wave (z-» — oo) to the small amplitude wave (z-* ± co).
(i) For any aoe(—\a\,0) there exists two locally unique functions c = c(ao,a2)^0,

c = c(ao,a2)^0, with

c —

such that
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( A ) ( B ) ( C )

1.5 -0.05

FIGURE 1 Phase portraits for (r,v,k) system (3.5)-(3.7) on the invariant plane fc = 0 when c = eo = 0:
(A) aoe(-ia2

2, -^a\); (B) ao= - £ a | ; (C) ^ \

( A ) ( B )

FIGURE 2 Phase portraits for (r,v,k) system (3.5H37) on the invariant plane k = 0 when c>0 and co = 0:
(A) aoe(-ial -ha\); (B) ^l

FIGURE 3 g'(co)>g"(co)
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(A) in case (1) above: if c = c, a front connecting the zero amplitude wave (z-> — oo)
to the large amplitude plane wave (z-» + oo) also exists; if oc, a front connecting the
zero amplitude wave (z-> — oo) to the small amplitude wave (z-> + oo) also exists, and

(B) in case (2) above: if c — c, a front connecting the large amplitude plane wave
(z-* — co) to the zero amplitude wave (z-> + oo) also exists; if o c , a heteroclinic
domain wall connecting the large amplitude wave (z-* — oo) to the small amplitude wave
(z—* + oo) also exists.
(4) Analogous results hold for c<0, with the fronts or heteroclinic domain walls

running in the opposite z direction.

Proof. Set 8 = 0, b3 + b4 = <w = 0 and consider the flow on the invariant (r, v) plane
forfc=0.

We first assume aoe(—£a§, —-ha\). For c = 0 there is a homoclinic orbit to r = r0

(Figure 1(A)), which, in view of the expression (3.10) for E' (£ '= —cr2v2 for co = fc=0) is
broken for all c # 0, yielding a structurally stable (transversal) saddle -> sink connection
from r0 to r, for c > 0 (Figure 2(A)) and a source -> saddle connection from rx to r0 for
c<0 (from symmetry (3.16) and Figure 2(A)). This will be used to prove part 1.

We now turn to part 3(/4). We employ a modest generalization of Jones, Kapitula
and Powell [26]. Consider the system

f = rv, (4.1)

v'= —ao — cv — v2 — a2r
2 + r4, (4.2)

c' = 0, (4.3)

on fc = 0, in which we have included the parameter c as a trivial component, thus
permitting a study of parameterized families of manifolds. Let Ws=Ws(r0,0,k0) and
W(0,v+,k + ) , both being dependent on c. They are each one-dimensional when
restricted to the plane fc = 0. Denote the center-stable and center-unstable manifolds as
W" = \JC(Ws x {c}) and WCU = {JC(W x {c}), both being 2-dimensional.

Let S = {(r,v,c):r = rl,v>0} denote a cross section to the flow of (4.1)-(4.3). Since
r '>0 for all 0 < r < r o when v>0, WS and W intersect S once and only once for each c.
Let g'ic^g"^) denote the curves W"nS, WcunS, respectively, which are (at least) C1

smooth. From above (see Figure 1(A)), we know g*(0). We only need to show that there
exists a co>O such that gs(co)>gu(co) (see Figure 3), which will imply the existence of a
c > 0 for which gs(c)=gu(c), in turn implying existence of a front, i.e., the intersection of
W"and W™ at c>0.

Consider a reference plane v=a(r — r0) with oc<0, in the (r,v,c) space. On this plane
the vector held satisfies

v' = [c + a{r-r0)] { (r
2-r\){r + r0)

r' r <xr
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So there exists a cx>0 such that (t//r')<a for c>c^ and re[rur0). On the other hand,
on u = u + ,0<r<r , , we have t/ = r4—a2r2<0 and we note that u+->0 as c-» + oo. Hence
there is a c2>0 such that v+ <a(rl — r0). So there is a co>0 such that gs(c0)>gu(c0), as
claimed. See Figure 3.

For oc, the unstable manifold W of (0,i>+,fc+), the upper zero amplitude fixed
point, lies below the upper branch of the stable manifold Ws of (r^O,^) when restricted
to the fc = 0 plane, and therefore lies in the domain of attraction of ^,,0,*:,) which is a
sink on this invariant plane. This establishes the existence of structurally stable
saddle -»sink connections corresponding to fronts when c>0 and oc (Figure 4(A))
(they are source -»saddle connections for c<0). Part 1, and the oc case of Part 3(A)
of the theorem follow from the fact that (rl,0,k1) is a sink in the full (r, v,k) space for
c> 0 (respectively a source for c < 0) and so these connections are structurally stable and
hence survive small perturbations.

To prove the c = c case of Part 3{A), we additionally need to show that W" and Wcu

intersect transversally at c in /c = 0. We recall the argument which employs differential
forms to show the transversality of stable and unstable manifolds. See Jones, Kopell and
Langer [25]. (For the geometric relevance of differential forms, see Arnold [2] or
Boothby [4]. Let x,y,z be a coordinate system on R3 and let Ws and W be
2-dimensional (center-)stable and (center-)unstable manifolds, respectively, for a dynami-
cal system. Suppose that W* and W intersect and pick arbitrary orthonormal bases
{f\>fi}ASi'8i} f°r {he tangent planes of W and W on their intersection, respectively.
When a 2-form, say dxdy, acts on a basis, we obtain a number which is given by a
determinant with elements from the x or y components of the basis vectors. We
associate a 2-form with a tangent plane via the action on an orthonormal basis. For
convenience, we denote

Pxy = dxdy, P;y = dxdy{f,, f2), p ; , = dxdy(gl, g2);

etc. (— for stable, + for unstable). Hence we associate with the tangent planes to Ws

and W, the two vectors

(p- p- p-\ (p+ p+ p+\
\* xy> ' xz> * yzh \* xy J xz' ' yzi-

Note that each of these vectors takes the same value for any orthonormal bases with
the same orientation (via the right-hand rule). If these two vectors are independent, then
the tangent planes to Ws and W are not coincident or parallel, which implies that W*
and W intersect transversally.

The same argument is true in R2"'1 for n-dimensional (center-)stable and (center)-
unstable manifolds. In this case, however, we need to use n-forms, since each basis of the
tangent planes to these manifolds has n vectors.

We now complete the proof of the c = c case of Part 3(/l).
From (4.1)-{4.3) we compute the evolution equations for 1-forms (i.e., differentials or

variations of first order):
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( A ) ( B )

FIGURE 4 Phase portrait for (r,v,k) system (3.5H3.7) on the invariant plane k = 0 when c>0 and to
(A) aoe(-\a\, -^flf) and oc; (B) aoe(—^al,0) and od.

-3
-0.05 1.5

FIGURE 5 The birth of a saddle-sink connection for ao>0 and c>2s/a^> large enough

( A ) ( B )

Reu Reu

-8
-15

-7
-20 110

FIGURE 6 Behavior of (the real part of) u{x, t) corresponding to (A) a heterodinic domain wall; (B) a front.
These are associated with Figure 2(A) and 2(B) respectively, and show the dependence of u on x at a fixed
time t. Both waves travel to the right, without change of form, as t increases.
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<5r' = i;<5r + r<5t;, (4.5)

Sv' = (4r3-2a2r)8r-{c + 2v)Sv-v8c, (4.6)

be' = 0. (4.7)

We can also get the evolution equations for 2-forms Prv = 5rSv, etc. We only need the
following one.

Fn=-(c + v)Pn-vPn. (4.8)

Note that

Af =(rv, —ao — cv — v2 — a2r
2+r*,0),

the vector along orbits of (4.1)-(4.3), is a tangent vector for both Wcs and Wcu and let

Ai=(8r±,8v±,l)

respectively, denote the second basis vectors for tangent planes of W" and W™. They
are clearly linearly independent and so constitute a basis for each tangent plane. Using
the Gram-Schmidt process we get an orthonormal basis {Af, A*} and we let N > 0 be
the normalization factor. Therefore we have

= Nrv>0. (4.9)

for v>0. Hence, from (4.8), we have

P» = ~{c + v)P* - N r v 2 . (4.10)

Also, W" and Wcu each contain a line of critical points whose tangent vectors are in
the c direction. For any plane containing such a line, the 2-form Prv = 0, which implies
that

Prt->0, as z-f - o o ;

P,;->0, as z-> + co.

Since P r t = 0 at z = — oo, (4.10) shows that initially P*V becomes negative. Moreover, it
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must remain strictly negative for all z since PX'= -Nrv2<0 for all r,v>0 on Prt=0
and hence solutions of (4.10) cannot cross Pr*=0 in the direction of increasing Pr

+
V- A

similar argument applied to P~v yields the conclusion

Pr
+

D<0; P~>0.

From (4.9) we know that P+=P~ and similarly we compute that P+C = P~C. Thus the
two vectors

(P+ p+ p+\
\* rv>l re ? s vc/

and
(p- p- p-\
\* rv> ' re i * vc)

are independent. This implies that W" and Wcu intersect transversally at c = c>0 in
k = 0. By a dimension count, W" and Wc" intersect transversally at c in (r, v, k, c) space.
All of the above calculations were done for e = 0, b3 + b^=0 and <w = 0. Finally, for
sufficiently small and nonzero e, 63 + 64 and co, we merely note that the intersections are
preserved by transversality.

This proves the c = c case of Part 3(A).
Part 2 and 3(B) are proved in an analogous fashion. Part 4 follows from the

symmetry (r, v, k, co, c, t) -> (r, - v, k, - co, - c, -1).
We observe that one can estimate the functions c and c for a0^ —~ha\ by a simple

application of the Melnikov perturbation method (Guckenheimer and Holmes [19,
Chapter 4]) to the system

r' = rv, (4.11)

v' = 2-al-cv-v2-a2r
2 + r4 + a. (4.12)

16

Here a o = —Y%a\ — a.. For c = a = 0 the integral E becomes

6V4- ' " ( 4 1 3 )

and there are saddle-saddle conections from (0,u+,0) to (ro,0,0) and (ro,0,0) to (0,w~,0)
(Figure 1(B)). The preservation of these connections for ao<— j^a\ and ao> — -^a2,
respectively correspond to the critical c and c, above which the fronts or heteroclinic
domain walls of part (3) exist. To estimate c and c we compute

J E'dz= J (-cr2v2 + <xr2v)dz, (4.14)
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which must be integrated along the appropriate unperturbed homoclinic orbit. Since
both orbits lie on the level set £ = 0, from (4.13) we have, for the upper orbit,

and using this in (4.14) and changing the integration variable via (4.11), we compute

. 1 * " * - 5 (-
f4 <*•«

Similarly, for the lower orbit, we obtain

f { ^ y (4.17)

From the usual Melnikov bifurcation results, we therefore obtain the estimates:

8 « 8 (^ 2 , \ ,„,<»
c:c^—7=— = -j=—l-7fl2 + a o ) - (4.18)

8 ' - ' • • ' (4.19)

which are good for small c and for a0^ -rsa\. D

5. Fronts and domain walls: a0 > 0

In the aQ>0 case, we have few possibilities of connections since there is only one
plane wave critical point, which we will continue to call r0, as it is a continuation of the
large amplitude plane wave for a0 < 0.

Doelman and Eckhaus [13, Theorem 3.4] proved the existence of homoclinic
connections connecting the unique plane wave to itself, with traveling speed c = 0. In the
terminology used in this paper, those connections are homoclinic domain walls. They
used the approximate Poincare map and Melnikov integrals as in Holmes [24]. Their
proof can be generalized to the case of non-zero traveling speed c. We therefore have
the following result.
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Theorem 2. Let e = (bl,b2,a3>a^,b5) and co be small enough. If ao>0, then for
coefficients in a subset of (bl,b2,b3,bA,a3,a^,b5)-space, there exists a homoclinic domain
wall connecting the unique plane wave (z—> —oo) to itself (z—• + <»), with appropriate
choice of frequency co and wave speed c.

We now prove the following theorem on the existence of fronts, and nonexistence of
domain walls in case a0 > 0.

Theorem 3. Let 8=(b1,b2,a3,aA,b5), b3 + b4 and co be small enough, and assume
ao>0. Then for c>2^Ja0 and large enough, there is a front connecting the unique plane
wave (z-* — co) to the zero amplitude wave (z-> + oo). For c<—2y/a0 and \c\ large
enough, there is a front running in the opposite direction. Moreover, for any |c|>2x/oo no
homoclinic domain walls exist.

Proof. Consider (3.5)—(3.7) on the invariant plane k=0 for co = 0. We only need to
prove the c>2N/a0 case since the c< — 2v/a0 case can be obtained from the symmetry
(3.16). Since the unstable manifold W(r0,0, k0) is tangent to the eigenvector (ro,A

+,0)
near (r0,0,fc0), its lower branch enters the v<0 half-space (see Figure 5). Along this
branch r is initially decreasing as r' = rv<0. Moreover, this branch cannot enter the
v > 0 half-space since on t? = 0,

v'=-ao-a2r
2 + r*

(5.1)

Hence the lower branch continues in the direction of decreasing r. This branch cannot
cross the half-line {v = v+,r>y/a2] as on this half-line

v' = r2(r2-a2)>0. (5.2)

However, it may cross the half-line {v = v+,r<sfa2). If it does so, we can choose c
large enough such that

v' = — a0 — cv — v2 — a2r
2 + r 4

(5.3)

Here we use the fact that v+->0 and u~-> — co as c-> + oo, and that r2(r2 — a2) has
minimum — (a|/4). For such c, the lower branch moves upward and eventually enters
the domain of attraction of the sink (0, v+,k+) and thus we get a structurally stable
saddle-sink connection which survives the small perturbation.

Since the lower branch of W(r0,0, r0) is always going in the direction of decreasing r,
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it cannot come back to r0 again. Similarly we can show that the upper branch is always
going in the direction of increasing r. Thus no homoclinic domain walls are
possible. •

6. Pulses: ao<0 and ao>0

It seems considerably more difficult to find conditions sufficient for the existence of
pulses, although we can rule out their existence in certain parameter ranges by showing
that necessary conditions are not met. We only consider non-trivial pulses (r not
identically zero). Recall that a pulse involves connection ( = identification) of the one-
dimensional unstable manifold W(0, v+,k+) and the stable manifold Ws(0,v~,k~) when
— al/4<ao<0. While such a connection exists on k=0 for c = co = 0, a0e(—rsal,O) and
B = 0, b3 + bA=0 (Figure l(B)), simple estimates show that no such connection can exist
for c, co # 0 and e, b3 + bA sufficiently small. In fact we have:

Theorem 4. Suppose that either aoe(—£ai,0) and (co,c)# (0,0), or ao>0 and \c\>
2^/OQ. Then for z = (bl,b2,ai,aA,b5), b3+bA and co sufficiently small, no pulses exist.

Proof. As in the proof above, we initially set 8 = 0, b3 + b4 = O and then appeal to
structural stability and transversality. First consider the case co=0 for which the plane
k = 0 remains invariant. Without loss of generality, let c>0 (for c<0 use the symmetry
(3.16)). Since the zero amplitude wave fixed points (0,u+,0),(0,v~,0), with

(6.1)

lie in this plane, so must any pulse connection. However, for aoe( — \a\, —^a\), the
unstable manifold of (0, v+,0) cannot enter the v<0 half space where (0, v~,0) lies, due
to the connection orbit of Theorem 1, part 1 (see also Figure 2(A)) and the fact that on
{v = 0,0<r<rl}, the derivative satisfies

Moreover, in the case aoe[—T$a\,0), since E'= —cr2u2_0, the interior of the compact
component of any level set of

£=^V + !r2 + ̂ r*-£ (6.2)

is positively invariant (see Figure 2(B)). Since (0,i>+,0) lies inside the level set containing
the points r = 0, v= + N / — a0 and (0,i>~,0) lies outside it, no orbit can pass from the
former to the latter.

Now suppose co>0 and c^0. The fixed points (0,v+,k+), (0,v~,k~) now lie in the
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left (k<0) and right (fe>0) halves of the (k,v) plane, for we have fc* = — co/(c + 2v±).
Consider the unstable manifold W(0,v+,k+), which enters the half space //_ =
{(r, v,k) | fc<0<r}. On any orbit, including ones in this manifold, we have

M'=-{<o + ck)r2, (6.3)

which is strictly negative in H_. Thus the orbit crosses the level sets M = r2k = constant
in the direction of decreasing M, implying that such an orbit can never leave //_ and
enter the positive half-space H + = {(r,v,k)\k,r>0} in which the local stable manifold
W*{0,v~,k~) lies. Thus no pulse exists.

For co>0 and c^O a similar argument shows that the stable manifold W*(O,v~,k~) is
confined to H+ and so cannot connect to the unstable manifold W"(0,t>+,/c+). The case
co < 0 is treated similarly.

For a o >0 and c>2j~a2, (0,v+,k + ) is a sink in (r,v,k) space, while the two-
dimensional unstable manifold of (0,v~,k~) is restricted to the invariant plane r = 0.
Thus no (non-trivial) pulses exist. The c<2y/a0 case is similar. •

Hakim, Jakobsen and Pomeau [21] conjectured the existence of pulses of non-zero
traveling speed c for the quintic equation (1.3) for ao<0. Our result above shows that
such connections in fact cannot exist for bl,b2,b3 small. Deissler and Brand [9] found
some pulses or "one-particle" solutions for equation (1.2) numerically. Setting a3 = b3 =
a4 = ft4 = 0 (no nonlinear terms with derivatives), they found a symmetric pulse which
became asymmetric and whose propagation speed dropped significantly when a3 = b3 =
a4 = b4#0. Since the symmetry c->—c and z->—z does not hold in general for the ODEs
(2.12)-(2.14), such pulses indeed cannot be symmetric. Deissler and Brand's [9]
parameter values aJt bj are all 0(1) and therefore lie outside the range in which our
nonexistence result, Theorem 4, applies. They also took a2>0. We have not been able
to prove the existence of pulses under conditions comparable to those chosen by
Deissler and Brand [9]. Our result also shows that for ao>0 and a2>0 pulses may
exist only if Ic l^^/a , , and/or e = (b1,b2,a3,a4,b5), b3 + b4 and co are sufficiently large.
In fact, van Saarloos and Hohenberg [30, Section III.C] found an exact pulse solution
of the quintic equation (1.3) for ao>0 and c = 0, which is a generalization of Hocking
and Stewartson's [23] pulse solution for the cubic equation (1.1). The Hocking and
Stewartson pulse solution is also called a breather since it is additionally periodic in
time (also see Holmes [24] or Landman [27]).

7. Discusion

In Theorem 1 we give conditions for the existence of fronts connecting the zero
amplitude wave to the small amplitude wave, and heteroclinic domain walls connecting
the large amplitude wave to the small amplitude wave. Since the small amplitude plane
wave is typically unstable, such connections may seem of little interest.

However, they do provide a simple class of solutions starting near the unstable wave
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and approaching a stable wave as t-*co. (Here we implicitly use a suitable weighted
Sobolev norm such as

11/11,= J \f\2b(x)dx. (7.1)
— oo

where b(x) is a weighting function which decays sufficiently fast as |z|—KX>). For c>0,
the right going waves of either type show how the (dynamically stable) zero or large
amplitude wave "swallows" the small amplitude wave as t increases. See Figure 6.

Note that our approach is rather different from those of Collet and Eclemann [6,7],
and Eckmann and Wayne [17], who use either the contraction principle or the center
manifold theorem to obtain the existence of propagating fronts for the Swift-Hohenberg
equation.

The differential form techniques used to prove transversality and hence persistence of
heteroclinic orbits in Theorem 1 were used earlier by Jones et al. [26] to obtain a
similar result for equation (1.2) in the case 03 = ^3 = 04 = ^4 = 65=0, but our Theorems 1
and 2 appear to be the first for the full problem with all terms included to second order
in the asymptotic derivation as in Doelman [10]. We are unaware of any results
analogous to Theorems 3 and 4; in particular our non-existence conditions seem new.

A very important question about the long time dynamics of a pattern formation
equation of PDE type, is the dynamical behavior of plane wave, front, pulse and
domain wall type solutions such as those found in this paper. In particular, their
stability or instability as solutions of the PDE is of great interest (Weinstein [38]).
Further work concerning the stability of such solutions is in progress.
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