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SUMMARY

Viral hepatitis is recognized as one of the most frequently reported diseases, and especially in

China, acute and chronic liver disease due to viral hepatitis has been a major public health

problem. The present study aimed to analyse and predict surveillance data of infections of

hepatitis A, B, C and E in Wuhan, China, by the method of time-series analysis (MemCalc,

Suwa-Trast, Japan). On the basis of spectral analysis, fundamental modes explaining the

underlying variation of the data for the years 2004–2008 were assigned. The model was calculated

using the fundamental modes and the underlying variation of the data reproduced well. An

extension of the model to the year 2009 could predict the data quantitatively. Our study suggests

that the present method will allow us to model the temporal pattern of epidemics of viral hepatitis

much more effectively than using the artificial neural network, which has been used previously.
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INTRODUCTION

Worldwide, viral hepatitis is recognized as one of the

most frequently reported diseases, and especially in

China, acute and chronic liver disease due to viral

hepatitis have been a major public health problem [1].

Accordingly, much effort to predict and prevent viral

hepatitis infection has been expended through, for

example, infectious disease surveillance, vaccinations,

and various theoretical and experimental research [2].

Among these, there has been considerable interest in

interpreting the mechanisms of the epidemic of viral

hepatitis infection with mathematical models [3–6]

and time-series analysis [7–9].

Recently, Guan et al. [9] used an artificial neural

network to predict the incidence of hepatitis A in a

large Chinese city. However, the artificial neural net-

work is not easy to control the procedure of predic-

tion. In addition, in China, epidemiological patterns

of viral hepatitis infections vary across the country

due to its diversity regarding socioeconomic con-

ditions, ethnicity, and culture [10]. It is necessary to

establish a new method of time-series analysis appli-

cable to any time-series without restriction. In our

previous study, a new analysis method which was

composed of spectral analysis based on the maximum

entropy method (MEM) in the frequency domain and

nonlinear least squares method (LSM) in the time
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domain were proposed [11–13], and successfully used

for the prediction of infectious disease epidemics

[14–16]. Further, in the present study, our method of

prediction analysis was applied to the surveillance

data of hepatitis A, B, C and E infections in Wuhan,

which is the capital city of Hubei province in central

of China. Wuhan introduced mass vaccinations for

hepatitis A and B from 1992 and 1986, respectively.

For hepatitis C and E, no vaccine is currently avail-

able. Wuhan has accumulated good quality data

on infectious diseases through its surveillance pro-

gramme. Using this surveillance data on hepatitis A,

B, C and E infections a model to explain the time

period 2004–2008 was constructed, the model was

then used to predict the time period 2009.

MATERIAL AND METHOD

Material

In the present study, prediction analysis was con-

ducted for the surveillance data of monthly numbers

of hepatitis A, B, C and E cases per 100 000 in Wuhan.

The monthly data were gathered over 72 months from

January 2004 to December 2009 (72 data points).

The monthly data are shown in Fig. 1a–d for

hepatitis A, B, C and E, respectively. Each month’s

data was divided into an analysis range (January

2004–December 2008) and a prediction range

(January–December 2009). In Figure 1, the small

vertical line in the left-hand panels indicates the

boundary between the analysis range (January

2004–December 2008) and the prediction range

(January–December 2009).

The monthly data of hepatitis A, B, C and E in-

fections were reported by all hospitals in Wuhan and

were collected by the National Infectious Disease

Reporting System, Wuhan Center for Disease Pre-

vention and Control, China. The diagnoses of viral

hepatitis infection were conducted according to the

National Diagnosis Criteria. The subtypes for hepa-

titis A, B, C and E were divided by serological test.

Time-series analysis

Time series x(t), where t=time, is assumed to be

composed of systematic and fluctuating parts [17] :

x(t)=systematic part+fluctuating part: (1)

The systematic part in equation (1) is regarded as an

underlying variation of x(t), which corresponds to the

predictable part [18]. The fluctuating part in equation

(1), resulting from a nonlinear dynamic mechanism

existing behind the data and/or undeterministic

components such as noise, is obtainable as a

residual time-series in which the underlying part is

subtracted from the original time-series. The ex-

trapolation curve of the underlying part can be used

for prediction.

A key point is the estimation of underlying vari-

ation. The underlying variation can be determined by

applying the nonlinear LSM to x(t). Then, the

underlying variation is assumed to be described as the

function xUV(t) given by a linear combination of sine

and cosine functions,

xUV(t)=a0+
XS
n¼1

{an sin (2pfnt)+bn cos (2pfnt)}, (2)

where fn (=1/Tn, Tn : its period) is the frequency of the

nth periodic component, an and bn the amplitudes of

the nth component, S the total number of com-

ponents, and a0 a constant which indicates the average

value of the time-series.

The optimum function of equation (2) can be de-

termined through the nonlinear LSM for fitting

analysis in the time domain. Linearization of this

nonlinearity is achieved by using the frequency fn
estimated by spectral analysis based on MEM. MEM

is considered to have a high degree of resolution of

spectral estimation. As a result, the method of spec-

tral analysis enabled us to make an extremely precise

determination of periodic structures of time-series

including a short data sequence. A formulation of

MEM spectral analysis is given in the Appendix.

An outline of the analysis procedure for prediction

analysis is described as follows. The details of the

procedure for the method are described in our pre-

vious work [14].

(1) Setting up time-series data for the analysis.

Equal sampling time intervals are chosen, lack

of data compensated for, outliers corrected,

logarithm transformation performed, and re-

moval of long-term trend of data performed, if

necessary.

(2) Determination of fn (MEM spectral analysis). A

spectral analysis based on MEM is conducted,

and the power spectral density (PSD) is obtained.

The values of fn in equation (2) are determined by

the position of the spectral peak in the PSD.

(3) Determination of S (assignment of fundamental

modes). From the PSD, fundamental modes
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constructing underlying variation xUV(t) [equa-

tion (2)] of time-series data are determined.

For the assignment of fundamental modes, the

‘contribution ratio’ is defined to indicate a cri-

terion for the evaluation of the adequacy of

xUV(t) of time-series data [15]. The assignment of
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Fig. 1. Monthly data of viral hepatitis infection in Wuhan, China from 2004 to 2009, long-term trend of the data, and power

spectral density (PSD) of the data. (a–d) The data (– – –) and the long-term trend of the data (—). (a) Hepatitis A, (b) hepatitis
B, (c) hepatitis C, and (d) hepatitis E. (ak–dk) The PSD: (ak) hepatitis A, (bk) hepatitis B, (ck) hepatitis C, and (dk) hepatitis E.
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fundamental modes results in the determination

of the value of S in equation (2).

The contribution ratio against the value of

number of periodic mode, S, is described as

PS
i=1 A

2
i

Qj
, j= A: analysis range

P: prediction range

�

where Ai indicate the amplitude of the ith mode

constituting the least squares fitting (LSF) curve,

and QA and QP the total powers of the original

time-series in the analysis and prediction ranges,

respectively. An outline of the contribution ratio

is described in the Appendix.

(4) Determination of a0, an and bn (LSF analysis). By

using the estimated values of S and fn, the opti-

mum values of parameters a0, an and bn (n=1,

2, …, S) in equation (2) are exactly determined

with LSM. As a result, the optimum LSF curve

for time-series data is obtained.

(5) Prediction analysis. The LSF curve is extended

from the analysis range to the prediction range of

time-series data, and future values are indicated

quantitatively.

RESULTS

Monthly data of hepatitis A, B, C and E infections

In the monthly data for hepatitis A, B, C, and E in-

fections (Fig. 1a–d), all data indicate a 1-year cycle.

For hepatitis A (Fig. 1a), a large decrease in trend of

the data is observed. In the case of hepatitis B

(Fig. 1b), two peaks in spring and summer are super-

imposed on a 1-year cycle. The pattern of hepatitis C

(Fig. 1c) shows a large increasing trend of the data.

The pattern of hepatitis E (Fig. 1d) clearly indicates

large peaks in spring months with small peaks ap-

parent during summer/autumn months in the annual

cycle.

Setting up the monthly data of hepatitis A, B, C and E

infections for analysis

The PSDs, P( f )’s [f (1/year) : frequency], for the data

of hepatitis A, B, C and E infections in Figure 1 were

calculated, and the results obtained are shown in

Figure 1(ak–dk) for hepatitis A, B, C and E, respect-

ively. Regarding hepatitis A, B and C (Fig. 1ak–ck),
the longest periods appear as prominent peaks

corresponding to a position longer than the length

of the disease infection data in the analysis range

(5 years) : i.e. a 9.85-year period for hepatitis A

(Fig. 1ak), a 7.40-year period for hepatitis B (Fig. 1bk)
and a 10.54-year period for hepatitis C (Fig. 1ck). With

these long-term periodic modes for hepatitis A, B and

C, the long-term trend of each disease infection data

was estimated by calculating the LSF curve with

equation (2) ; the results are shown in Fig. 1(a–c). As

seen in the figure’s panels, LSF curves reproduce well

the long-term trend in the disease infection data. The

LSF curves were removed from the disease infection

data, and the residual data were obtained (Fig. 2a–c).

By using the residual data for hepatitis A, B and C

(Fig. 2a–c) and the original data for hepatitis E

(Fig. 2d), the prediction analysis was conducted.

Spectral analysis

PSDs for the data in the analysis range (Fig. 2) were

calculated, and the semi-log scale plots (ff4.5) are

shown in Figure 3. As seen in the figure’s panels,

several well-defined spectral lines are observed in each

PSD. Ten spectral peak-frequency modes were selec-

ted, and these are summarized with the corresponding

periods and intensities (powers) of the spectral peaks

in Table 1.

For all PSDs (Fig. 3), prominent spectral peaks

were observed at f=1.0 (=f1) corresponding to a

1-year period, i.e. the seasonal cycle of disease

epidemics. In the case of hepatitis A (Fig. 3a), it is

notable that dominant spectral line is also observed at

the position of the 4.07-year period, which is longer

than a 1-year period. For hepatitis B, C and E

(Fig. 3b–d), dominant spectral lines are observed

around f=2.0 (6 months), which is a cause of much

interest as to whether the 6-month periodic mode

takes its origin from the harmonics of f1, or the sea-

sonal variation, or a superimposition of both.

Assignment of fundamental modes

The contribution ratio against the value of number of

periodic modes, S, were calculated with the periodic

modes listed in Table 1, and the results obtained are

shown in Fig. 4(a–d) for hepatitis A, B, C and E,

respectively.

For hepatitis A (Fig. 4a) the contribution ratio

in the prediction range increases in the region of S

from 1 to 3 as well as in the case of the analysis range.

At S=3, the value of S in the prediction range has

the largest value. Thus, three fundamental modes

at S=3 (4.07, 1.82, 1.00 years) were assigned. The
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values of the contribution ratio at S=3 in the analysis

and prediction ranges were 0.693 and 0.841, respect-

ively.

For hepatitis B (Fig. 4b) the contribution ratio in

the prediction range increases in the region of S from

1 to 7. The contribution ratio at S=7 in the prediction

range has the largest value, and is almost the same as

that in the analysis range. Thus, seven periodic modes

could be assigned as fundamental modes for the LSF

curve at S=7 (2.64, 1.52, 1.00, 0.89, 0.52, 0.46, 0.20

years). The values of the contribution ratio at S=7 in

the analysis and prediction ranges were 0.862 and

0.854, respectively.
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For hepatitis C (Fig. 4c), the contribution ratio in

the prediction range increases gradually as the value

of S increases, but is smaller than the contribution

ratio in the analysis range for all S values. Thus, the

optimum value of S which is suitable to use for cal-

culating the LSF curve could not be found. For con-

venience, the ten periodic modes for the LSF curve at

S=10 (2.19, 1.29, 1.00, 0.63, 0.51, 0.38, 0.35, 0.28,

0.25, 0.20 years) were assigned. The values of the

contribution ratio at S=10 in the analysis and pre-

diction ranges were 0.93 and 0.70, respectively.

For hepatitis E (Fig. 4d), the contribution ratio in

the prediction range retains large values around 0.8,

and the contribution ratio at S=3 in the prediction

range is almost the same as the contribution ratio in

the analysis range. Thus, three fundamental modes at

S=3 (3.42, 1.00, 0.50 years) were assigned. The values

of the contribution ratio at S=3 in the analysis and

prediction ranges were 0.840 and 0.863, respectively.

The values of period, amplitude and time of acro-

phase for the fundamental modes for each disease are

listed in Table 2.

Prediction analysis

With the fundamental modes listed in Table 2, the

optimum LSF curve for each data in the analysis

range (January 2004–December 2008) was calculated.

By extending it to the prediction range (January–

December 2009), future values were indicated quan-

titatively. The results obtained are shown in Figure 5.

In the case of hepatitis A (Fig. 5a), the optimum

LSF curve in the analysis range reproduces basically

a 1-year cycle with large peaks in spring. Thus,

fundamental modes (Table 2a) were confirmed to be

appropriate. In the prediction range, the optimum

LSF curve also reproduces well the peaks in spring.

Regarding hepatitis B and C (Fig. 5b, c), each LSF

curve in the analysis range adequately reproduces a

1-year cycle and shorter-term fluctuations than the

1-year cycle of the original data. Thus, the usefulness

of the fundamental periods (Table 2b, c) was con-

firmed. On the other hand, in the prediction range, the

LSF curve for hepatitis B (Fig. 5b) does not reproduce

the two large peaks in spring and summer of the

original data. With respect to hepatitis C (Fig. 5c),

the LSF curve in the prediction range reproduces

well the spring peak of the original data, but the peak

in autumn is not well reproduced.

In the case of hepatitis E (Fig. 5d), the LSF curve in

the analysis range reproduces large peaks in spring

andmild occurrences during summer/autumnmonths.

In the prediction range, the LSF curve also reproduces

well the temporal pattern of the original data.

For the LSF curve in the prediction range of each

disease (Fig. 5), almost all data points of the data fit

within 95% confidence intervals tested by t distri-

bution, x(t)=Y(t) ¡ t0.05s, where Y(t) is given by the

estimated regression line by plotting xUV(t) [equation

(2)] against the original data in the prediction range,

where s indicates standard error.

DISCUSSION

In the present study, prediction analysis for data of

hepatitis A, B, C and E infections in Wuhan, China,

was conducted, by investigating periodic structures of

the data with MEM spectral analysis.

Table 1. Characteristics of the ten dominant spectral peaks shown in Figure 3

Hepatitis A Hepatitis B Hepatitis C Hepatitis E

f

Period

(yr) Power f

Period

(yr) Power f

Period

(yr) Power f

Period

(yr) Power

0.25 4.07a 0.001793 0.38 2.64a 0.08400 0.46 2.19a 0.00127 0.29 3.42a 0.00543
0.55 1.82a 0.000837 0.66 1.52a 0.03770 0.78 1.29a 0.00069 0.63 1.60 0.00532

1.00 1.01a 0.002472 1.00 1.00a 0.38640 1.03 0.97a 0.00916 1.01 0.99a 0.02591
1.29 0.78 0.000461 1.13 0.89a 0.12650 1.58 0.63a 0.0033 1.24 0.81 0.00106
1.56 0.64 0.00066 1.57 0.64 0.03570 1.98 0.51a 0.00359 1.53 0.66 0.00234
1.98 0.51 0.000411 1.93 0.52a 0.23000 2.62 0.38a 0.00075 2.02 0.50a 0.00816

4.21 0.24 0.000182 2.15 0.46a 0.10160 2.89 0.35a 0.00056 2.49 0.40 0.00076
4.49 0.22 0.000218 3.12 0.32 0.03220 3.59 0.28a 0.00064 2.75 0.36 0.00046
4.69 0.21 0.00026 4.03 0.25 0.03200 3.99 0.25a 0.00056 3.01 0.33 0.00098

5.33 0.19 0.00023 5.02 0.20a 0.04470 4.92 0.20a 0.00138 4.18 0.24 0.00067

a The assigned fundamental modes.
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Spectral analysis has progressed through several

stages since the turn of the century. Schuster’s

periodogram was the first technique of modern

spectral analysis. The periodogram, however, re-

constructs a time-series from a sum of its Fourier

components based on a prior knowledge of the fun-

damental period of the original time-series data.

However, such knowledge is rarely obtained in prac-

tice. Therefore, the periodogram is available only for

extremely restrictive cases, i.e. harmonic time-series,

in which theoretically exact solutions are given.

Another important approach of time-series analysis

is the autoregressive (AR) model [19], which is a

special case of the linear filter model, including the

sophisticated version such as the autoregressive

moving average (ARMA) model and the seasonal

autoregressive-integrated moving average (SARIMA)

model [20, 21]. However, the AR model using random

noise has a weakness for interpreting the multiple

periodic structures with characteristic fluctuations

caused by nonlinear dynamics. On the other hand, a

method of spectral analysis conducted in the present

study, which is based on MEM, is applicable to any

time-series without any restriction [22]. As a result,
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tion (r) ranges. (a) Hepatitis A, (b) hepatitis B, (c) hepatitis
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Table 2. Parameters of fundamental modes

Period (years)
Amplitude
(Ai)

Time of
acrophase

(a) Hepatitis A

4.07 0.06 17 Dec. 2007
1.82 1.82 30 Apr. 2004
1.00 0.06 14 Apr. 2004

(b) Hepatitis B

2.64 0.47 7 July 2005
1.52 0.28 9 July 2004
1.00 1.05 17 June 2004
0.89 0.27 14 June 2004

0.52 0.72 11 Mar. 2004
0.46 0.38 8 June 2004
0.20 0.33 12 Apr. 2004

(c) Hepatitis C

2.19 0.05 18 Jan. 2006
1.29 0.03 18 Jan. 2006
1.00 0.14 25 Oct. 2004

0.63 0.06 7 July 2004
0.51 0.09 9 Apr. 2004
0.38 0.03 14 May 2004

0.35 0.04 3 Feb. 2004
0.28 0.04 18 Mar. 2004
0.25 0.03 6 Feb. 2004
0.20 0.05 23 Mar. 2004

(d) Hepatitis E

3.42 0.08 3 Nov. 2006
1.00 0.22 21 Apr. 2004
0.50 0.11 25 Mar. 2004
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the present method of analysis can be used to inves-

tigate periodic structures of hepatitis A, B, C and E

infection data in detail, and valuable knowledge on

periodic structures of the data (Fig. 3, Table 1) were

obtained.

In the present study, for all diseases, the funda-

mental modes constructing the underlying variation

of the data in the analysis range xUV(t) [equation (2)]

were successfully assigned (Table 2). As a result, for

each disease in the analysis range, xUV(t) with good

fitness to the original data x(t) was obtained (Fig. 5).

By extending xUV(t) from the analysis range to the

prediction range, in the cases of hepatitis A and E,

the original data x(t) in the prediction range could be

quantitatively indicated by extension of xUV(t). This

predictability for hepatitis A and E (Fig. 5a, d) was

interpreted by the following explanation: the funda-

mental modes for the original data in the analysis

range (Table 2a, d) construct the periodic structure of

the underlying variations of the original data in both

analysis and prediction ranges. The unpredictability

observed for hepatitis B and C (Fig. 5b, c) might be

because of the temporal periodic structures of the

disease, and the fundamental modes in the analysis

range (Table 2b, c) are not preserved in the prediction

range. This may mean that the original data for

hepatitis B and C include a large amount of fluctua-

tions corresponding to the ‘fluctuating part ’ in

equation (1). For the origin of the fluctuation, in

the case of hepatitis B (Fig. 5b), two reasons are

considered; first, the fluctuations resulting from

nonlinear dynamics [5], and second, the fluctuations

resulting from random noise because of a large num-

ber of chronic cases [23]. The chronic cases of hepa-

titis B result from the fact that disease infections are

mainly transmitted by perinatal exposure in Wuhan.

In addition, horizontal infection due to sexual and

iatrogenic transmission may also play an important

role in disease infections [24].

With respect to hepatitis C, chronic cases might

result in fluctuations of the original data as well as for

the case of hepatitis B [25]. Chronic cases of hepatitis

C are related to the fact that, in Wuhan, transmission

of the disease has been caused by blood transfusion,

sharing syringe needles infected by drug abusers, and

other sources of iatrogenic infection. A systematic

review of the prevalence of hepatitis C infection

among injecting drug users, reported that the epi-

demic was most severe in the southern inland prov-

ince, especially in Hubei province (where Wuhan is

the capital city) [24]. With respect to the large
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Fig. 5. Comparison of the optimum least squares fitting
curve (—) with the data for prediction analysis (– – –) in the

analysis range (January 2004–December 2008) and the pre-
diction range (January–December 2009) : (a) Hepatitis A,
(b) hepatitis B, (c) hepatitis C, and (d) hepatitis E. Grey lines
indicate 95% confidence intervals. Small vertical lines (|)
indicate the boundary between the analysis and prediction
ranges.
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increasing trend of hepatitis C infections (Fig. 1c),

corresponding to a 10.54-year period (Fig. 1ck), this
may result from the fact that the test for hepatitis C

virus antibody has been conducted in high-risk groups

of the disease such as injecting drug users.

For hepatitis A, so far, researchers have suggested

that, in Europe and the USA, prior to and immedi-

ately following World War II, hepatitis rates were

high, and nationwide epidemics of hepatitis A oc-

curred at 6- to 10-year intervals [26, 27]. It is con-

sidered that this temporal pattern trend has been

changed by socioeconomic factors, i.e. improved

sanitation and hygienic standards [23]. With respect

to the route of transmission of hepatitis A in Wuhan,

disease incidence occurs regularly, because of en-

vironmental pollution and poor hygiene [28]. Thus,

the fundamental mode of 4.07 years assigned for

hepatitis A in the present study (Table 2) may be ex-

plained by socioeconomic factors that promote

hepatitis A virus transmission in Wuhan. For the re-

sults of long-term trends of hepatitis A (Fig. 1a), the

large decreasing trend of disease infections corre-

sponding to the 9.85-year period (Fig. 1ak) may be a

result of the introduction of vaccination against

hepatitis A in 1992 in Wuhan.

In the case of hepatitis E, a 6-month periodic mode

assigned as the fundamental mode (Table 2) interprets

the seasonal variations of the disease, with a peak in

spring and a smaller peak in summer (Fig. 2d). In

Wuhan, transmission of hepatitis E is clearly related

to the faecal–oral route, usually through contami-

nated drinking water, and zoonotic transmission from

pigs [29]. The decades-long surveillance conducted in

China also suggested that pigs constitute a major

reservoir and source of hepatitis E infections [24]. For

the spring peak of hepatitis E, it was reported that the

disease virus transmission in Southwest England was

closely related to the presence of pig [30, 31]. On the

other hand, in Wuhan, the infection of hepatitis E

virus was higher in urban areas, where people do not

live in close proximity to pigs. Thus, with respect to

the spring peak in Wuhan (Fig. 2d), hepatitis E virus

infections may be spread through faecal–oral trans-

mission with contamination of drinking water during

the Chinese New Year holiday at the beginning of

February, with the spring peak occurring after the

incubation period of 2–10 weeks. As well as the case

of the spring peak, the seasonal variation in the

summer/autumn peak can be considered to be due to

the faecal–oral route, usually through contamination

of water supplies [32, 33]. Based on the studies

reported so far, the summer/autumn peak usually

occurs in those parts of the world, where heavy rains

occur or monsoon conditions are present ; high rates

of disease have persisted through rainy seasons fol-

lowed by a significant decrease in the number of cases

and the ending of the epidemic. In Wuhan, the rainy

season starts from the end of May and ends in the

early July. Thus, it is possible that mild occurrences of

hepatitis E during summer/autumn relate to the rainy

season.

The present method of time-series analysis, which is

applicable to any time-series without any restriction,

can be successfully used for prediction analysis even

where the data for hepatitis B and C infections include

a large amount of fluctuations due to chronic cases. In

conclusion, it is anticipated that the present method

of time-series analysis consisting of MEM spectral

analysis and LSM will contribute to further develop-

ment in the field of prediction analysis of epidemics of

viral hepatitis.

APPENDIX

MEM spectral analysis

The PSD obtained by MEM spectral analysis for

time-series data under analysis, with an equal sam-

pling interval Dt (=1 month, in the present study),

can be calculated from

Pm( f )=
PmDt

1+
Pm

k=xm

cm, k exp [xi2pfkDt]

����
����
2 , (A1)

where Pm is the output power of a prediction-error

filter of order m and cm,k the corresponding filter

coefficient, m=0, 1, 2, …, M ; where M is the opti-

mum filter order. Pm and cm,k are determined by

solving the following Yule–Walker equations with the

use of Burg’s procedure.

Determination of the value of the ‘contribution ratio’

The determination of S in equation (2) is made via the

following procedure. Based on the result of periods

estimated by MEM spectral analysis, we must assign

fundamental modes fn that construct a periodic

structure of xUV(t) [equation (2)]. Then, we investigate

the contribution of ten dominant periods estimated by

MEM spectral analysis of the LSF curve in the

analysis and prediction ranges: (a) the LSF curve in

the analysis range is calculated with the variation S,

by the ten modes being added to the LSF curve one by
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one in the order of magnitude of the power of the

spectral peak frequency, (b) the LSF curve calculated

with each S is extended to the underlying variations in

the prediction range, and (c) the evaluation of the

LSF curve is performed. The procedure (c) is divided

into four steps [(c1), (c2), (c3), (c4)]. In procedure (c1),

the power of each periodic mode is evaluated by the

square of amplitude, Ai
2, of the ith mode constituting

the LSF curve. In procedures (c2) and (c3), we esti-

mate Rj corresponding to the power of time-series

which is obtained by subtracting the LSF curve from

the original time-series. As a result, the total powers

of the original time-series in the analysis and predic-

tion ranges (QA and QP, respectively) are obtained by

Qj=
XS
i=1

A2
i+Rj j= A: analysis range

P: prediction range

�
ðA2Þ

When both sides of equation (A2) are divided by Qj,

we obtain the following normalized relation:

PS
i=1 A

2
i

Qj
+

Rj

Qj
=1

A: analysis range
P: prediction range

�

where
PS

i=1 A
2
i =Qj and Rj/Qj correspond to the con-

tribution of
PS

i=1 A
2
i and Rj to Qj, respectively. Then,

in procedure (c4), we define the first term of the left-

hand side of equation (A3) the ‘contribution ratio’,

which means the contribution
PS

i=1 A
2
i normalized by

Qj. If
PS

i=1 A
2
i =Qj in the first term becomes large, then

the second term Rj/Qj becomes small.
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