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Abstract. The equi-attraction properties concerning the global attractors Aλ of
dynamical systems Sλ(t) with parameter λ ∈ �, where � is a compact metric space,
are investigated. In particular, under appropriate conditions, it is shown that the equi-
attraction of the family {Aλ} is equivalent to the continuity of Aλ in λ with respect to
the Hausdorff distance.
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1. Introduction. Let λ be a parameter belonging to a compact metric space �

with metric ρ and let � = �+ or �+. Let {Sλ(t)} (t ∈ �) be a family of dynamical systems
(semigroups) on a complete metric space X with metric d, where the parameter λ ∈ �.
For any x ∈ X and A ⊂ X , set d(x, A) = infy∈A d(x, y). Denote by dH and δH the
Hausdorff semidistance and Hausdorff distance on X , which are defined, respectively,
by

dH(A1, A2) = sup
x∈A1

d(x, A2), δH(A1, A2) = max {dH(A1, A2), dH(A2, A1)}

for any A1, A2 ⊂ X
Suppose that Sλ(t) has a global attractor Aλ. Then, for each λ ∈ �, Aλ attracts

an arbitrary bounded subset B of X under Sλ(t); that is, for every ε > 0, there exists a
τ = τλ(B, ε) > 0 such that

dH(Sλ(t)B,Aλ) < ε, ∀t ≥ τ. (1.1)

Let B be a bounded subset of X . If for any ε > 0, there exists a τ = τ (B, ε) > 0
independent of λ ∈ � such that (1.1) holds for all λ ∈ �, then we say that Aλ equi-
attracts B for λ ∈ �, or, the family {Aλ} equi-attracts B. In case {Aλ} equi-attracts each
bounded subset B of X , we simply say that {Aλ} is equi-attracting.

If the family of global attractors of dynamical systems Sλ(t) with parameter λ is
equi-attracting, then a singularity does not appear in the rate of attraction as λ varies.
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132 LI DESHENG AND P. E. KLOEDEN

This is clearly important in the approximation of dynamical behavior, e.g., [4, 5, 10,
13, 20]. However, it is generally not true and the time τ appearing in (1.1) may depend
sensitively on λ. This can be seen even in some simple situations such as Example 3.2
below.

In the present paper, instead of considering the attractors Aλ themselves, we
investigate the following parameterically inflated attractors, namely, the sets

Aλ[r] :=
⋃

ρ(λ′,λ)≤r

Aλ′ (1.2)

for r ≥ 0. Assume the family of dynamical systems {Sλ(t)} (λ ∈ �) is equi-dissipative on
X and uniformly compact for t large (see Section 2 for formal definitions). Then, under
some additional continuity assumptions, we will prove that for any fixed r > 0, {Aλ[r]}
equi-attracts each bounded subset B of X , i.e., for any ε > 0, there is a τ = τ (B, ε) > 0
independent of λ such that

dH(Sλ(t)B,Aλ[r]) < ε, ∀t ≥ τ (1.3)

for all λ ∈ �. Some of the ideas used here come from an earlier work [16 ] of the first
co-author.

In case r = 0, we have by the definition of Aλ[r] that Aλ[0] = Aλ. As it has been
pointed out, the family {Aλ} may not possess the equi-attraction property. However,
based on the above result, we will show that if Aλ is continuous in λ, then {Aλ} is
equi-attracting. As a direct application of this basic fact, we will further prove under
some reasonable continuity assumptions that the family {Aλ} is uniformly Lyapunov
stable. This indicates that the Lyapunov stability of Aλ is robust with respect to the
variation of λ in �. Uniform Lyapunov stability of attractors for perturbed systems
aroused notable interest in recent years; see, for instance, Kostin and Pilyugin [14].

The continuity of attractors under perturbation or discretization is a crucial issue
in the theory of dynamical systems; see [3, 7, 8, 9, 10, 12, 15] and [17] etc. As a
consequence of our results, we finally prove that under appropriate conditions, the
continuity of the global attractor Aλ in λ with respect to the Hausdorff distance is
equivalent to the equi-attraction property of the family {Aλ}. This can be regarded as an
inherent characterization of the continuous dependence of attractors on a parameter.
Similar considerations on the attractors Aλ for discretized dynamical systems with
constant stepsize λ ≥ 0 can be found in the works of Grüne [4, 5] and also in Stuart
and Humphries [20] etc., where the authors provide conditions ensuring continuity of
Aλ as λ goes to 0, which are formulated in terms of attraction rate of these attractors.

Part of the main results here have already been used successfully to investigate the
uniform dynamics of periodic and asymptotically periodic non-autonomous systems.
This will be reported in a forthcoming paper [23].

This paper is organized as follows. In Section 2 we state and prove the main
results, and then in Section 3 we illustrate the results in Section 2 in terms of involving
parametrized ordinary differential equations.

2. The Main Results. In this section we state and prove our main results. We first
present some definitions.
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EQUI-ATTRACTION 133

DEFINITION 2.1. Let S(t) (t ∈ �) be a dynamical system (semigroup) on X . A
compact subset A is called a global attractor of S(t), if S(t)A = A for all t ∈ �, and A
attracts each bounded subset B of X .

We refer the reader to [2, 6, 7, 18, 19, 21] and [22] etc. for the basic theory of global
attractors. Note that the global attractor of a system, if exists, is unique.

DEFINITION 2.2. Let {Sλ(t)} (λ ∈ �) be a family of dynamical systems on X . We
say that

(1) {Sλ(t)} is equi-dissipative on X if there exists a bounded subset U of X so that for
any bounded subset B ⊂ X , there exists a t0 = t0(B) ∈ � independent of λ ∈ � such
that

Sλ(t)B ⊂ U , t ≥ t0;

(2) {Sλ(t)} is uniformly compact for t large if for any bounded subset B of X ,
there exists a t0 = t0(B) ∈ � independent of λ ∈ �, such that

⋃
λ∈� Sλ(t)B is relatively

compact for any t ≥ t0.

Our first theorem concerns the paramaterically inflated attractors Aλ[r] in case
r > 0.

THEOREM 2.3. Assume that {Sλ(t)} (λ ∈ �) is equi-dissipative and uniformly compact
for t large. In addition, assume that

(C1) For any t ∈ � fixed, Sλ(t)x is jointly continuous in (x, λ) on X × �.
Let Aλ be the global attractor of Sλ(t). Then for any r > 0 fixed, the family {Aλ[r]} is
equi-attracting.

Proof. Let r > 0. We need to prove that for any bounded subset B of X and ε > 0,
there exists a τ = τ (B, ε) which is independent of λ ∈ � such that

dH(Sλ(t)B,Aλ[r]) < ε, ∀t ≥ τ, λ ∈ �. (2.1)

For convenience, we assume that ε < r. Set M = X × � and endow M with the
metric σ defined by

σ ((x, λ), (y, λ′)) = d(x, y) + ρ(λ, λ′), ∀(x, λ), (y, λ′) ∈ M.

Clearly (M, σ ) is complete. Consider the semigroup G(t) (t ∈ �) on M,

G(t)(x, λ) = (Sλ(t)x, λ), ∀(x, λ) ∈ M.

G(t) is well defined on M and due to the joint continuity of Sλ(t)x in (x, λ), we see that
for any fixed t ∈ �, G(t) is a continuous mapping on M. Since {Sλ(t)} is equi-dissipative,
there exists a bounded subset U of X such that for any bounded subset A of X , one
can find a t0 = t0(A) ∈ � in dependent of λ so that

Sλ(t)A ⊂ U , ∀t ≥ t0, λ ∈ �. (2.2)

It follows that � := U × � is a bounded absorbing set of G(t), i.e., for each bounded
subset K of M, G(t)K ⊂ � for t sufficiently large. The uniform compactness of {Sλ(t)}
implies that G(t) is compact when t is sufficiently large (recall that � is compact).
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In particular, there exists a t1 ∈ � such that G(t1)� is relatively compact. Let K be a
bounded subset of M. Take a t2 ∈ � such that G(t)K ⊂ � for t ≥ t2. Observing that

⋃
t≥t1+t2

G(t)K = G(t1)
(∪t≥t2 G(t)K

) ⊂ G(t1)�,

we find that
⋃

t≥t1+t2
G(t)K is relatively compact. Thus by basic results in the theory of

dynamical systems (see [7, 11, 21] etc.), G(t) has a unique global attractor 	.
Let

A′
λ = {x ∈ X : (x, λ) ∈ 	}.

As 	 is invariant under G(t), i.e., G(t)	 = 	 for any t ∈ �, by the definition of G(t),
we find that A′

λ is invariant under Sλ(t); and thus A′
λ ⊂ Aλ. On the other hand, by the

invariance of Aλ under Sλ(t) one can easily see that Aλ × {λ} is invariant under G(t).
Therefore Aλ × {λ} ⊂ 	. It follows that Aλ ⊂ A′

λ. Hence A′
λ = Aλ. In conclusion, we

have

	 =
⋃
λ∈�

Aλ × {λ}.

As 	 attracts � under G(t), there exists τ0 = τ0(�, ε) ∈ � such that when t ≥ τ0, we
have

inf
v∈	

σ (G(t)u, v) < ε/2, ∀u ∈ �. (2.3)

For any λ ∈ �, we divide 	 into two parts:

	 =

 ⋃

ρ(λ′,λ)≤r

Aλ′ × {λ′}

 ∪


 ⋃

ρ(λ′,λ)>r

Aλ′ × {λ′}

 := 	λ[r] ∪ 	c

λ[r].

Then (2.3) is to say that for any t ≥ τ0,

inf
v∈	λ[r]∪	c

λ[r]
σ ((Sλ(t)x, λ), v) < ε/2, ∀(x, λ) ∈ U × �. (2.4)

Now suppose that (x, λ) ∈ U × � and t ≥ τ0. Noting that if v := (y, λ′) ∈ 	c
λ[r], then

by the definition of σ ,

σ ((Sλ(t)x, λ), v) ≥ ρ(λ, λ′) > r > ε, (2.5)

by (2.4) we necessarily have

inf
v∈	λ[r]

σ ((Sλ(t)x, λ), v) < ε/2. (2.6)

By using (2.6), one can find a v := ( y, λ′) ∈ 	λ[r] such that

σ ((Sλ(t)x, λ), (y, λ′)) < 2ε/3. (2.7)

Noticing that ρ(λ′, λ) ≤ r and hence y ∈ Aλ′ ⊂ Aλ[r], we deduce by (2.7) that

dH(Sλ(t)x,Aλ[r]) ≤ d(Sλ(t)x, y) ≤ σ ((Sλ(t)x, λ), (y, λ′)) < 2ε/3.
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Since x, λ and t are arbitrary, we conclude that

dH(Sλ(t)U ,Aλ[r]) ≤ 2ε/3 < ε, ∀t ≥ τ0, λ ∈ �.

This and (2.2) finish the proof of (2.1). The proof of the theorem is complete.

Now we consider the case r = 0 in which Aλ[0] = Aλ. As pointed out in the
introduction, {Aλ} may not possess equi-attraction property in general. However, if
Aλ is continuous in λ in the sense of Hausdorff distance, then we can show that it is
equi-attracting.

THEOREM 2.4. Assume the hypotheses in Theorem 2.3. Let Aλ be the global attractor
of Sλ(t). If Aλ is continuous in λ with respect to the Hausdorff distance, then the family
{Aλ} (λ ∈ �) is equi-attracting.

Proof. Assume that Aλ is continuous in λ with respect to the Hausdorff distance.
Let B be a bounded subset of X , and ε > 0. We need to prove that there exists a
τ = τ (B, ε) ∈ � independent of λ ∈ � such that

dH(Sλ(t)B,Aλ) < ε, ∀t ≥ τ, ∀λ ∈ �, (2.8)

First, by the compactness of �, it is easy to check that Aλ is uniformly continuous
in λ with respect to the Hausdorff distance. Thus for r sufficiently small, we have

δH(Aλ′ ,Aλ) < ε/2, ∀λ, λ′ ∈ �, ρ(λ′, λ) ≤ r,

which follows that

δH(Aλ[r],Aλ) ≤ ε/2, ∀λ ∈ �. (2.9)

Now we fix a r > 0 so that (2.9) holds and consider Aλ[r]. It follows from Theorem 2.3
that {Aλ[r]} equi-attracts B. So there exists a τ := τ (B, ε) ∈ � independent of λ such
that

dH(Sλ(t)B,Aλ[r]) < ε/2, ∀t ≥ τ, ∀λ ∈ �.

Combining this and (2.9), one concludes that for t ≥ τ ,

dH(Sλ(t)x,Aλ) ≤ dH(Sλ(t)x,Aλ[r]) + dH(Aλ[r],Aλ) < ε, ∀λ ∈ �.

This completes the proof.

REMARK 2.5. Attraction properties like that considered here for dynamical systems
under perturbations or discretizations have already attracted notable attention in recent
years; see Grüne [4, 5], Kostin and Pilyugin [14] and Stuart and Humphries [20] etc.
In particular, in [14], the authors considered a family of discrete dynamical systems
generated by mappings 
λ in a Hilbert space H. They have provided conditions to
ensure a λ-independent exponential attraction rate for the family {Aλ} of the global
attractors, and thus established certain results which are rather stronger than that of
ours in some circumstances.

REMARK 2.6. For gradient systems, it is well known that if the equilibria are
hyperbolic, then the global attractors are the union of the equilibria and their unstable
manifolds; see [7, 21] etc. This enables us to check the continuous dependence of
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attractors on parameters for many systems arising in applications. For instance, it is
proved in [3] that the global attractor Aλ of the viscous Cahn-Hilliard equation

(1 − λ)ut − λ�ut + �2u − � f (u) = 0,

on a bounded domain � equipped with initial and homogeneous Dirichlet boundary
conditions, where � is the Laplace operator, is continuous in λ as λ varies in [0, 1].
In such situations, one might be able to apply the results obtained here to understand
some aspects of the dynamics which are uniform (robust) respect to parameters for the
systems under considerations, as we will see in Theorem 2.7 below.

Now we state and prove the uniform Lyapunov stability result for the attractors
Aλ, which is a simple consequence of Theorem 2.4. For this purpose, we need to impose
on Sλ(t) the following uniform continuity assumption.

(C2) For any bounded subset B of X and T > 0, Sλ(t)x is uniformly continuous in
x on B in a uniform manner with respect to λ ∈ � and t ≤ T , i.e., for any ε > 0, there
exists a δ > 0 such that for all x, y ∈ B with d(x, y) < δ,

d (Sλ(t)x, Sλ(t)y) < ε, ∀t ≤ T, ∀λ ∈ �.

THEOREM 2.7. In addition to the hypotheses in Theorem 2.3, assume that Sλ(t)
satisfies the uniform continuity assumption (C2). Let Aλ be the global attractor of Sλ(t).
If Aλ is continuous in λ, then the family {Aλ} is uniformly Lyapunov stable; i.e., for any
ε > 0, there exists a δ > 0 independent of λ such that for all λ ∈ �,

d(Sλ(t)x,Aλ) < ε, ∀t ∈ �, (2.10)

provided d(x,Aλ) < δ.

REMARK 2.8. The converse of the conclusion in Theorem 2.7 fails to be true; i.e.,
uniform Lyapunov stability of {Aλ} does not imply continuity of Aλ in λ in the general
case; see Remark 3.3.

Proof of Theorem 2.7. Let U be the bounded subset of X appearing in (2.2). By
(2.2), it is easy to see that Aλ ⊂ U for all λ ∈ �. Set

B = {x ∈ X | d(x,U) ≤ 1}.

Since Aλ is continuous in λ, thanks to Theorem 2.4, we know that Aλ equi-attracts B
for λ ∈ �.

Let ε > 0 be given arbitrary. Then there exists a T ∈ � independent of λ such that

dH(Sλ(t)B,Aλ) < ε, ∀t > T, ∀λ ∈ �. (2.11)

On the other hand, by the continuity assumption (C2) one can find a positive number
δ < 1 such that for x, y ∈ B with d(x, y) < δ,

d (Sλ(t)x, Sλ(t)y) < ε, ∀t ≤ T, ∀λ ∈ �. (2.12)

Now for any λ ∈ �, we claim that (2.10) holds for all x ∈ X with d(x,Aλ) < δ. Indeed,
if d(x,Aλ) < δ, we can pick a y ∈ Aλ such that d(x, y) < δ. Therefore for t ≤ T , we
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conclude by (2.12) and Sλ(t)y ∈ Aλ that

d (Sλ(t)x,Aλ) ≤ d (Sλ(t)x, Sλ(t)y) < ε.

For t > T , note that d(x,Aλ) < δ implies x ∈ B, the conclusion follows immediately
from (2.11).

Finally, let us state and prove the following equivalence result regarding equi-
attraction and continuous dependence of attractors on parameters.

THEOREM 2.9. In addition to the hypotheses in Theorem 2.3, assume that Sλ(t)x is
equi-continuous in λ for (t, x) in any bounded subset of � × X. Let Aλ be the global
attractor of Sλ(t). Then {Aλ} is equi-attracting iff Aλ is continuous in λ with respect to
the Hausdorff distance.

Proof. We only need to prove the “only if” part. So we assume that {Aλ} equi-
attracts each bounded subset of X .

Let U be the bounded subset of X in (2.2). Clearly Aλ ⊂ U for all λ ∈ �. Let ε > 0.
By the equi-attraction of {Aλ}, there exists a τ ∈ � independent of λ such that, for any
λ ∈ �, dH(Sλ(t)U ,Aλ) < ε provided t ≥ τ . It follows that

dH(Sλ(t)Aλ′,Aλ) < ε, ∀t ≥ τ, ∀λ, λ′ ∈ �.

By the equi-continuity assumption on Sλ(t)x in λ, there exists a δ > 0 such that

sup
x∈U

d(Sλ′(τ )x, Sλ(τ )x) < ε, ∀λ, λ′ ∈ � with ρ(λ′, λ) < δ.

As a consequence,

dH(Sλ′(t)Aλ′, Sλ(τ )Aλ′) < ε, ∀λ, λ′ ∈ � with ρ(λ′, λ) < δ,

and hence

dH(Aλ′,Aλ) = dH(Sλ′(τ )Aλ′, Aλ)
≤ dH(Sλ′(τ )Aλ′ , Sλ(τ )Aλ′) + dH(Sλ(τ )Aλ′, Aλ) < 2ε

for any λ, λ′ ∈ � with ρ(λ′, λ) < δ, which gives

δH(Aλ′,Aλ) = max(dH(Aλ′ ,Aλ), dH(Aλ,Aλ′)) < 2ε.

This finishes the proof of the desired result.

REMARK 2.10. Although the continuity assumptions on Sλ(t) in Theorems 2.3–2.5
seem to be rather strong, they can be verified under quite natural conditions for specific
systems. We will illustrate this in Section 3 with an example involving an ordinary
differential equation with a parameter λ.

3. Example. We consider the following ordinary differential system with
parameter λ ∈ �

x′(t) = f (x(t), λ), t ≥ 0, (3.1)λ
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where � is a compact metric space with metric ρ and the vector field f : �n × � → �n

is always assumed to be locally Lipschitz in the space variable x. For any x ∈ Rn, denote
by φλ(t; x) the unique solution x(t) of (3.1)λ with initial value x(0) = x. We assume that

ASSUMPTION (SA). Each solution of (3.1)λ exists on �+; moreover, for any bounded
subset B of �n and T > 0, there is a constant CT > 0 independent of λ such that

|φλ(t; x)| ≤ CT , ∀t ∈ [0, T ], x ∈ B, λ ∈ �. (3.2)

This enables us to define a family of dynamical systems Sλ(t) on �n for λ ∈ �,

Sλ(t)x = φλ(t; x), ∀t ≥ 0, x ∈ �n. (3.3)

We claim that if f is continuous in (x, λ) on �n × �, then the continuity assumptions
in the theorems of Section 2 are satisfied by Sλ(t).

Here we only verify that Sλ(t)x satisfies the equi-continuity assumption in λ since
the proof for the other ones is easy or follows a similar manner and is thus omitted. Let
B be a bounded subset of �n and T > 0. We may assume that B is closed. If Sλ(t)x is
not equi-continuous in λ with respect to (t, x) ∈ [0, T ] × B, there would exist sequences
λn, λ

′
n ∈ � with ρ(λn, λ

′
n) → 0 and (tn, xn) ∈ [0, T ] × B such that for some ε0 > 0,
∣∣Sλn (tn)xn − Sλ′

n
(tn)xn

∣∣ ≥ ε0, n ∈ N. (3.4)

Due to the compactness, it can be assumed that λn, λ
′
n → λ0 and (tn, xn) → (t0, x0).

Let xn(t) = Sλn (t)xn, yn(t) = Sλ′
n
(t)xn. Then

x′
n(t) = f (xn(t), λn), y′

n(t) = f ( yn(t), λ′
n), (3.5)

xn(0) = yn(0) = xn. (3.6)

By Assumption (SA), we see that xn(t) and yn(t) are uniformly bounded on [0, T ].
It follows by (3.5) and the joint continuity of f (x, λ) in (x, λ) that x′

n(t) and y′
n(t)

are uniformly bounded on [0, T ]. By the Arzela-Ascoli Theorem, there exists a
subsequence nk of n such that xnk (t) and ynk (t) converge uniformly on [0, T ] to functions
x0(t) and y0(t), respectively. Using (3.5) and the joint continuity of f (x, λ) in (x, λ)
once again, one sees that x′

nk
(t) and y′

nk
(t) converge uniformly on [0, T ]. Hence

we necessarily have x0(t), y0(t) ∈ C1([0, T ]; �n); moreover, xnk (t) and ynk (t) converge
in C1([0, T ]; �n) to x0(t) and y0(t), respectively. Passing to the limit in (3.5) and
(3.6), we find that x0(t) and y0(t) are both solutions of (3.1)λ0 on [0, T ] with initial
value x0. Therefore x0(t) ≡ y0(t) on [0, T ]. Thus it follows that for any ε > 0,
max0≤t≤T |xnk (t) − ynk (t)| < ε when k is sufficiently large. However, this contradicts
(3.4).

The following is a direct application of the theorems in Section 2.

THEOREM 3.1. Assume that f ∈ C(�n × �) and satisfies Assumption (SA). Suppose
that the family of the solution semigroup {Sλ(t)} of (3.1)λ is equi-dissipative on �n. Let
Aλ be the global attractor of Sλ(t). Then

(1) For any r > 0 fixed, the family {Aλ[r]} is equi-attracting, where Aλ[r] is as in (1.2).
(2) {Aλ} is equi-attracting iff Aλ is continuous in λ with respect to the Hausdorff

distance.
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Fig. 1. Two equilibria at λ0

Fig. 2. One equilibrium for λ < λ0

The following example shows that a singularity (with respect to parameters) may
appear in the rate of attraction of the global attractors even in quite simple cases.

EXAMPLE 3.2. For λ ∈ [0, λ0], where λ0 = 2
√

3/9, consider the scalar equation

x′(t) = −x3(t) + x(t) + 4
√

3/9 − λ. (3.7)λ

For λ = λ0, the equation has two distinct equilibria x−
λ0

and x+
λ0

(see Fig. 1), where

x−
λ0

= −
√

3/3, x+
λ0

> 0;

and for λ < λ0, it has only one equilibrium xλ, which is continuous in λ (see Fig. 2).

Let Sλ(t) be the solution semigroup of (3.7)λ. For Eq. (3.7)λ, it is easy to check
that all the conditions in Theorem 3.1 are fulfilled.

Let λ < λ0. We observe (see Fig. 2) that

−x3 + x + 4
√

3/9 − λ > 0, for x < xλ

and

−x3 + x + 4
√

3/9 − λ < 0, for x > xλ,
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from which and the equation (3.7)λ it can be easily seen that Sλ(t)x → xλ as t → +∞
for any x ∈ �1; moreover, for any ε > 0, (xλ − ε, xλ + ε) is positively invariant under
Sλ(t). Thus xλ is globally asymptotically stable. Thanks to the basic theory of dynamical
systems (see [1, 7, 17] etc.), we know that xλ attracts each bounded subset of �1. Hence
the global attractor Aλ is precisely the equilibrium xλ.

For λ = λ0, the global attractor Aλ0 of Sλ0 (t) contains at least two points x−
λ0

and x+
λ0

. By Lemma 1.3 in [21] Chap. 1, we know that Aλ0 is connected, and hence
[x−

λ0
, x+

λ0
] ⊂ Aλ0 . One also observes that Sλ0 (t)x → x−

λ0
for x < x−

λ0
and Sλ0 (t)x → x+

λ0

for x > x+
λ0

as t → +∞. Therefore we conclude that Aλ0 = [x−
λ0

, x+
λ0

]. It is also easy to
check that for any ε > 0, (x−

λ0
− ε, x+

λ0
+ ε) is positively invariant under Sλ0 (t).

By virtue of Theorem 3.1, for any 0 < δ < λ0, the family {Aλ} is equi-attracting
for λ ∈ [0, δ]. However, since Aλ is not continuous in λ at λ = λ0 with respect to the
Hausdorff distance, it does not possess equi-attraction property for λ ∈ [0, λ0]. For
ε > 0 and bounded subset B of �1, denote by τλ(B, ε) the minimal time such that

dH(Sλ(t)B,Aλ) < ε, for t > τλ(B, ε).

Then there exist a ε0 > 0, a bounded subset B0 of �1, and a sequence λn → λ0 such
that

τλn (B0, ε0) → +∞ as λn → λ0.

Hence, there is a singularity in the attraction rate of Aλ as λ → λ0.
On the other hand, Theorem 3.1 also tells us that for any r > 0 fixed, the family of

parameterically inflated attractors {Aλ[r]} equi-attracts each bounded subset B of �1

for λ ∈ [0, λ0].

REMARK 3.3. Since for any ε > 0, (xλ − ε, xλ + ε) (λ < λ0) and (x−
λ0

− ε, x+
λ0

+ ε)
are positively invariant under Sλ(t) and Sλ0 (t), respectively, we see that the family
of attractors {Aλ} is uniformly Lyapunov stable for λ ∈ [0, λ0]. However, Aλ is not
continuous at λ = λ0. This shows that the converse of the conclusion in Theorem 2.7
may fail to be true in the general case.
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