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One of the many interesting conjectures proposed by S. M. Ulam in (5) 
can be stated as follows: 

If G and H are two graphs with p points vt and ut respectively (p > 3) such 
that for all i, G — vt is isomorphic with H — uu then G and H are themselves 
isomorphic, 

P. J. Kelly (3) has shown this to be true for trees. The conjecture is, of 
course, not true for p = 2, but Kelly has verified by exhaustion that it holds 
for all of the other graphs with at most six points. Harary and Palmer (2) 
found the same to be true of the seven-point graphs. 

In (1) Harary reformulated the conjecture as a problem of reconstructing G 
from its subgraphs G — vt and derived several of the invariants of G from the 
collection G — vt. 

The purpose of this paper is to show that any tree T can be reconstructed 
from fewer than all the subgraphs T — vi} namely from only its maximal 
(proper) subtrees. This is an improvement of Kelly's result because the latter 
depends on all of the subgraphs (both the trees and the other forests) obtained 
by the deletion of a point. Definitions that do not appear here, as well as 
basic theorems on trees, may be found in Kônig (4). In particular, a forest is 
a graph with no cycles; a tree is a connected graph with no cycles. 

Let Ui, . . . , up be the points of a connected graph G and let Gt = G — ut 

be the graph obtained by deleting the point ut from G (as well as all the lines 
incident with ut). Henceforth we consider only graphs with more than two 
points. 

If T is any tree, then every subgraph T — vt is a forest. Since we have 
assumed that p > 3, at least one of these forests is not a tree. Now G itself 
is a cycle of length p if and only if each d is a path of length p — 2. Hence 
the question of whether or not G is a tree is easily determined from the collection 
Gi because G is a tree if and only if G is not a cycle and each Gt is a forest. 

The following ten theorems show that every tree can be reconstructed from 
those subgraphs (obtained by removing one point at a time) that are them
selves trees. Let vi, . . . , vn be the points of degree one (end points) in the tree 
T and let Tt = T — vt be the subtree obtained by deleting vt from T. Recall 
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that every tree is either centred or bicentred; see (4, p. 65). The first two 
theorems are simple but useful. 

THEOREM 1. If T is centred, at most two of the subtrees Tt are bicentred. 

Proof. Let T be centred at c and, without loss of generality, let P(v\, v2) 
be a path in T whose length is the diameter of T. Then c is a point of P{v\, v2) 
and for each i > 3, Tt is centred at c. Obviously if T\ or T2 is centred, c is the 
centre. And if T\ or T2 is bicentred, c is one of the centres. 

COROLLARY 1.1. If at least three of the Tt are bicentred, T is bicentred. 

This corollary is merely the contrapositive of Theorem 1. Similar reasoning 
yields the next result. 

THEOREM 2. If T is bicentred, at most two of the Tt are centred. 

COROLLARY 2.1. If at least three of the Tt are centred, T is centred. 

COROLLARY 2.2. If T has at least five end points, then T is centred or bicentred 
according as the majority oj the Tt are centred or bicentred. 

When the number of end points of T is less than five, the question of whether 
or not T is centred is not necessarily determined by the number of subtrees Tt 

which are centred. But the main result is still settled more easily here than in 
the general case. Clearly T must be homeomorphic to one of the trees shown 
in Figure 1 according as T has two, three, or four end points. By examining all 
of the possibilities for the subtrees Tu we obtain Theorem 3. The exhaustive 
details are omitted. 

FIGURE 1. 

THEOREM 3. If T has less than five end points, then T is determined by the Tt. 

The next theorem shows how to determine the degree of the centre c of T 
from the degree of c in the subtrees Tt. Note that when T is centred, the radius 
of T is the same as the radius of any subtree Tt that is centred. Recall that n 
denotes the number of end points of T. We call a tree a star if all of its points 
except one are end points. 

THEOREM 4. Let T be a tree with at least three end points which is centred at c. 
Let r be the radius of T. Let m be the maximum degree of c in those subtrees Tt 

that are centred. Then deg c = m in T unless each centred subtree Tt is isomorphic 
to a tree Tr constructed by identifying the centres of a star having n — 3 end points 
and a path of length 2r. In this case deg c — m + 1. 
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Proof. Wi thou t loss of generality we can let P(vh v2) be a pa th in T whose 
length is 2r, the diameter of T. Since T has a t least three end points, we can 
let vz be one such t h a t the distance d from z/3 to c is maximal among all the 
end points vt with i > 2. If d > 1, then deg c = m. If d = 1, then all of the 
end points of T except possibly v\ and v2 are a t distance one from c. Hence Tt 

is isomorphic to T' for i > 2. If the radius r = 1, then 7"] and T2 are also 
isomorphic to T'. Obviously deg c = m + 1 in this case. 

The next three theorems show how to reconstruct T from the subtrees Tf 

when T is centred. I t is convenient to consider separately the cases when T 
has none, one, or two subtrees Tt t h a t are bicentred. 

For the reconstruction, we need the following definition. A branch (B, v) 
of a tree a t the point v is a maximal connected subtree containing v and exactly 
one point of the tree which is adjacent with v. 

T H E O R E M 5. Let T be a tree with at least Jive end points such that exactly two 
of the subtrees Tt are bicentred. Then T is determined by the Tt. 

Proof. Since T has a t least five end points, a t least three of the subtrees Tt 

are centred. Therefore Corollary 2.1 implies t ha t T is centred, say a t c. Wi thou t 
loss of generality we can let T\ and T2 be the two bicentred subtrees of the 
hypothesis. Therefore each Tt for i > 3 is centred. In the proof of Theorem 1, 
it is shown tha t this centre is c for every Tt. Using Theorem 4, we can determine 
the degree of c in T from the degree of c in the subtrees Tt. Now the proof is in 
two par ts according as the degree of c is two or greater than two. 

Part 1. The degree of c is two. 
Since there are a t least four end points in each Tu we have the following 

two cases: 
Case 1.1. For each i > 3, Tt has a branch a t c with only one end point in Tt. 
Case 1.2. For some i > 3, Tt has more than one end point in each of its two 

branches a t c. 
In Case 1.1, let r be the radius of T. Since T has a t least five end points, one 

of the branches of T a t c, say (B\, c), mus t be a pa th of length r. For each 
i > 3 let Wi be the point of Tt with deg wt > 2 in Tt and minimum distance 
d(c, w^. Let d = min d(c, wt) for i > 3. Then d is the distance in T from c 
to the nearest point of degree greater than two. We can assume t h a t T\ has 
centres c\ and c% and a point u of degree greater than two with d(u, c2) = d — 1. 
Therefore Ti mus t have been obtained by deleting the point of degree one 
t h a t is in (Bi, c). Hence the branch of T\ a t C\ which contains c2 is the other 
branch of T, say (B2, c). 

In Case 1.2, for each i > 3 let the two branches of Tt a t c be denoted by 
(Bt1, c) and (Bf, c). Let pi + 1 be the maximum of the number of points in 
any of these branches and let p2 be the minimum. Then if (Bi, c) and (B2, c) 
again denote the two branches of T a t c, we can assume t h a t (B\, c) contains 
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pi + 1 points and (B2} c) contains p2 + 1 points. For each i > 3, the branches 
of Ti at c have either pi and p2 + 1 points or pi + 1 and p2 points, and so 
pi > pi-

If pi > p2 + 1, then any branch of 7\ at c which contains pi + 1 points 
is also a branch of T at c. The other branch of T at c is obtained by taking a 
branch some Tj at c which contains p2 + 1 points. 

If pi < p2 + 1, then pi + 1 = p2 + 1 because pi > p2. Hence for each 
i > 3 we can assume that (Bt

l, c) has pi + 1 points and (J5^2, c) has pi points. 
If the branches (23/, c) are all isomorphic, then each branch of T at c is 
(B*1, c)« Otherwise if (£>/, c) and (2V> c) are not isomorphic, then ( £ / , c) 
and (2V, c) are the branches of T at c. 

The only remaining possibility has pi = p2 + 1. For some i > 3 we can 
choose Ti so that (£>/, c) has pi + 1 points and (23 *2, c) has p2 = pi — 1 
points. Then (23/, c) is a branch of T at c. Let «; be the point of (23/, c) that 
has degree greater than two and minimum distance d = d(c, w) from c. We 
can assume that T\ has centres ci and c2 and a point w of degree greater than 
two such that d(ci, u) = <2, that u is in the branch of Ti at ci that does not 
contain c2, and that there are pi points in this branch. Then 7\ must have 
been obtained from T by deleting a point from the larger branch of T at c and 
the other branch of T at c is the branch of 7\ at Ci which contains c2. Thus T 
is reconstructed, completing the proof of Part 1. 

Part 2. The degree of c is greater than two. 
As above let r be the radius of T. Then vi and v2 are the only points of T 

at distance r from c and each occurs in a different branch of T at c. Let these 
two branches be (231, c) and (23 2, c). Let (B3, c), . . . , (23 s, c) be the other 
branches of T at c. 

For each i > 3 let (23/, c) and (B^2, c) be the two branches of Tt at c that 
contain points at distance r from c, in accordance with the hypothesis of the 
theorem. Let M be the maximum for i > 3 of the number of points in 
(Bi\ c) U (B<2, c). Choose Tk with M points in (Bk\ c) U (£fc

2, c). Clearly 
r& must have been obtained by deleting a point from some branch (23 u c) of T 
with i > 3. Hence the branches (23i, c) and (232, c) of 2" are precisely (2V> c) 
and (23A

2, c). 
To determine the other branches of T we consider two cases: 
Case 2.1. (231, c) and (23 2, c) are paths of length r. 
Case 2.2. (231, c) has more than one end point in T. 
For Case 2.1, we know that T\ and T2 are isomorphic. Let c\ and c2 be the 

centres of T\. Suppose Ci is the centre at which there is a branch in T\ that is 
a path of length r. Then there is another branch at c\ that is a path of length 
r — 1. The remaining branches of !Ti at ci can be taken as the other branches 
(5»,c), . . . , (S„c ) of T a t e . 

For Case 2.2, choose Tj with j > 3 so that there are M" — 1 points in 
(23/, c) VJ (23/, c). Then Tj must have been obtained by deleting a point 
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from either (Bh c) or (52 , c). Let ( 5 / , c), . . . , ( 5 / , c) be the other branches 
of Tj at c. Then the branches (B3, c), . . . , (5*, c) of T at c are precisely 
( 5 / , c), . . . , (Bj*, c). Hence we know all the branches of T at c, so that T 
has been reconstructed. This completes the proof of Part 2 and of the theorem. 

THEOREM 6. Let T be a tree with at least four end points such that exactly one 
of the subtrees Tt is bicentred. Then T is determined by the Tf. 

Proof. Since T has at least four end points, at least three of the subtrees Tt 

are centred. Therefore Corollary 2.1 implies that Tis centred, say at c. Without 
loss of generality we can let 7\ be the bicentred subtree of the hypothesis. 
Thus each T% for i > 2 is centred and we know that this centre is c. Again using 
Theorem 4 to determine the degree of c in T from the degree of c in the sub
trees Tu we present the proof in two parts according as the degree of c is two 
or greater than two. 

Part 1. The degree of c is two. 
Let r be the radius of T. Since only T\ is bicentred, we know that T has one 

branch at c, say (Bi, c), which contains exactly one point at distance r from c, 
namely v\. The other branch, say (23 2, c), contains at least two such points. 

Suppose T\ has a branch at one centre, say Ci, which is a path of length r 
containing the other centre c2. Then one branch of T at c is a path of length r 
and the other is the branch of T\ at c2 that contains C\. 

Otherwise each branch of T at c contains points v of degree one such that 
T — v is centred. Let 5 be the set of all subtrees Tt with i > 1 such that Tt 

has a branch at c, say (Bi1, c), that contains at least two points at distance r 
from c. For each Tt in S, let kt be the number of points in (B^, c) and let mt 

be the number of points in (B*1, c) at distance r from c. Let k be the maximum 
of the kf and let m be the maximum of the mt. Let Sf be the set of all Tt in 5 
such that ki = k and mt = m. Since each Tj in S' must have been obtained 
by deleting a point (B\, c), the branch (B2, c) of T is given by (Bj1, c). 

Let S" be the set of all subtrees Tt with i > 1 that are not in S'. The branch 
(Bi, c) occurs as a branch of each Tt in S". It can be identified because it is 
the only branch that is in each Tt of 5 " and that has at least two end points 
exactly one of which is at distance r from c. 

Part 2. The degree of c is greater than two. 
As in Part 1 we can let (Bi, c) be the branch of T at c that contains exactly 

one point at distance r from c. Let (52 , c) be the branch that contains at least 
two such points. Since at least one of these branches has more than one end 
point in T, the proof is the same as that of Theorem 5, Part 2, Case 2.2. 

THEOREM 7. Let T be a tree with at least three end points such that each subtree 
T i is centred. Then T is determined by the Tt. 

Proof. Since the subtrees TYof Tare all centred, Corollary 2.1 implies that T 
is centred, say at c. Further the centre of each subtree Tt is also c. 
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Suppose the degree of c in T is not equal to the degree of c in some Tt. Then 
Vt must be an end point adjacent to c. Therefore T is easily obtained from this 
subtree Tt by adding a line at c. 

Now we can assume that for each i the degree of c in Tt is the same as the 
degree of c in T. Let the branches of each Tt at c be (B^, c), . . . , {Bt

s, c) 
where 5 = deg c. Let p\ + 1 be the maximum of the number of points in any 
branch among all the Tt. 

Without loss of generality we can assume that T\ has isomorphic branches 
CBi1, c), . . . , (Bim, c) each with pi + 1 points and that no Tt has more than 
m branches at c isomorphic with (Bi1, c). Let S be the collection of all Tt with 
m branches at c, each isomorphic to (iJi1, c). Let S' be the collection of subtrees 
Ti that are not in S. Then if Tt is in S', 7\ has exactly m — \ branches at c 
that are isomorphic to (Bi1, c). 

If Sf = 0, then deg c = m + 1 and each branch of T at c is isomorphic 
to CB]1, c). If S' 9^ 0, then T has exactly m branches at c that are isomorphic 
to (Bi1, c). Let the other branches of T a t c be (Bm+h c), . . . , (JBS, C). 

Suppose (-Bi1, c) has ^i end points in Ti, say Wi, . . . , uni. Then there is a 
subtree Tr of T rooted at c such that exactly m — 1 of the branches of T' at £ 
are isomorphic to (Si1, c) and such that the set S' of subtrees can be partitioned 
into m sets Si, . . . , Sm subject to the following restrictions: 

(1) Each set Sj consists of exactly ni subtrees TV, . . . , Tni
j and for each i, 

Ttj has at least one branch at c that is isomorphic to (J^i1 — uu c). 
(2) The union of the other branches at c of TV is a tree which when rooted 

at c is isomorphic to (T\ c). 
Let (Ci, c), . . . , (Cs_m, c) be the branches of (Tf, c) that are not isomorphic 

to (-Bi1, c). Then these can be taken as the other central branches (Bm+i, c), . . . , 
(BS1 c) of T. Hence we know all the central branches of T and so T is determined. 

For centred trees, we have now shown that T may be reconstructed from its 
subtrees Tt. 

The next three theorems show how to reconstruct T from the subtrees Tt 

when T is bicentred. When each subtree Tt is also bicentred, the proof is easy 
because we make use of the result for centred trees. Otherwise the proofs are 
much more involved and are similar to the proofs of Theorems 5 and 6. 

THEOREM 8. Let T be a tree with at least four end points such that each subtree 
Ti is bicentred. Then T is determined by the Tt. 

Proof. Since at least three of the Tt are bicentred, T is bicentred, say at c\ 
and ci. Let T' be the tree obtained from T by subdividing the central line c\ C<L 
introducing a new point, say c. Since each Tt is bicentred, with centres d and 
C2, we can subdivide the central line c\ c<i of Tt by inserting a new point, c, to 
obtain a new collection of trees T/ centred at c. Now apply Theorem 3 or 7 
to the T/ to obtain T'. Then T is obtained from T' by replacing the C\-ci 
path (of length 2) by a line. 
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THEOREM 9. Let T be a tree with at least jive end points such that exactly two 
of the subtrees Tt are centred. Then T is determined by the Tt. 

The details of the proof are rather involved and similar to those in the proof 
of Theorem 5, and are omitted here. 

THEOREM 10. Let T be a tree with at least four end points such that exactly one 
of the subtrees Tt is centred. Then T is determined by the Tt. 

The proof of this theorem is also omitted. The details are similar to those in 
the proof of Theorem 6. 

The principal result now follows from a combination of Theorems 1 through 
10. 

MAIN THEOREM. Every tree T is determined by its subtrees T\. 

From Theorem 7 we obtain the corresponding result for rooted trees. 

COROLLARY 7.1. Let T be a rooted tree with root v. Let Vi, . . . , vn be the points 
of T that have degree one with vt 9^ v for all i. Then T is determined by the rooted 
subtrees Tt = T — vt. 

Proof. As in the case of ordinary trees, the degree of v in T is easily deter
mined from the degree of v in the rooted subtrees Tt. If the degree of v in T 
is greater than one, Theorem 7 provides a method for reconstructing T from 
the subtrees Tt. Otherwise we consider two cases: 

Case 1. None of the Tt contain points of degree greater than two. Then T 
has at most two points of degree one besides v. In either case T is easily 
reconstructed. 

Case 2. Some subtree Tt contains a point of degree greater than two. For 
each such Tu let dt be the distance in Tt from v to the nearest point of degree 
greater than two. Let d be the minimum of the dt. Then d is the distance in T 
from v to the nearest point, say u, of degree greater than two. Let ut be the point 
of Ti at distance d from v. Let T( be the tree rooted at ut obtained from Tt 

by deleting the v — ut path from Tt. Let T' be the tree rooted at u which is 
obtained from T by deleting the v — u path from T. Since the degree of u in 
T' is greater than or equal to two, Theorem 7 provides a method for recon
structing T' from the T(. Then T is obtained from T' by identifying one end 
of a path of length d with u and rooting the resulting tree at the other end of this 
path. 

We next have the corresponding result for oriented trees. An oriented graph 
is obtained from a graph when each line is assigned a unique direction indicated 
by an arrow. One can show that Theorems 5 through 10 hold for oriented 
trees. The proofs need only to be modified slightly. Also it can be verified that 
any oriented tree T with three or four end points is determined by the subtrees 
Tx. Thus we have the following corollary of the Main Theorem. 
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COROLLARY 1. If T is an oriented tree with at least three end points, then T 
is determined by the oriented subtrees Tt. 

Obviously no oriented tree with exactly three points is determined by the 
oriented subtrees TV Even when T is an oriented path with more than three 
points, T is not necessarily determined by the collection Tt. This is shown by 
the two oriented trees in Figure 2. Each of these trees has the same subtrees 
T\ and 7Y 

FIGURE 2 

We conclude with another special case. A signed tree has the numbers + 1 or 
— 1 assigned to each of its lines. As in the case of oriented trees, Theorems 5 
through 10 hold for signed trees. I t can be verified that Theorem 3 also holds. 
Hence we have: 

COROLLARY 2. If T is a signed tree, T is determined by the collection Tt. 

Clearly one can derive the main theorem for various other species of trees 
by similar considerations. 
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