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Nonlinear dynamical systems often allow for multiple statistically stationary states for
the same values of the control parameters. Herein, we introduce a framework that
selectively eliminates specific nonlinear triad interactions, thereby suppressing emergence
of a particular state, and enabling the emergence of another. The methodology is applied
to yield the multiple convection-roll states in two-dimensional planar Rayleigh–Bénard
convection (e.g. Wang et al., 2020, Phys. Rev. Lett., vol. 125, 074501) in the turbulent
regime. The intrusive framework presented here is based on the observation that the
characteristic wavenumber associated with the mean horizontal size of the convection
rolls mediates triadic scale interactions resulting in both kinetic energy and temperature
variance cascades that are dominant energy transfer processes in a statistically stationary
state. Suppression of these cascades mediated by a candidate wavenumber hinders the
formation of the convection rolls at that wavenumber. Consequently, convection rolls
are formed at another candidate wavenumber which is allowed to mediate energy to
establish the cascade processes. In case no stable convection-roll states are possible, this
technique does not tend to yield any convection rolls, making it a suitable method for
discovering multiple states. Whereas in previous investigations the signature of different
states in the initial condition in simulations yielded the multiple states, the present method
alleviates such dependence of the emergence of multiple states on initial conditions. It
is also demonstrated that accurate predictions of statistical quantities, such as Nusselt
number and volume-averaged Reynolds numbers, can also be obtained using this method.
The convection-roll states yielded using this technique may be used as initial conditions
for direct simulations quickly converging to the target roll state without taking long
convergence routes involving state transitions. Additionally, because only one state can
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possibly emerge in each simulation, this technique can empirically designate each of the
multiple states with respect to their stability.

Key words: Bénard convection, buoyancy-driven instability, turbulence theory

1. Introduction
Nonlinear dynamical systems often undergo state transitions as the control parameters
are changed. Such bifurcations are generally characterised numerically using bifurcation
diagrams. For example, to obtain steady and periodic solutions of nonlinear systems,
numerical bifurcation analyses are performed in phase diagrams spanned by control
parameters (Dijkstra et al. 2014); the continuation methods have been preferred to
find these bifurcation diagrams, for example in thermal convection problems, such as
in inclined layer convection (ILC) (Reetz & Schneider 2020; Reetz, Subramanian &
Schneider 2020) and in steady planar Rayleigh–Bénard convection (RBC) with side-
wall effects (Boullé et al. 2022). The bifurcation studies may also reveal junction points
in bifurcation diagrams at which two or more branches of solutions intersect, implying
the coexistence of several statistically stationary states with different transport properties
for the same control parameters. Such bifurcation junctions have been reported in both
turbulent and non-turbulent flow regimes. In recent literature, these states have been
referred to as the multiple states. Examples of such flows include Taylor–Couette flow
(Huisman et al. 2014; van der Veen et al. 2016), both rotating RBC and non-rotating two-
dimensional (2-D) RBC (Xi & Xia 2008; van der Poel et al. 2012; Wang et al. 2018; Favier,
Guervilly & Knobloch 2019), double diffusive convection (Yang et al. 2020), rotating
spherical Couette flow (Zimmerman, Triana & Lathrop 2011) and von Karman flow
(Ravelet et al. 2004; Cortet et al. 2010; Faranda et al. 2017), as well as some geophysical
flows (Broecker, Peteet & Rind 1985; Weeks et al. 1997; Schmeits & Dijkstra 2001; Li,
Sato & Kageyama 2002). For discovering the multiple states without change in control
parameters, scientists have relied on computer simulations designed to yield these states.
In the present work, we present a simple yet efficient methodology to quickly uncover the
possible multiple states for a chosen set of control parameters in the turbulent regime in
an example flow configuration, i.e. 2-D RBC.

The RBC is a canonical flow configuration for thermal convection. Fluid entrapped
between a heated bottom plate and a cooled top plate is driven by buoyancy in RBC
(Bodenschatz, Pesch & Ahlers 2000; Ahlers, Grossmann & Lohse 2009; Chillà &
Schumacher 2012; Schumacher & Sreenivasan 2020; Xia et al. 2023; Lohse & Shishkina
2024). Generally, the effect of buoyancy is modelled using the Boussinesq approximation.
Large-scale superstructures of horizontal size much larger than the distance between the
plates are prevalent in three-dimensional (3-D) RBC (Pandey, Scheel & Schumacher 2018;
Stevens et al. 2018; Krug, Lohse & Stevens 2020), and multiple states with different
transport properties have not been identified as such. On the other hand, large-scale
convection rolls whose horizontal size is similar to the distance between the plates are
a distinctive feature of 2-D RBC. Depending on the flow driving strength, multiple roll
states with different mean aspect ratios (Γr ) can be yielded. Wang et al. (2020) extensively
explored 2-D planar RBC over a wide range of Rayleigh numbers (107 � Ra � 1010) and
Prandtl numbers (1 � Pr � 100) in computer simulations. They obtained multiple states
with 2/3 � Γr � 4/3; the lower limit is approached at larger Ra. They showed that the
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range of Γr obtained in simulations is reliant on the balance between elliptic instability
and viscous damping.

The multiple states captured by Wang et al. (2020) in their direct numerical simulations
(DNS) depended on the aspect ratio of the initial roll states. In cases where Γr of the
converged statistically stationary state was different from the initial state, the convergence
routes involved long transitions between states. In addition, the use of an exhaustive
set of initial conditions for the realisation of all possible states might not be possible
in such a methodology. Herein, we propose a novel technique that eliminates specific
triad interactions involving one or more characteristic wavenumbers corresponding to the
desired roll size. Consequently, roll formation at the target wavenumbers is suppressed,
encouraging roll formation at other candidate wavenumbers. The proposed methodology
can capture a state significantly quicker than even the DNS initialised with a target roll
state, and the convergence route does not include state transitions. As will be demonstrated
in the paper, this method circumvents the dependence of the converged roll state on the
initial condition. The converged flow statistics obtained for the multiple states using the
proposed method, such as Nusselt number (Nu) and volume-averaged horizontal and
vertical Reynolds numbers, are also found to be in very good agreement with those
obtained from DNS.

The turbulent 2-D RBC system allows for multiple states for a particular set of control
parameters, unlike most other previous studies of emerging states in thermal convection
with change in control parameters. For example, the bifurcation studies of ILC by Reetz &
Schneider (2020) and Reetz et al. (2020) obtained the different states in phase diagrams
changing the control parameters. In their ILC system, Reetz et al. (2020) found that (see p.
3 therein): ‘Complex temporal dynamics may be observed where invariant states coexist
at equal values of the control parameters.’ In the present work, we compute these multiple
states in a turbulent regime, far above the critical point. A typical numerical continuation
method is unable to obtain the multiple states in one go as one continues along a branch. As
mentioned previously, Wang et al. (2020) obtained these states by guiding the solutions of
the nonlinear system towards a target state by prescribing the signature of the target states
in the initial conditions. In contrast, we obtain the solutions more quickly, and irrespective
of the initial conditions, by manipulating the energy transfer processes in triad interactions.
Other methods of triad decimation have been used previously in studies of homogeneous
isotropic turbulence (Frisch et al. 2012; Buzzicotti et al. 2016; Lanotte, Malapaka &
Biferale 2016). However, in the present work, we only eliminate certain interactions in
chosen triads involving the candidate wavenumber for roll formation as the mediator to
guide the solutions towards target states instead of decimating whole triads.

2. Methodology
In our flow configuration, the bottom wall is heated and the top wall is cooled, with
the gravity vector pointing towards the heated bottom wall. The two walls are located
at z = 0 and z = H , respectively, so that H is the length scale associated with the
thermal energy input to the system. The free-fall time scale denoted by t f = √

H/αg �T ,
where α is the thermal expansion coefficient, g is the magnitude of gravitational
acceleration, and �T = Tb − Tt is the temperature difference between the two plates,
is the time scale associated with the problem. Consequently, the velocity scale used for
non-dimensionalisation is u f = H/t f . The horizontal and wall-normal components of
coordinates are x = (x, z), and velocity is u = (u, w).

The RBC is governed by the Oberbeck–Boussinesq equations (OBEs). Here, �T is
considered small so that the Boussinesq approximation is applicable. The following are
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the non-dimensionalised forms of the OBEs governing velocity u and temperature T :

∇ · u = 0, (2.1)

∂t u + u · ∇u = −∇ p +
√

Pr

Ra
∇2u + T ẑ + f , (2.2)

∂tT + u · ∇T = 1√
Ra Pr

∇2T + fT . (2.3)

In (2.2) and (2.3), f and fT are suitably chosen forcing terms. For DNS, both f and
fT are 0. As discussed later, in § 2.2, for the presented method, the expressions for the
forcing terms f and fT are such that certain triad interactions are removed, suppressing
the formation of convection rolls with chosen Γr .

The walls are impermeable where Dirichlet boundary conditions are applied for both T
and u. We consider only the no-slip boundaries so that u = 0. The boundary conditions
for T are T = 1 at z = 0, and u = T = 0 at z = 1. In the horizontal direction, a periodic
boundary condition is applied for both T and u.

The non-dimensional parameters associated with the system are the Prandtl number
Pr = ν/κ , where ν and κ are the kinematic viscosity and thermal diffusivity, respectively,
and the Rayleigh number Ra = gα �T H3/νκ , denoting the relative strength of thermal
driving with respect to viscous dissipation. Once statistical stationarity is achieved in the
simulations, the thermal energy input to the system is balanced by the viscous dissipation.
Heat transport balances the thermal dissipation. Shraiman & Siggia (1990) and Ahlers
et al. (2009) derived the kinetic and thermal dissipation rates from the kinetic energy and
temperature variance budget equations: respectively,

〈uzT 〉 = 1√
Ra Pr

(Nu − 1) = 〈ε〉 =
〈

1
2

√
Pr

Ra
(∇u + ∇uT)2

〉
, (2.4)

〈εT 〉 =
〈

1√
Ra Pr

(∇T )2
〉
= 1√

Ra Pr
Nu. (2.5)

In these expressions, 〈·〉 indicates time and volume averaging, and ε and εT are viscous
and thermal dissipation, respectively. The Nusselt number Nu is the dimensionless heat
transport, which is an output of the system. We have also used volume averaging and time
averaging, denoted by 〈·〉V and 〈·〉t , respectively. Specifically, for performance measures,

we define the volume-averaged Reynolds number Re =
√

Re2
x + Re2

z , where

Rex =
√

〈u2〉V H/ν, (2.6)

Rez =
√

〈w2〉V H/ν. (2.7)

2.1. Numerical simulations
In this paper, we perform calculations for two [Ra, Pr ] combinations, [108, 10] and
[109, 3]. The computational domain and grid resolutions of the present simulations are
the same as those reported for their DNS for the chosen [Ra, Pr ] by Wang et al. (2020).
Therefore, all simulations presented here are fully resolved as in the DNS. Simulations

1014 A7-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
31

5 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10315


Journal of Fluid Mechanics

are performed in a computational domain of aspect ratio Γ = Lx/H = 8, with H = 1,
the distance between the two plates for both [Ra, Pr ] combinations considered. For
[Ra, Pr ] = [108, 10], 2048 × 256 grid points are used in the horizontal and vertical
directions, respectively, and 4096 × 512 grid points resolve the computational domain for
[Ra, Pr ] = [109, 3]. As suggested by Wang et al. (2020), the fastest way to capture the
multiple states in DNS is to prescribe the convection rolls with the target aspect ratio in
the initial conditions. If n(i) is the number of rolls in the initial state, then the prescribed
initial velocity and temperature fields are

u = [u(x, z), w(x, z)] =
[

sin

(
n(i)πx

Γ

)
cos (πz) , − cos

(
n(i)πx

Γ

)
sin (πz)

]
, (2.8)

T = 1 − z. (2.9)

The OBEs in (2.1)–(2.3) were solved using the pseudo-spectral code based on the
Dedalus partial differential equation solving framework (Burns et al. 2020). For spatial
discretisation, Fourier and Chebychev expansions were used in the x and z directions.
For dealiasing, we utilise the ‘3/2’ rule. Time integration was performed by the third-
order four-stage combination of a diagonally implicit Runge–Kutta scheme and an explicit
Runge–Kutta scheme (RK443 time stepper). Time snapshots were stored at a time interval
of one free-fall time unit for a period of 500 free-fall time units for the proposed forcing
methodology switching on the forcing terms in (2.2) and (2.3); this time frame was
sufficient for yielding the multiple states. However, DNS for [Ra, Pr ] = [109, 3] initiated
with the target roll states (2.8) and (2.9) did not converge to a statistically stationary state
within that interval, and therefore had to be run longer.

2.2. Definitions of f and fT : scale-to-scale energy transfer
The forcing terms in (2.2) and (2.3) remain to be defined. These terms are defined based
on the observation that the characteristic horizontal wavenumber associated with the mean
horizontal size of the convection rolls (kr , say) acts as the mediator in wavenumber triads
involved in establishing essential energy cascade processes at a statistical stationary state.
To elaborate on this point, we quantify the nonlinear interactions in OBEs in (2.1)–(2.3).

To quantify the scale-to-scale energy transfers among the streamwise wavenumbers
due to nonlinear triadic scale interactions, first Fourier transforms are performed for
the temperature and components of the velocity fields. Then, corresponding to each
wavenumber l(2π/Lx ) (where l is the integer wavenumber) or physical length scale Lx/ l,
the inverse transform is performed, thus obtaining the following flow fields corresponding
to each physical length scale in the physical space:

Tl(x, z, t) = T̂ (l, z, t) exp
(

il 2π
Lx

x
)

, (2.10)

ul(x, z, t) = û(l, z, t) exp
(

il 2π
Lx

x
)

. (2.11)

Now let us assume a triad [k, p, m](2π/Lx ), where, k, p and m = k − p are the
integer receiver, donator and mediator streamwise wavenumbers, respectively. In the
rest of the paper, the aforementioned convention is used to express the wavenumbers
involved in a triad. Favier, Silvers & Proctor (2014) defined the transfer functions
quantifying the scale-to-scale energy transfer between donator p and receiver k, mediated
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Figure 1. Scale-to-scale temperature variance transfer function TT (k, p) from DNS of 2-D RBC at [Ra, Pr ] =
[108, 10]: (a) n = 6 state (Γr = 4/3), (b) n = 8 state (Γr = 1) (Bose et al. 2024). Here, k and p are the receiver
and donator integer horizontal wavenumbers, respectively.

by the mediator m = k − p. The expressions for TT (k, p), quantifying the scale-to-scale
temperature variance transfer, and T (k, p), quantifying the scale-to-scale kinetic energy
transfer, are

TT (k, p) = −
∫

V
Tk(uk−p · ∇Tp) dV, (2.12)

T (k, p) = −
∫

V
uk · (uk−p · ∇up) dV . (2.13)

The integrands in the right-hand sides of (2.12) and (2.13) arise from the nonlinear
advection terms of the OBEs, and are essentially the transport terms in the
temperature variance and kinetic energy budget equations, respectively. For TT (k, p) > 0
(T (k, p) > 0), a positive amount of temperature variance (kinetic energy) is transferred
from the donator wavenumber p to the receiver wavenumber k. Consequently, due to
the principles of transactions, the transfer functions are anti-symmetric with respect to
k = p, i.e. TT (k, p) = −TT (p, k) and T (k, p) = −T (p, k). The mediator wavenumber
k − p mediates the energy transfer process (Verma 2019; Bose, Kannan & Zhu 2024).

Bose et al. (2024) used the above expressions for scale-to-scale energy transfer
functions (2.12) and (2.13) to study the dominant energy transfer processes in 2-D
RBC. Their flow was for [Ra, Pr ] = [108, 10]; of the multiple states, only the Γr = 1
state (here, Γr = Γ/n = 1, where n is the number of rolls in the converged state) was
considered. Based on their DNS data, they showed that kinetic energy and temperature
variance transfers between scales in a statistically stationary state are dominated by: (i) the
energy transfer to/from the convection rolls, and (ii) the scale-to-scale kinetic energy and
temperature variance cascades mediated by the convection rolls. These energy transfer
processes are depicted here by plotting TT (k, p) in figure 1, and T (k, p) in figure 2,
for the statistically stationary multiple states for [Ra, Pr ] = [108, 10]. For this [Ra, Pr ]
combination, Wang et al. (2020) found only two states – either n = 6 or n = 8 convection
rolls were obtained, with mean aspect ratios Γr = 4/3 and 1, respectively.

For TT (k, p), the scale-to-scale forward temperature variance cascade is the only
dominant process (marked by arrows) for both cases in figure 1. This represents a forward
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Triads: (k, p, k – p = ±4)

T: 8-roll DNS

Triads: (k, p, k – p = ±3)

T: 6-roll DNS

–10–3 –10–4 10–4 10–3–10–5 10–5

100 101 102

k
100 101 102

k

100

101

102

p

(a)

100

101

102

p

(b)

Figure 2. Scale-to-scale kinetic energy transfer function T (k, p) from DNS of 2-D RBC at [Ra, Pr ] =
[108, 10]: (a) n = 6 state (Γr = 4/3), (b) n = 8 state (Γr = 1) (Bose et al. 2024). Here, k and p are the receiver
and donator integer horizontal wavenumbers, respectively.

cascade because TT (k, p) > 0 for k > p (the red patch), and the corresponding blue patch,
where TT (k, p) < 0, corresponds to p > k: energy is transferred from larger scales to
smaller scales. These two patches are positioned at a constant distance away from the
line k = p (the apparent curvature is due to the abscissa and the ordinate being plotted
on logarithmic scale). Obviously, the separation is equal to the mediator wavenumber m,
and the diagrams indicate it to be a constant. In fact, m = k − p = ±kr , where kr is the
characteristic integer wavenumber corresponding to the mean horizontal wavelength of
the rolls, λr . For n = 6 and 8 states, λr = 8/3 and 8/4, respectively, so that, kr = 3 and 4
(as kr = Lx/λr ), respectively. Therefore, the triads involved in the process are of the form
[k, p, m = k − p = ±kr ](2π/Lx ). Clearly, the cascade process mediated by the rolls is
essential for the sustenance of the statistically stationary state for both cases. Physically,
the forward cascade is a consequence of an instability of the base flow comprising the
convection rolls with characteristic wavenumber kr .

In addition to the energy cascade process (marked by arrows), the energy transfers
to/from the convection rolls are also relevant for scale-to-scale kinetic energy transfer
process in figure 2 for both states. The cascade process is inverse in nature, i.e. T (k, p) < 0
for k > p (the blue patch); energy transfer is from small scales to larger scales. As
is for the temperature variance cascades in figure 1, the involved triads are of the
form [k, p, k − p = ±kr ](2π/Lx ). From these two figures, it becomes evident that the
scale-to-scale energy cascades mediated by the convection rolls are crucial for their
sustenance.

Similar analyses performed for the multiple states obtained for [Ra, Pr ] = [109, 3]
also reveal that the convection rolls mediate energy in cascade processes. Wang et al.
(2020) reported the existence of three states: n = 8 (Γr = 1), n = 10 (Γr = 4/5) and n = 12
(Γr = 2/3) convection rolls were obtained in a computational domain with aspect ratio
Γ = 8. The temperature variance transfer function TT (k, p) and kinetic energy transfer
function T (k, p) from DNS capturing these roll states are shown in figures 3 and 4,
respectively. For TT (k, p), for all three cases, cascade mediated by rolls is the only
dominant process. In addition to the cascade process, for T (k, p), as for [Ra, Pr ] =
[108, 10], the energy transfer to/from the convection rolls is also relevant.
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Figure 3. Scale-to-scale temperature variance transfer function TT (k, p) from DNS of 2-D RBC at [Ra, Pr ] =
[109, 3]: (a) n = 8 state (Γr = 1), (b) n = 10 state (Γr = 4/5), (c) n = 12 state (Γr = 2/3). Here, k and p are the
receiver and donator integer horizontal wavenumbers, respectively.
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Figure 4. Scale-to-scale kinetic energy transfer function T (k, p) from DNS of 2-D RBC at [Ra, Pr ] =
[109, 3]: (a) n = 8 state (Γr = 1), (b) n = 10 state (Γr = 4/5), (c) n = 12 state (Γr = 2/3). Here, k and p are the
receiver and donator integer horizontal wavenumbers, respectively.

So in order to suppress the emergence of convection rolls of a particular value or
range of Γr , the triad interactions involving as the mediator the target characteristic
wavenumber(s) for roll formation (kt = [k1, k2, . . .], say) must be removed. The forcing
terms f in (2.2) and fT in (2.3) are used to remove such triad interactions. Verma (2019)
described the function of the mediator wavenumber (see chapter 4 and figure 4.3 therein,
and also § 5.4.3 in Schmid, Henningson & Jankowski 2002). The role of the velocity
field due to the mediator wavenumber m = k − p in (2.12) and (2.13), for example, is
to advect the temperature/velocity field due to the donor wavenumber p as it exchanges
energy with the temperature/velocity field due to the receiver wavenumber k. The mediator
wavenumber does not receive any energy in the process, and is hence named the mediator.
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Because of the reality condition of the velocity field, the velocity field due to the mediator
wavenumbers m = ±kr is ukr (see (2.11)). Therefore, based on the above discussions and
the expressions for the transfer functions in (2.12) and (2.13), to drop all triad interactions
mediated by wavenumbers kt , the forcing terms are defined as

fT =∑
kt

ukt · ∇T , (2.14)

f =∑
kt

ukt · ∇u. (2.15)

The effect of the forcing terms on the OBEs in (2.1)–(2.3) may be understood by noting
the overall nonlinear terms of the proposed forcing methodology, (u −∑

kt
ukt ) · ∇u and

(u −∑
kt

ukt ) · ∇T , in the momentum and temperature equations, respectively. As in
linear/weakly nonlinear analysis, following Reynolds decomposition u = Ub + u′ (with
Ub = 0 for the 2-D RBC system) and T = Tb + T ′, the nonlinear terms in the OBEs
become (

u −∑
kt

ukt

) · ∇u = (
u′ −∑

kt
ukt

) · ∇u′, (2.16)

(
u −∑

kt
ukt

) · ∇T = (
u′ −∑

kt
ukt

) · ∇(Tb + T ′). (2.17)

In the above expressions,
∑

kt
ukt is the component of the perturbation velocity field, with

u′ corresponding to the chosen forcing wavenumbers kt . Except for the forcing terms, the
nonlinear terms in the perturbation equations are the same as those without forcing. Hence
the forcing should in effect eliminate the linear/weakly nonlinear growth at the forcing
wavenumbers kt .

In the next section, we demonstrate that the removal of triad interactions mediated by
one/multiple candidate wavenumbers by switching on f and fT in (2.2) and (2.3) results
in the emergence of convection rolls at another unforced candidate wavenumber. If all
stable states are suppressed, then this forcing methodology tends to converge to flow fields
with arbitrary patterns, making it a suitable method for discovering the multiple states in 2-
D RBC. Additionally, the flow statistics converge much more quickly using the proposed
forcing than in DNS initiated with a target roll state as in (2.8). Furthermore, using the
proposed technique, the dependence of the emergence of the multiple states on the initial
conditions can be bypassed for 2-D RBC.

3. Test cases
In the following, the initial conditions for the forced simulations are a T field consisting
of random perturbations superimposed on the linear conductive profile, and u = 0. We
call this initial condition ‘random’. The DNS are initialised either with the conditions
specified in (2.8) and (2.9) (we avoid cases with n(i) �= n, including state transitions that
take longer simulation times), or from states obtained in the forced simulations switching
off the forcing.

Also in the following discussion, as obtaining accurate statistics for the roll states is not
the purpose of this study, we calculate the statistics only when possible. So by the term
‘convergence’, we mean either the rate at which some statistical quantity (Re, for example)
approaches stationarity, or obtaining the desired roll state as flow structures in a simulation
that has not necessarily reached statistical stationarity.
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DNS: n(i) = n = 6

Forced: kt = 4
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Figure 5. Plots of Re as a function of simulation time (t/t f ) from direct and forced simulations for [Ra, Pr ] =
[108, 10]: (a) DNS initiated with n(i) = n = 6, and a forced simulation with kt = 4; (b) DNS initiated with
n(i) = n = 8, and a forced simulation with kt = 3. The horizontal dashed lines correspond to ±5 % of the Re
values reported by Wang et al. (2020) from their DNS.

3.1. Multiple states for [Ra, Pr ] = [108, 10]
For [Ra, Pr ] = [108, 10], Wang et al. (2020) found two statistically stationary states:
n = 6 and n = 8 convection rolls in a domain with Γ = 8 (mean aspect ratio of the rolls,
Γr = Γ/n = 4/3 and 1, respectively). The results yielding the multiple states for this
combination of control parameters are shown in figures 5 and 6.

Figures 5(a), 6(a) and 6(b) show the results from DNS initialised with n(i) = 6
(Γr = 4/3), and a forced simulation with kt = 4 (to suppress the emergence of the n = 8
state with kr = 4 and Γr = 1). Figure 5(a) shows the convergence of Re for the two cases
with simulation time t/t f . Here, Re is used as the metric for comparison instead of Nu
because of its slower convergence rate. The two simulations seem to converge at similar
rates; Re computed for the two simulations converges to similar values. Figures 6(a) and
6(b) show the instantaneous snapshots of T at the same simulation time for the two
cases considered. The forcing technique is able to capture the n = 6 state omitting triad
interactions mediated by kt = 4.

Similar conclusions may be drawn from the results obtained for n = 8 state in
figures 5(b), 6(c) and 6(d). The DNS are initialised with n(i) = 8, and in the forced
simulation, triad interactions are removed with kt = 3 as the mediator (to suppress the
emergence of the n = 6 state with kr = 3 and Γr = 4/3). Figure 5(b) shows that Re for
the two simulations converges to similar values. Comparison of instantaneous snapshots
of T in figure 6(c,d) show that the state n = 8 can also be obtained using the proposed
technique that yields results similar to those of the DNS initiated with n(i) = 8.

With the choice of appropriate kt , the proposed forcing methodology is able to capture
the multiple states for this [Ra, Pr ] combination without depending on initial conditions.
The converged statistics from the simulations presented in figures 5 and 6 are tabulated
in table 1. The statistics, especially Nu from the forced simulations, are in very good
agreement with the DNS (these results are also in agreement with those reported by Wang
et al. 2020). The maximum deviation of the reported Reynolds numbers is within 5 %.

What happens if both states (n = 8 and 6) are suppressed? Figure 7 shows an
instantaneous snapshot of T from a forced simulation with kt = [3, 4] at t/t f = 150. While
at this t/t f , forcing with either kt = 4 or kt = 3 in figure 6 yields the n = 6 or 8 state,
respectively, for kt = [3, 4] the proposed technique does not yield a state with convection
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Figure 6. Instantaneous snapshots of T at t/t f = 150 from: (a) DNS initiated with n(i) = n = 6, (b) forced
simulation with kt = 4, (c) DNS initiated with n(i) = n = 8, (d) forced simulation with kt = 3.

Simulation Initial condition: n(i) kt n Nu 〈Rex 〉t 〈Rez〉t

DNS Roll state: 6 – 6 25.99 333.25 250.24
Forced Random: – 4 6 25.79 318.26 237.95
DNS Roll state: 8 – 8 27.59 299.42 292.61
Forced Random: – 3 8 27.7 294.5 287.44

Table 1. Details of direct and forced simulations to capture multiple states for [Ra, Pr ] = [108, 10]. Here, kt
is the integer streamwise wavenumber for forcing.

rolls of regular shape and size. Although plumes are visible, arbitrary patterns emerge
without any regular shape.

3.2. Multiple states for [Ra, Pr ] = [109, 3]
For [Ra, Pr ] = [109, 3], Wang et al. (2020) reported three states with different mean
aspect ratios: n = 8 (Γr = 1), n = 10 (Γr = 4/5) and n = 12 (Γr = 2/3) convection rolls
were obtained in a computational domain with aspect ratio Γ = 8. The results for these
multiple states are presented in figures 8 and 9.
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Figure 7. Instantaneous snapshot of T at t/t f = 150 from a forced simulation with kt = [3, 4] for
[Ra, Pr ] = [108, 10].
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Figure 8. Plots of Re as a function of simulation time (t/t f ) for [Ra, Pr ] = [109, 3]: (a) simulations yielding
the n = 8 roll state, (b) simulations yielding the n = 10 roll state, (c) simulations yielding the n = 12 roll
state. The cases are: DNS initiated with n(i) = n (red squares), forced simulation with kt (green triangles),
and switching off the forcing (blue diamonand switching off the forcing (blue diamonds). The horizontal
dashed lines correspond to ±5 % of the Re values reported by Wang et al. (2020) from their DNS. i.c. is
initial condition.

Figure 8(a) shows the convergence of Re as a function of the simulation time t/t f for
DNS initiated with n(i) = 8 = n, a forced simulation with kt = 5 (suppressing emergence
of n = 10 roll state), and essentially another DNS switching off the forcing at t/t f = 125.
Figures 9(a,b) show how the flow structures by plotting the instantaneous contours of T
from the DNS and the forced simulation at t/t f = 68 and 67, respectively. Clearly, the
forced simulation with kt = 5 has been able to capture the state with n = 8. In addition,
starting from a random initial condition, the statistics converge much more quickly using
the forcing technique in comparison to the DNS. Ideally, the forcing should be switched
off once a roll state is obtained using the proposed method. Here, in figure 8(a), the result
is also shown after the forcing is switched off at t/t f = 125 once the n = 8 state is obtained
in the forced simulation (blue diamond symbols). In these DNS, the n = 8 state obtained
using the forcing was found to sustain itself even after the forcing was switched off (not
shown here).

Suppression of the n = 8 state using kt = 4, on the other hand, yields the n = 10 state
with Γr = 4/5. The results from this forced simulation along with DNS initiated with
n(i) = 10 are shown in figures 8(b), 9(c) and 9(d). Figure 8(b) shows again that the
convergence to a statistically stationary state is much slower in the DNS compared to the
proposed method. The forcing technique yields the convection rolls as early as t/t f = 51
in figure 9(d). The forcing was switched off at t/t f = 125 in more DNS reported in
figure 8(b). The n = 10 state was able to sustain itself in these DNS (not shown here).The
Re statistics from this simulation are almost identical to that from the forced simulation,
demonstrating the efficacy of the forcing methodology.

Suppression of both n = 8 and n = 10 roll states is necessary to yield the n = 12 roll
state using the proposed method. The results for the roll state n = 12 are presented in
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Figure 9. Instantaneous snapshots of T from (a,c,e) DNS initiated with n(i) = n = 8, 10, 12, respectively, at
chosen t/t f , and (b,d,f ) forced simulations with kt = 5, 4, [4, 5], respectively, at chosen t/t f .

figures 8(c), 9(e) and 9( f ). The instantaneous snapshots of T from DNS initiated with
n(i) = 12, and a forced simulation with kt = [4, 5] (all triad interactions mediated by
wavenumbers corresponding to Γr = 1 and 4/5 are removed), are shown in figures 9(e)
and 9( f ), respectively. Although initialised with a random condition, the proposed forcing
technique captures the n = 12 state quickly, as early as t/t f = 51, as shown in figure 9( f ).
In comparison, as reflected in the contour plot in figure 9(e), and also for Re plotted
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Figure 10. Instantaneous snapshot of T at t/t f = 500 from the forced simulation with kt = [4, 5, 6] for
[Ra, Pr ] = [109, 3].

against t/t f in figure 8(c), the convergence of DNS initiated with n(i) = 12 is much slower.
Figure 8(c) also includes results from DNS after the forcing was switched off at t/t f = 50.
The n = 12 state yielded with forcing is also able to sustain itself in these DNS (not shown
here). Over the course of the simulation, Re plotted for this simulation is also in agreement
with the forced simulation.

For this [Ra, Pr ] combination, a forced simulation was performed suppressing known
multiple states (n = 8, 10, 12 in a Γ = 8 computational domain). For this simulation, we
chose kt = [4, 5, 6] (wavenumbers corresponding to the multiple states). The long-time
solution converges to a statistically stationary n = 6 state (see figure 10). However, the
obtained n = 6 state transitioned to the n = 8 state once the forcing was switched off
(not shown here). Therefore, the proposed method can possibly lead to states that are
not stable in DNS. The unphysical nature of the forcing is aggravated as more and more
triad interactions are removed, or in other words, the size of the subspace, kt , is increased.
In essence, with increase in the size of the subspace kt , the nonlinearity of the system
is increasingly restricted. A forced simulation yields the most stable state (as the initial
condition is ‘random’) of the system of equations (with restricted nonlinearity) solved
that is not necessarily stable for the fully nonlinear system. The forcing terms in (2.14)
and (2.15) might remove triad interactions that might otherwise be necessary for the
sustenance of a state. Although the proposed method can yield the flow states and the
associated statistics accurately enough to be compared with those obtained from DNS, the
proposed methodology is reliant on DNS for verification purposes.

3.3. Practical applications of the forcing technique
The proposed method may be used to uncover the multiple convection roll states in 2-D
RBC. The steps involved are as follows. (i) Perform DNS with the random initial condition
to converge to a roll state (the characteristic wavenumber associated with the captured
mean roll size is k1, say). (ii) Perform simulation using the proposed forcing technique
with kt = [k1, . . .] to test if another roll state (with characteristic wavenumber k2, say) can
be obtained. If a new state cannot be obtained, all possible states have been discovered.
(iii) If another roll state is obtained, then switch off the forcing to check if the obtained
state sustains in DNS. (iv) If the new roll state sustains itself in DNS, then increase the
size of the subspace to kt = [k1, k2, . . .], and repeat step (ii). Otherwise, if the roll state
transitions back to one of the already discovered states, then all multiple states have been
obtained.

Additionally, the proposed methodology can empirically designatethe stability of each
of the multiple states. Ideally, the emergence of a more stable state should require
suppression of a lesser number of candidate wavenumbers. The most stable state should
emerge without forcing from a random initial condition, followed by other lesser stable
states, with the removal of more and more triads mediated by candidate wavenumbers.
When all possible multiple states are ruled out using the forcing technique, the consequent
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restricted nonlinearity of the governing equations may yield highly unstable states that are
otherwise unlikely to emerge for the fully nonlinear system (see Bose et al. 2024).

We emphasise that the proposed method could possibly be used to compute the
different states in other flow configurations where multiple states exist for a set of
control parameters. The continuation based methods (Dijkstra et al. 2014) can yield a
superposition of multiple states at such a point in the bifurcation diagram, while only
one of the states is obtained as the solution is continued along a branch. On the other
hand, the present method should be able to capture the multiple states as discrete solutions
at such a point in the bifurcation diagram, provided that the wavenumbers associated with
the dominant flow structures mediate energy in triad interactions. The investigation of such
possibilities remains an open question.

4. Conclusions
In this paper, a new methodology is proposed to obtain the multiple convection roll
states in 2-D RBC flow. For the same control parameters [Ra, Pr ], convection rolls
with different aspect ratios (Γr ) emerge yielding different statistically stationary states;
in previous works, the selection of Γr was dependent on Γr of rolls in the initial condition.
Using the methodology proposed in this paper, the possible multiple states for any
[Ra, Pr ] combination can be captured exhaustively, circumventing the issues related to
the dependence of the emergence of the states on initial conditions.

In the proposed method, forcing terms are prescribed that remove select nonlinear triadic
scale interactions from the OBEs (2.1)–(2.3). This is motivated by the observation that
the characteristic horizontal wavenumber associated with the mean size of the convection
rolls (kr ) mediates temperature variance and kinetic energy transfer processes in triad
interactions at a statistically stationary state establishing cascade processes (figures 1
and 2). The participating wavenumbers in such triads are of the form [k, p, m = k − p =
±kr ], where, k, p and m are the receiver, donator and mediator wavenumbers, respectively.
Herein, we prescribed the forcing terms in (2.14) and (2.15), leveraging this information
to remove triad interactions that are mediated by one/multiple target wavenumbers, kt =
[k1, k2, . . .]. Removing such triad interactions physically suppresses the emergence of the
convection rolls with characteristic wavenumbers kt . As a consequence, roll formation is
encouraged at another candidate wavenumber that does not belong to kt , which is therefore
allowed to mediate energy among triads and establish the essential cascade processes.

The proposed forcing technique is used to obtain the multiple states in a computational
domain with aspect ratio Γ = 8 for two cases – [Ra, Pr ] = [108, 10] and [109, 3]. For
both these cases, the multiple states could be yielded from a ‘random’ initial condition
that does not include any signature of the final roll state. For comparison, we also perform
DNS initialised from momentum fields bearing the signature of the target roll states (2.8)
and (2.9). The two possible states for [Ra, Pr ] = [108, 10] are captured by suppressing in
each case the mediation of energy by one of the candidate wavenumbers for roll formation
(figures 5 and 6). Additionally, the statistics obtained from the forced simulations are
in good agreement with the statistics obtained from the DNS (table 1). Removing the
triad interactions mediated by both candidate wavenumbers does not capture any roll
state with a regular pattern (figure 7). All three multiple states could also be captured
for [Ra, Pr ] = [109, 3] – suppression of only one candidate wavenumber was sufficient
to yield two of the multiple states. The n = 8 state could be captured suppressing the
emergence of n = 10 state, and vice versa (figures 8(a,b) and 9(a–d)). However, to capture
the n = 12 state, candidate wavenumbers corresponding to both n = 8 and n = 10 states
had to be forced out (figures 8(c) and 9(e, f )). All the multiple states captured using the
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proposed method were found to sustain themselves in direct simulations after the forcing
was switched off. If all three states are suppressed, then the forcing technique yields an
n = 6 state – a state that was found to transition to the n = 8 state once the forcing was
switched off. Specifically, for [Ra, Pr ] = [109, 3], the forcing technique converges to the
statistically stationary states much more quickly than in DNS initiated with the signature
of the target states.

It has been demonstrated that the proposed methodology could be utilised to uncover
all possible multiple roll states in 2-D RBC efficiently. The possible states obtained by the
forcing technique, while ‘stable’ for the forced system of equations, are not necessarily
stable for the original unforced system of equations (e.g. the n = 6 state obtained for the
forced system for [Ra, Pr ] = [109, 3]). The proposed forcing method yields a roll state
quickly, irrespective of the initial condition; the forced simulations also approach statistical
stationarity much more quickly. In addition, the proposed method can designate each state
with respect to its stability and in comparison to other states. However, it must be noted
that despite capturing the states quickly, this method is reliant on the direct simulation for
verification, as ultimately it uses manipulation of the triadic scale interactions, which are
unphysical in nature. Even if a state appears stable under the forced equations, DNS must
be run with that state as the initial condition to verify its true stability. We believe that
the proposed method should be able to discretely capture the multiple states in other flow
configurations in both non-turbulent and turbulent regimes provided that the dominant
flow structures mediate energy in triadic scale interactions.
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