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By the group G(2 cos n/q) we mean the group of linear fractional transformations of the
complex plane onto itself, generated by V() = —1/zand U(z) = z+ A, where A, = 2 cos (n/g),
q being a positive integer greater than 2. In this paper we shall be concerned only with the
group given by ¢ = 5, and we shall therefore omit the subscript 5 on the . We note that
A = A4 satisfies the equation

x2—x—1=0; )
hence A = (1+5%)/2.

It is well known [1] that G(4) is a real zonal horocyclic group (see [4] for these terms);

i.e. G(4) is a fuchsian group of the first kind. We let T =(Z 3) (ad—bc = 1) represent the

transformation z' = T'(z) = (az+b)/(cz+d), and notice that T and —T represent the same
transformation. If U and V are the corresponding matrices of U(z) and V(2), it is easy to
verify in this notation that the generators satisfy the relations

Vi=1I=(Vuy, @

where I represents the identity transformation.

As a consequence of (2) we can write the transformation 7(z) as a word in U and V, namely:
T'= UreyUn... vU™, where the r; are rational integers. In [5] it was shown that these words
with certain conventions could be made unique. The unique word in turn led naturally to a
continued fraction representation of the transformation, and hence a continued fraction
representation of the parabolic points—the transforms of co. We shall use the fact, which can
be deduced from the theorems of [5], that a parabolic point is a unique finite A-fraction which
we write in the form

(roA; eyfrid, ..., e,r,d), 3

where the r; (i > 0) are positive integers, while r, may be a positive or negative integer or zero,
and e; = +1. We shall also assume whatever theorems on continued fractions are necessary,
and especially the results in [S]. We shall however use the current term approximant for
convergent.

If P,/ Q,, is the mth approximant of a A-fraction (3), it is a consequence of (1) that P, and
Q,, are algebraic integers in the field R(5%), which when expressed in terms of the basis (1, 4)
have the form m+n4, where m and n are rational integers. The parabolic points therefore, as
finite A-fractions, are quotients of integers in the field. We shall denote a typical one by afb
where a = a,+a,A, b= b, +b,A.
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The motivation for this study arose in connection with the problem of finding the Fourier
coeflicients of automorphic forms and functions belonging to G(1). These are given explicitly
by Petersson [3], and involve sums of the type ' | ¢ | ~* taken over all substitutions of the group.
The characterization will therefore be directed toward describing c, the third element of the
transformation.

The more interesting problem is the converse one, namely, which rational elements of the
field are parabolic points or cusps. It seems, as a conjecture, that every rational element of the
field is a cusp, as numerical calculations in abundance have not turned up counterexamples.
For the groups G(4,) with ¢ even, the conjecture is false, since it is shownt in [5, p. 558]
that 1 has an infinite A-fraction representation and hence cannot be a cusp. We shall show that
the units A™ are all parabolic points.

We recall the essential property of the reduced A-fraction. Ifr;A+e;,.;<1(sothatr, =1,

€+1 = —1), then r;,; =2, and either ¢, =1 or r;,_; 2 2. As a matter of notation we shall
write the numerator and denominator of the mth approximant as
Pm = P1m+P2ml; Qm = le+ szj" (4)

where the subscript 1 denotes the rational component, and 2 the A-component. The following
general formula will be useful:

Ox+1 = A 1 Okt 64 10k-1 = Qi+ 1yt Qo+ nyh- )
We deduce from (1), (4), and (5) that
Qi+ =N+1Qn+e+1Q1a-1p Qa+ty =M+ 1(Que+ Q2 +ex+1Q2:-1) (6)

In particular, Qy; =0, Q,y =71, Q12 =17y +€3, Oz =11y,
LemMa 1. (1) Q2> Q11 =0; (ii) Q25 = Q31 > 0; (iii) Q22 > Q13 0r Q13 = @22+ 1.

Proof. Since Q,, =r,r,+e,, (i)is obviousife, = 1. Ife, = —1, theneitherr, orr, 2 2,
and the conclusion is immediate. Part (i) is obvious. If e, = 1, then clearly Q,, = @;,+1.
If e, = —1, either r, or r, = 2, so that part (iii) follows easily.

LemMA 2. (i) Either Q13 2 Qyz 0r Q15 = Qi3+1; (ii) Q23 = Q225 (iii) Q23 2 Q45> 0.

Proof. We prove part (iii) first. By (6) we have @,, = Q,5-+r;0Q1,+e€30,,, where we
use the fact that Q,, = 0, so that Q,, =r;0,,. We must now show that r;Q,,+¢e;0,, 20,
or more explicitly that ryr,ry+rye,+r,e; 2 0. A careful analysis of the possibilities such as
e; = —1, ry = 1, which forces r, = 2, gives the desired conclusion. We omit the details and
remark that the alternatives of Lemma 1 part (iii) do not cause any difficulty.

To prove part (ii), we must show that Q,; = 2r,r,ry+e,ry+esry >rir, = Q5. This
follows, however, from the similar inequality in (iii).

t There are a few errors in [5] which we correct at this time. (i) In (4.3) r._1 should be ry_;. (ii) On p. 557,
line 3, @,_,, , should be «/_,,,,. (iii) On p. 558, line 14 from bottom, { =(B(k+1), —1/§). (iv) On line 2 of the
proof of Theorem 4, replace the first A>2 by A<2. (v) Theorem 7, 6th line of proof, should read: a,<a;_,A/2
or ai?/ai/\>2/” =U,. (vi) P. 561, line 1, should read a;_,/a;A=2/A*.... (vii) In he line above (7.7), replace

Kby
G
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We prove part (i) by considering cases. Since Q3 = ryr,r,, it is obvious thatif e, = —1,
then ryryry 2rir,—1. If e, =1, then ryrory > ryr,+1 when ry 2 2, while Q,, = Q;53+1
when ry = 1.

We shall say that a finite A-fraction has length m if P,/Q,, is the value of the A-fraction.

LemMa 3. (i) Either Oy, 2 Q3 0r Qy3 = Q1a+1; (i) @z 2 Qy3; (i) Q24 2 Oy
Proof. Part (i): From (6) we have Q,, =r,0,:+¢€,0,,. We consider three cases.
(@) e, =1. Since @,; 2 Q,5, by Lemma 2, the conclusion is obvious.

(b)eg=—1,r,22.Clearly 0,4, 2 2Q,3— Qy,. Let A = Q,3+2r;0,,+2¢,0,,—2¢,0,.
From (6) we deduce that 20, — 0, = Q3+ A—~Q,,. Weshowthat A-Q,,20. Ife; =1,
this is obvious, since Q,, > Q,,. If e5 = — 1, r; 22, straightforward estimation produces the
result. We remark that in this case Q,; > Q,,. If e, = —1, ry =1, we must have r, 2 2,
and the required inequality follows easily.

(©e,=—~1,ry=1Let B= Q,(r;—1)+e;0Q,, .-Wededucefrom(6)that @, = @,;+B.

If €3 = 1, then B> 0. If e3 = -1 and rs g 3, then Bg 2Q12—Q21 = 2r1r2+2e2—’1.
The right side is positive if either r; or r, = 2 when e, = —1, but this is the case for a reduced
A-fraction. Ifr;=2,B>0ife, =1,and B= —1ife, = —1,r, = 1. Hence part (i) is proved,
since ry cannot be 1.

Part (ii): From (6) we see that the inequality is proved if

Q24 =14(Q13+ Q23)+€,05, 2 Qs3.
(@) e, = 1. The inequality is obvious.

b e,=—-1,r,22. ByLemma2, Q,; > Q,, and the inequality is easily deduced.

(©)eg=—1r,=1 NowQ,, = 0,3+ 0,3—Q;,. Ifwesubstitute 0,3 =r;30,,+e,0y,
in the right side, the desired inequality follows easily since r; = 2.

Pal‘t (iii): Let D = Q24—Q14 = I4Q13+84(Q22—Q12); we ShOW that D _2_ 0.

(a) e, =1. Obviously D2 Q3+ Qy2— Q. If Q432 Oy, then D> 0 trivially. If
Q=03+, then D= Q,,—120.

b)ey,=—-1,r,22. Since2Q,;—0,, >0, it follows that D > 0.
(©e,=—-1,r,=1. Now D= Q0,3+ 0,,~—0,,, which is easily seen to be positive.

This proves the lemma.
Using exactly the same type of argument, we can prove that for m = 5, only the possibility
Qs = 0,4 occurs. Hence if the A-fraction has length m = 5, we can prove
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THEOREM 1. For m = 5’ 6: (A% (l) le g Ql(m-l) > O’ (ll) QZm g Qz(m—l) > 0’ and
(i) Ozm2 Ot

Proof. The proof is by induction and requires exactly the same type of arguments as we used
in the previous lemmas. We shall therefore omit the details, but we state the induction lemma:
If (i), (ii), (iii) are valid for m = 5, 6, ..., k, then (i), (ii), (iii) are valid for m = k+1.

We are now in a position to say something about the third element of the transformation
T(2).

COROLLARY 1. Let ¢ = ¢y +c,4, be the third element of T(z). Either ¢c; 2 ¢, 20, or
¢; =cy+1.

Proof. We assume that the transformation has been reduced to minimum length [5], so
that the A-fraction T'(c0) = a/c is a reduced A-fraction. Since @ and ¢ are numerator and
denominator of the A-fraction, cis some Q,. If T=U* thenc=0. fT=V, c=01+1.1f
the A-fraction has length 1, ¢ = r A+0. If the A-fraction has length 2, part (iii) of Lemma 1
applies. If the A-fraction has length # = 3, part (iii) of Lemmas 2 and 3 and Theorem 1 apply.

We next define a section of the continued fraction as

U om =(rjA; €5u1[Piards .., EnTmh). @)

If the A-fraction is finite and of length m, we shall refer to «;, ,, as the tail. We put q; ,, =
P, ./Q; mand see that Q;_, ,, = P; ,. Hence the numerator of a section can be expressed
in terms of the denominators

Pim=Qicy,m=TAQ; mt+€;+1Q541,m (1Sj<m). ®

We note in particular that P, ,./Q,, » = ru4, so that @, ,, =1, and also that @, , = Q,,. We
write Q_, n, =Py . = P,, so that a special case of (8) is

Pm=r02'Qm+elQl.m' (9)

In Lemmas 1, 2, 3, and Theorem 1, we calculated from the front of the continued fraction.
In order to obtain information about the numerators we shall use (9). It is convenient there-
fore to calculate the tails. The results we obtain are completely analogous in content to the
previous ones, and the proofs use identical arguments, so that we only state the results in

THEOREM 2. Let Q; = Q; 12+ Q) 244 (j=nn-1,..,0).
() 01,1n2Qjs1,1a>00r Qj 1n+1=Qjiy,1nifj=n—3, n—4, while
Qi 1n> Qjr1,1n>0ifj=n=2,n-5, ..., 0.
() Q; 202 Qj41,2.>0 (j=n-1,n-2,..,0).
(i) Q;, 2,2 @, 1n(J=n—1,n=2, ..., 1) ; for j=n—2 the alternative

Qn—z, 1n = Qn-2,2n+1
is possible.

https://doi.org/10.1017/5204061850003478X Published online by Cambridge University Press


https://doi.org/10.1017/S204061850003478X

92 DAVID ROSEN

We point out that if the continued fraction « = 2/, then ro = 1, and if ry = 1, ¢, =1,
then r, = 2; ie. a is reduced from r, instead of from r; as required in the definition of a
A-fraction [5, p. 555]. Consequently, Theorem 2 is valid for j = —1, and from (9) we deduce
information about the numerators.

THEOREM 3. If alc 22/, a=a,+a,A, c=c +c,A, then (i) a, >c¢, or a;+1 =c¢,,
()a,=cy(i)a,2a,0ora,=a,+1,(iv) c, 2 ¢y 0orc,+1 =¢y.

Proof. Since afc = 2/A, Theorem 2 is valid for j = — 1. We point out that the two alterna-
tives in (iii) and (iv) cannot occur at the same time. This is evident from examining A-fractions
of length 1 and 2.

The restriction afc = 2/A is no serious loss of generality, since it amounts to a restriction
to certain members of a coset decomposition of G'(1) with respect to the subgroup generated by
U(z) = z+A. We denote by G the group of matrices that contains —7I and is such that
(az+b)/(cz+d) e G(A) if and only if

T=(‘c’ Z)eG (ad—bec = 1), (10)

_(x »
= 3)

where x =q+ct, y = b+dt, then S € G if and only if t = mA, where m is a rational integer.

THEOREM 4. If (10) holds and

Proof. If t = mi, then S = U™T, which belongs to G, since U does. Conversely, if Se G

then so does
-1 _ (1t
- (3 1)

We point out that we make no claims as to the existence of solutions to the diophantine
equation with fixed integers ¢, d in R(5%) which would give a transformation of G(1).
Hutchinson [2] investigated a wide class of automorphic groups in which the coefficients a, b,
¢, d were integers in quadratic fields. It can be shown that G(1) does not belong to this class.
What we can assert however, is this: If d/c is a finite A-fraction which we write as d’/¢’ = P,/ Q,.,
where d' = dA" and ¢’ = ¢]", for some n, then by Theorem 1 of [5], the penultimate approxi-
mant and d’/c" provide a substitution of G(1), and Theorem 4 gives all substitutions with the
same (¢, d).

The next theorem gives us information on the parities of the coefficients of @ and ¢, and
seems to have a curious property relating to As.

which is possible only if # = mA.
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THEOREM 5. Let afc be a finite A-fraction, let + denote an even integer,—an odd integer.
The parities of a,, a,, ¢y, ¢, occur in the following combinations only:

a a, C2 ¢y
1. - + + -
2.+ 4+ o+ -
3. - + - +
4. + -  +  +
5. + - - +

Proof. We consider the tails «; ,. We see thata, , = (r,A+0)/(04+1) trivially has the form
of 1 or 2 in the table. Also, by definition we have «;, , = r;A+e€;4 /041, 5, SO that we can ex-
press the components of «; , in terms of the components of a;, ;.

P2 =riPjs1, 1n+Pjsr1,20+€41Qj41,2n>
P 1n=riPis1,2nt€;410Q541, 10> an
Qj,ln =Pj+l,1n9

Qj,2n= j+1,2n-

It can be seen that if a;, ; , has one of the forms listed in the table, then «;, , also has one of the
listed forms. In fact the change of form from «; , to a;,,, , is given by the permutation
(15)(24) if r; is even, and by (13524) if r; is odd.

If fis a tail of the form i, (i = 1, 2, 3, 4, 5), then it turns out that f =13f/A%, A%f/A%, Af]A
determine three mutually exclusive classes, each class consisting of five distinct possible
arrangements. This means that every rational element in R(5%) can be expressed as in
Theorem 5.

COROLLARY 2. If c is the denominator of a parabolic point, then at least one of the components
is even.

Proof. Each row in the table of Theorem 3 has at least one + in the ¢, and ¢, columns.
It is clear that a similar conclusion holds for the numerators.

LEMMA 5. Letc=c,+cA; thenc,=c,onlyifc,=2,40r6.

Proof. We assume that a/c is a A-fraction of the form (3), and that a =P, ¢ = Q,,.
Hence @, = r,A, and if the fraction has length 1, then ¢# c,. Suppose that m =2; then
c=Q, =rr,A+(r,r;+e,). Clearly, ¢, = ¢, implies that e, = 0, which is impossible. The
interesting situations arise with m = 3, 4. These we examine in detail.

To have Q,, = 0,3, we must have r r,ry+e,r;+e5r; = 0. Clearly, at least one e must
be —1, so that ryr,ry =ry—ry, ry—ry, or r;+r;. We consider the case r; —ry = +k, k 20,
and look for integral solutions of (+k+r3)r,r; = +k. Since k/(k+r;) is not an integer, the
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upper sign is impossible; the lower sign gives the solutionsk = 1,7, =4,ry=4;k=2,r, =2,
rs=1,r;=-1;andk=4,r,=1,r; =2,r; = —2. None of these are permissible A-fractions.
The case r, +r, = k, however, gives two solutions. Indeed, we find that these are

0; 1724, —1/4, —1/22) = (2A+1)/(41+4) = A/4
and 0; 1/, —1/24, —1/2) = QA+ 1)/(21+2) = A/2.

If the A-fraction has length 4, we find that Q,, = Q,, gives the nice condition r,r,ryr,
=ge,. Since r;>0(15ig4), wegetr,=r,=r3;=r,=1, and, for the A-fraction to be
reduced, we must have e, = e, = 1. These conditions yield

0; 1/, 1/4, 14, 1/2) = (44 + 1)/(61 + 6).

We next prove that form = 5, Q,,, = Q1 In Theorem 1 (iii) we proved that Q,,, = Q.
If in the inductive assumption we can replace = by >, we obtain the desired result. Hence we
prove that the inequality is strict for m = 5. The induction is then exactly as in Theorem 1.

We suppose that @, = Q,s5. The equations of (6) lead to the condition
rsQ1a = €5(Q13— @23)- (12)

Since @,4>0, and Q,; = 0,5, we must have es = —1. If Q,; = Q,3, then we see that
Q14 = 0o0rrs =0, which is impossible. We now have rsQ;, = Q53— Q3 > 0, and we replace
014 bY 740,53 +€,0Q;, from (6). The equation in (12) becomes

Q23— Q13 =r5(rsQ23+e,012) 2 r5(Q23— @12)-

From Lemma 2, either Q,3 = @, or Q,3+1 = @,,. The first alternative leads to a value of
rs< 1if Q,3> Qy,, while ry=r,=1if Q,; = Q,,. Hence the second alternative must
obtain.

The second alternative leads to a further equation

Q23(rars—1) = Q1(—1—e4rs)+1,

along with the additional conditions that e, = 1 and r, = 1 (Lemma 3 (i)). Since the left side
of this equation is non-negative, it follows that ¢, = —1, because Q,, = r,r.+1+# 1. Hence,
if ry = 1, we have Q,,(r,—1) = 1. This implies that r, =2 and Q,; = 1. But Q,; =1 leads
to the statement r, = 0 or r, = —e,, which is nonsense. Therefore r5 2 2, and we obtain

= 1 Q23_Q12 . 13
Q23’4—Q12+Q23’4—Qx2 1)

Under the present set of conditions, we deduce that Q,, = 2r,r,+e3r,+12 Q,,+2ife; =1,
and Q0,32 Qy,+1ife;= -1, Ifr,=1, then ey =1, since ry, =1. We find from (13) that
rs has a value less than 2. If r, > 2, we find that the first and second members in (13) do not
exceed 4 and 1, respectively, so that r¢< 2. We therefore conclude that Q,5 > Q5.

Ts
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There are two further conditions on the components of ¢ that can be obtained by the same
kind of argument as we have been using all through the paper. To avoid repetition we state
the results only.

LEMMA 6. 3Q13—Q23+1 go or le = sz:tl-

LemMMA 7. 20Q,,—Q:,+220 formz4.

Although the concluding theorem is a contribution to the converse problem, we include it
here because it seems to be interesting.

THEOREM 6. The units [(1+5¥/2]" (m =0, +1, +2, ...) are finite A-fractions and con-
sequently parabolic points. '

Proof. We shall prove the theorem for m = 0, as the statement is then obvious form< 0.
The units, when represented in terms of the basis (1, 2), have the form A" = U,,A+ U,,_,, where
U, is the ith Fibonnaci number in the sequence 1, 1,2, 3, ...,and U, ,, = U,+ U,_,. The proof
is by induction.

We verify that for m = 0, 1, and 2 the units are finite A-fractions: A®=A1—1/4, A' =4,
A2 =2+41=2A-1/A. We assume that 1"~ 2 is a finite A-fraction and we shall prove that 1" is
also a finite A-fraction.

We write A" = A2""2[1""2 = (U,,_,A+ Up-3)/(U,-2A+U,_;). We expand the right
side by the nearest integer algorithm [5, p. 560] and obtain formally

Usn-244Uzpey = (Up_ 24+ U, _3)rod+ey(ay + b4 4), 314)

where ¢; = +1 and is chosen so that a; + 5,4 > 0. By using (1) and equating rational and A-
components of both sides, we find that e;a; = U,,_,—U,_,ro and e,b; = U,,_;—roU,-;.
If we choose ry = U,_,+ U, and use the two well known formulae [6, p. 10],

Uzo = n(U—1+Un+1)
and Uzp-z = Up—3Up-1+ U, U,

judiciously, we find that b, = 0 and that e;a, = (—1)""3. We can choose e, so that a, > 0.

Since we now have (a, +b,4)/(U,.,A+U,-3)< /2, our choice of r, is the * nearest
integer , in the sense of [5], to A"/A. Hence the resulting A-fraction is unique. Another way
of writing (14) is 4" = ryA+e,/A"~ 2. The usual inductive argument for odd and even » proves
the theorem.
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