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Abstract. We show how to capture the behaviour of the phase-space distribution function (DF)
of a Galactic disc stellar population at a resonance. This is done by averaging the Hamiltonian
over fast angle variables and re-expressing the DF in terms of a new set of canonical actions and
angles variables valid in the resonant region. We then assign to the resonant DF the time average
along the orbits of the axisymmetric DF expressed in the new set of actions and angles. This
boils down to phase-mixing the DF in terms of the new angles, such that the DF for trapped
orbits only depends on the new set of actions. This opens the way to quantitatively fitting the
effects of the bar and spirals to Gaia data in terms of distribution functions in action space.
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1. Orbits near a resonance
Let us consider stars on the Galactic plane and a non-axisymmetric perturbation in

the form of Fourier m-modes, e.g. a quadrupole bar like Dehnen (2000). Let us also work
here within the epicyclic approximation, in which radial oscillations are harmonic with
angular frequency κ(R), so the radial action JR = ER/κ, where ER = E − Ec is the
energy of these oscillations, Ec being the energy of a circular orbit with the same angular
momentum Jφ . We can use this approximation to rewrite the perturbing potential in the
Galactic plane in terms of actions and angles.

We have three main resonances when a star’s (unperturbed) orbital frequencies ΩR

and Ωφ respect
lRΩR + m(Ωφ − Ωb) = 0, (1.1)

where Ωb is the pattern speed of the perturbation: lR = ±1 for the inner and outer
Lindblad resonances, lR = 0 for the corotation resonance. We can study the response
of the DF to the perturbation linearizing the collisionless Boltzmann equation, see e.g.
Monari et al. (2016) and the proceeding by B. Famaey et al. in the same volume. However,
this treatment diverges at the resonances.

To study the response of the DF at the resonances, we start from the action and
angle variables (JR , Jφ , θR , θφ) [see Binney & Tremaine (2008)], and we can approx-
imate the behaviour of orbits near the resonances with the canonical transformation
(JR , Jφ , θR , θφ) → (Js , Jf , θs , θf ):

θs = lθR + m(θφ − Ωbt), θf = θR , Js = Jφ/m, Jf = JR − lJs . (1.2)
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Figure 1. Velocity distribution functions for stars nearby the Sun for models with fast and
slow pattern speed bar and a flat circular velocity curve. The thick lines correspond to zones
of trapping (k < 1). Left: Ωb = 1.8Ω0 , nearby outer Lindblad resonance. Right: Ωb = 1.2Ω0 ,
nearby corotation. From Monari et al. (2017).

The angle θs is called ‘slow angle’ because near the resonance Ωs ≡ θ̇s ≈ 0, and quantifies
the azimuth of the apocentra of the orbit in the reference frame corotating with the bar.

We can define Js,res as the Js satisfying Ωs(Js , Jf ) = 0 at a certain Jf (in the axisym-
metric potential). We can average the star’s Hamiltonian H along θf (because it evolves
much faster than θs and Js), and expand in Js around Js,res near the resonances. The
action Jf is a constant of motion, and we obtain a pendulum Hamiltonian

H ≈ 1
2
G(Js − Js,res)2 − F cos(θs + g), (1.3)

where G ≡ (∂Ωs/∂Js)(Js,res , Jf ), and F depends on the amplitude of the perturbing
potential. The pendulum has energy Ep = H/G, natural frequency ω2

0 = FG, and
action/angle variables (Jp , θp), and Js(Jp , θp). The quantity k = [1/2(1 + Ep/ω2

0 )]1/2

determines if the orbits are trapped or not to the resonance. For k < 1 an orbit is
trapped, i.e. θs librates up to a maximum value θs,max, while for k > 1 it is circulating,
i.e. θs covers the whole [0, 2π] range.

2. Distribution functions near a resonance
We assume that the distribution function for trapped and circulating orbits is:
• for k < 1 (trapped orbits): ftr(Jf , Jp) = f0 ≡ 1

2π

∫ 2π

0 f0(Jf , Js(Jp , θp))dθp [Binney
(2016)], i.e. we phase-mix along the trapped orbits,
• for k > 1 (circulating orbits): fcirc(Jf , Jp) = f0(Jf , Js(Jp , θp)), i.e. the value of the

correspondent unperturbed orbital torus,
where f0 is the unperturbed DF. In Fig. 1 we show an application related to the velocity
distribution of stars in the Solar neighbourhood in the case of a fast and slow rotating
bar.
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