A SHORTER PROOF OF GOLDIE'S THEOREM
Julius Zelmanowitz

(received August 16, 1968)

In this note we present an extremely short proof of Goldie's
theorem on the structure of semiprime Noetherian rings [1]. The outline
of the proof was given by Procesi and Small in [4]. By utilizing the
concept of the singular ideal of a ring we have been able to weaken the
hypotheses of many of the steps in [4]. Most significantly, we are
able to avoid a reduction to the case of prime rings, and in Lemma 5
we give an informative list of the relationship between regular elements
and essential ideals of semiprime rings.

Let S be a subset of a ring R. £(S) = {x € R : xS = 0} is

called the left annihilator of S; similarly r(S) = {x €¢ R : Sx = 0}

is called the right annihilator of S. Note that 7r2r(S) = r(S). It

follows that a ring satisfying the ascending chain condition on left
annihilators satisfies the descending chain condition on right annihi-
lators.

Let R be any ring and I and J 1left ideals of R with
I <J. I 1is said to be essential in J if I intersects every non-
zero left ideal contained in J non-trivially. If I 1is essential
in R we will call I an essential left ideal. We define Z(R) = O
to mean r(I) = O for every essential left ideal I.

Let I be a left ideal of a ring R. For x € R, set

(I:x) = {r € R : rx € I}. Note that (I:x)x = I N Rx.
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LEMMA 1. Let R be any ring, I and J left ideals of R.

(1) If T 1is essential in J, then (I:x) 1is an essential

left ideal of R for any x € J.

(ii) Conversely, if Z(R) = 0, x € R and (I:x) is an

essential left ideal, then 1 1is essential in I+Rx.

This lemma is due to Johnson [3], and is in fact true for any
R-module. For the sake of completeness we repeat the proof.

Proof. Let K be a nonzero left ideal of R. Kx = 0 implies
0# KE (I:x) N K. On the other hand, if Kx # 0 then I N Kx #0
since Kx € J. So choosing O # kx ¢ Kx 01 I, k € K, we have
0#k € KN (I:x). This proves (i).

Now suppose Z(R) = O and (I:x) 1is an essential left ideal
of R. Let O0#1+ax €I +Rx with i€ I, a € R; we have to

show that R(i + ax) N I # 0. From (i), (I:i + ax) = (I:ax) = ((I:x):a)

is an essential left ideal of R. Since Z(R) = 0,
O0# (I:1 +ax)(i + ax) = I N R + ax).
LEMMA 2. Let R be a ring with Z(R) = 0, and I a left

ideal of R.

(1) If £2(B) 1is essential in I, then ¢£(B) = I.

(ii) If Rx and Ry are essential left ideals, so is Rxy.

Proof. Suppose that £(B) 1is essential in I and let x € I.
Then (£(B):x) is an essential left ideal and (£(B):x)xB = 0O, which
implies that xB = 0, i.e., x € £(B). This proves (i).

For (ii) it suffices to prove that Rxy is essential in Ry.
Now Rx & (Rxy:y), and so (Rxy:y) 1is essential in R. Hence by

Lemma 1(ii), Rxy 1is an essential submodule of Rxy + Ry = Ry.
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A ring R 1is said to be semiprime provided it has no nonzero
nilpotent left ideals. Note that for left ideals J and K of a semi-
prime ring, JK = O implies KJ = O.

We will constantly refer to the conditions

¢(acc): R has the ascending chain condition on left
annihilators.

m(acc): R contains no infinite direct sums of left
ideals.

The following lemma appears in [4]. We repeat the proof.

LEMMA 3. If R 1is a semiprime ring satisfying £(acc) then

Z(R) = 0. Conversely, if R is any ring with Z(R) = O and satisfying

@®(acc), then R has both the ascending and the descending chain

conditions on left annihilators.

Proof.  Suppose that I is an essential ideal with r(I) # O.
Choose U # 0, a minimal right annihilator < r(I). U2 # 0 since R
is semiprime, so there exists u € U such that uU # 0. We complete
the proof of the first half of the lemma by showing that Run I = O.

If not, there exists O # xu €¢ RunN I with x € R. Since
xu € T and r(I)>U, xuU=0. Now r(x) N U is a right annihilator
contained in U, hence r(x) NU=0 or r(x) NU-=U, But xuU = O,
so 0 # ul < r(x) NU. Hence we have r(x) N U = U, which implies
that U < r(x). But then xu = O, a contradiction.

For the converse note that from any infinite proper chain of
left annihilators we can extract an infinite direct sum by Lemma 2(i).

LEMMA 4. Suppose that R 1is a semiprime ring satisfying

@®(acc). Let I be any left ideal of R, and let a ¢ I with ¢£(a)

minimal among all £(x) with x € I. Then Ra 1is essential in I.
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Proof. Let J be any left ideal € I with RanJ

1
o

For

any x € J, ¢£(a+ x) D¢(a) N £(x); and in fact ¢(a + x)

£(a) N £(x) € £(a) since Ra N J = 0. By the minimality of ¢(a) we
must have £(a + x) = £(a) N £(x) = £(a). Hence ¢£(a) € £(x). Since
X was arbitrary, ¢£(a)J = 0 = Je(a).

Suppose now that x € 8(a2). Then xa € £(a), so Jxa = O.
But then Jx € £(a), so (Jx)2 = 0, whence Jx = 0. We have thus
shown that Jl(az) = 0; and similarly we can prove that Je(ai) =0
for all integers i > O.

Either J = O or else Ja: #0 for all i >0 (for Jal = 0

implies that J C l(al), whence J2 = 0). 1In the latter case, consider

X €J,

00 .
i . . .
?Ja . This sum cannot be direct, so there exist Xpse s Xy

i=1

n > k, such that xkak+...+xnan = 0 with xkak # 0. Now

(xk+...+xna - )ak = 0 implies that R(xk+...+xnan_k) E,E(ak), and

©n
o
[
=
~
el
+
+
ol
IS
—
n

0. But then JRx, = JR(-x

K k#1270 7%y

€ J N Ra =0, which leads to a contradiction since x, € J. Hence

k

J =0, and it follows that Ra 1is essential in TI.

LEMMA 5. Let R be a semiprime ring.

(1) If R satisfies £(acc), and Ra 1is an essential left

ideal, then a 1is regular, i.e., 7r(a) = 0 = £(a).

(ii) If R satisfies ®(acc), and ¢(a) = O, then Ra is an

essential left ideal.

(iii) lf_ R satisfies both ¢(acc) and @(acc), then every

essential left ideal contains a regular element.
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Proof. (i). Suppose that Ra is essential. By Lemma 3,
r(a) = r(Ra) = 0. Since R satisfies the ascending chain condition
on left annihilators, there exists an integer n such that
ﬂ(an) = E(an+1). Suppose yan = x € Ra" N ¢2(a). Then O = xa = yan+1,
so y € e(a“+1) = E(an), whence x = yan = 0. Thus Ra"n 2(a) = 0.
But by Lemma 2(ii) Ra" is essential. Hence t(a) = 0.

Both (ii) and (iii) are consequences of Lemma 4; (ii) is
immediate, while for (iii) we need only invoke part (i).

A ring Q with identity is said to be a left quotient ring of
a ring R if R £ Q, every regular element of R 1is invertible in

Q, and every element of Q 1is of the form a_lb with a,b € R.

It is known [2; p.262] that the following common multiple

condition is necessary and sufficient that a ring R containing regular
elements have a left quotient ring: given a,b € R with a regular,
there exist c¢,d € R with d regular such that ca = db.

THEOREM (Goldie). Let R be a semiprime ring satisfying both

2(acc) and @(acc). Then R has a left quotient ring Q which is

semisimple with minimum condition.

Proof.  Observe that by a trivial application of Lemma 5(iii)
R contains regular elements. Next, let a,b € R be given with a
regular. Ra 1is essential by Lemma 5(ii) and hence (Ra:b) is
essential. By Lemma 5(iii), (Ra:b) must contain a regular element,
and this yields the common multiple condition.

To prove that Q 1is semisimple with minimum condition it
suffices to show that every left ideal of Q 1is a direct summand.

If I 1is a nonzero left ideal of Q, then by Zorn's lemma there
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exists a left ideal K of R such that (I N R) K 1is essential in
R. Then by Lemma 5(iii), Q = Q((I N R) @ K) which equals

Q(I NR)y ®QK =T QK since Q 1is the left quotient ring of R.
This completes the proof of the theorem.

Remark. In view of Lemma 3 we could replace the condition

2(acc) 1in the theorem with the hypothesis Z(R) = O.
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