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MAXIMUM-LIKELIHOOD ESTIMATION OF THE RELATIVE
REMOVAL RATE FROM THE DISTRIBUTION OF THE TOTAL

SIZE OF AN INTRA-HOUSEHOLD EPIDEMIC

BY NORMAN T. J. BAILEY

Nuffield Lodge, Regent's Park, London

(1) INTRODUCTION

In a previous paper (Bailey, 1953a) I discussed the distribution of the total size of
a stochastic epidemic, involving both infection and removal, in a given group of
homogeneously mixing susceptibles. The model employed was of the ' continuous
infection' type, according to which infected individuals continue as sources of in-
fection until removed from circulation by recovery, death or isolation. This may
be contrasted with the chain-binomial type of model which entails short periods of
high infectivity and approximately constant incubation periods (see, for example,
Greenwood, 1931, 1949; Lidwell & Sommerville, 1951; Bailey, 19536). The basic
assumptions are that, with x susceptibles and y infectious persons in circulation,
the chance of one new infection taking place in time dt is fixydt, while the chance of
a removal is yydt, where /? and y are the infection and removal rates, respectively.
For a full discussion, the paper referred to (Bailey, 1953 a) should be consulted.
Particular attention was paid to the total size, i.e. when t ->• oo, of the epidemic
occurring in small groups following the introduction of a single infectious case, the
obvious application being to intra-household epidemics. It is important to note
that from this ultimate distribution of epidemic size we cannot estimate /? and y
separately, though we can estimate the relative removal rate, p = y//?. If n is the
number of susceptibles in addition to the first case, then for n = 1 we have explicit
expressions for the maximum-likelihood estimate of p and its variance. For n > 1
we can resort to the well-known maximum-likelihood scoring procedure. Formulae
were given for the probabilities Pw, 0 < w < n, of an epidemic of size wins, group
of n susceptibles, not counting the primary case, for the range of values n = 2, 3, 4
and 5. Expressions were also given in each case for the maximum-likelihood score
for p. The actual procedure of estimation in any specific instance is liable to be
tedious, especially for n > 2. As the score is always a linear function of the observa-
tions, it was suggested that it might be worth while tabulating the coefficients of
the observational quantities over a suitable range of values of p in order to facilitate
the calculations. This has now been done for n = 2, 3, 4 and 5. The standard theory
of this approach is briefly reviewed in the next section, which is then followed by
an illustrative example.

(2) MATHEMATICAL NOTE

Let there be a total of N households, containing n susceptibles besides the primary
case. Of these aw, O^w^n, produce w additional cases of the disease. Let mw be
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the expectation of aw, where mw is a function of p. Then the maximum-likelihood
score for p is

J^^) (i)

where flf = J _ ^ « ? . (2)

The score coefficients, #„,, have been calculated on EDSAC at the Cambridge Uni-
versity Mathematical Laboratory for

» = 2, 3, 4 and 5, over the range p= 1-00 (0-10) 10-00.

Copies of these tabulations may be obtained from the author. The solution of the
maximum -likelihood equation, S(p) = 0, is then easily effected by calculating S(p)
for a few trial values of p until we have scores of opposite sign for two adjacent
values, px and p2. Inverse interpolation then gives the required root p. The amount
of information, I(p), may then be obtained to a fair degree of approximation from
the rate of change of the score, i.e.

W=MPI)-8{P,)}I(P*-PI), (3)

where p2>pv For more accurate work, four adjacent values can be used with four-
point interpolation. The method recommended by Fisher & Yates (1948, p. 14) may
be followed. Having estimated p the frequencies Pw can then be calculated, for the
purpose of examining the goodness-of-fit, from the expressions given in my earlier
paper (1935 a). This is admittedly a trifle laborious and could be made easier by
having additional tables, which might need however to be tabulated for finer sub-
divisions of p. On the other hand, the frequencies require to be calculated only
once for a given set of data and this procedure is self-checking in that the proba-
bilities must sum to unity. The provision of such tables was accordingly felt to be
an unnecessary refinement.

(3) WORKED EXAMPLE

As an illustration of the use of the tables let us consider some data given by Wilson,
Bennett, Allen & Worcester (1939) on scarlet fever, a disease involving an extended
period of infection, which may be more suitably analysed by the present continuous
infection model than by the chain-binomial approach. We have the following data
shown in Table 1.

Table 1. Size of epidemics of scarlet fever in households of three

No. of secondary
cases

0
1
2

Total

No. of
households

172
42
21

235

Expected
number
169-5
460
19-5

235-0

Using the tables for n = 2 to calculate the score,

S(p) = l72S0(p) + 42^(p) + 2lSt(p),
J. Hygiene 26
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at p = 5-l and 5-2, we find

8(5-1) = +0-19168 and 8(5-2)= -0-04645,

with an observed amount of information, 7 = 2-3813. We then easily obtain the
maximum-likelihood estimate of p by linear inverse interpolation between the
scores. Thus

p = 5-18 ±0-66,

where the standard error following the + sign is given by /-*. In this case the
results obtainable by four-point interpolation make little difference at the level of
accuracy required. It can be shown that the estimate of p is unchanged and that
the standard error is reduced to 0-65. The expected numbers have been calculated
from the expressions given in my previous paper (1953 a), and it is clear from Table 1
above that a good fit is obtained, with x2

{1) = 0-500. It is interesting to observe
that Wilson et al. (1939) obtained a significant deviation from expectation when
fitting a chain-binomial. Their value of P was about 4 %, and this would have been
slightly smaller if they had used maximum-likelihood estimation.

I t is a pleasure to acknowledge my indebtedness to Dr J. C. P. Miller of the
Cambridge University Mathematical Laboratory, who arranged for the tables
described to be computed by EDSAC, and to Miss Margaret O. Lewin, who
undertook the actual programming of the work.
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