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Let K be a subset of BV(0, 1)—the space of functions of bounded variation 
on the closed interval [0, 1]. By the Hausdorff moment problem for K we shall 
mean the determination of necessary and sufficient conditions that corre­
sponding to a given sequence /x = {ixn\n = 0, 1, 2, . . .Jl there should be a 
function a £ K so that 

(1) nn= ( tnda(t),n = 0 , 1 , 2 , . . . . 
«/ o 

For various collections K this problem has been solved—see (3, Chapter 

no. 
By the trigonometric moment problem for K we shall mean the deter­

mination of necessary and sufficient conditions that corresponding to a 
sequence c — {cn\n = 0, =b 1, zfc 2, . . .}2 there should be a function a Ç K 
so that 

(2) cn = i e-2nvitda(t), n = 0, ± 1 , ± 2 , . . . . 
*/o 

For various collections K this problem has also been solved—see, for example 
(4, Chapter IV, § 4). It is noteworthy that these two problems have been 
solved for essentially the same collections K. 

Recently (2), we gave new solutions of the trigonometric moment problem 
for certain classes K, namely those K determined by K! = Lp(0, 1), 
1 < p < 2, where K' is defined now and henceforth, if the functions of K 
are absolutely continuous, to consist of all functions equal almost every­
where to the derivative of a function in K. These solutions were determined 
by use of the known solutions of the Hausdorff moment problem for these 
particular classes K. 

Here we propose to generalize this procedure. Specifically, we propose to 
show that if the Hausdorff moment problem can be solved for a particular 
class K, then so can the trigonometric moment problem. This forms the 
content of the theorem below, and we shall illustrate our theory in a number 
of cases. 

Received June 6, 1960. 
xWe shall use j u a s a generic symbol for sequences whose indices run from zero to infinity. 
2We shall use c a s a generic symbol for sequences whose indices run from minus infinity to 

infinity. 
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MOMENT PROBLEMS 455 

T o this end, we mus t first establish a number of results concerning certain 
numbers ar,m denned by 

(3) ar,m = f tme2*irtdt, r = 0, + 1 , ± 2 , . . . , 
«/ o 

m = 0, 1,2, . . . . 

Since these numbers are essentially both the Hausdorff moments of the 
tr igonometric powers of t, and the trigonometric moments of the algebraic 
powers of /, it is perhaps not surprising t ha t they have an impor tan t role to 
play. Their properties are given in the following lemmas. 

LEMMA 1. 

(4) ar,m = (1 — war)W_i)/27r^>, rm ^ 0, 

(5) \ar,m\ < (m + l ) - 1 , 

(6) \ar,m\ < (Tr\r\)-\ r 9* 0, 

(m + 1)~ , r = 0, 
0, m = 0, r 5* 0, 

(7) ar,m = 
I m—l / \ 

z r) (-l)
nn\/(2wir)n+l,rm ^ 0. 

Proof. On integration by par ts , (4) follows from (3). If m.^A 0, (6) comes 
from applying (5), which is trivial, to the r ight-hand side of (4). The first 
two par ts of (7) are immediate, and the third par t follows from the second 
on repeated application of (4). From (7), (6) is obvious if m = 0. 

LEMMA 2. If \cT\ < M, r = 0, ± 1, =b 2, . . . , and 

N r 
lim £ ' C-r-
N^œ —N r 

exists, (where the prime denotes the omission of the term corresponding to r = 0)> 
then for m = 0, 1, 2, . . . 

N 

lim J2 Crar,m 
iV->co r=—N 

exists. 

Proof. Since, from (7), ar,o = 0, r 5^ 0, and a0,o = 1, it follows tha t 

AT 

(8) 2-J
 Cr ar,0 = Co, 

-N 

and the limit exists for m = 0. Now if m > 0, then from (7) and (4), 

N -i -t N N 

^P 1 1 ^ , cr m ^ , cr 

(9) 2 . c a,.» - — ^ Y co + 3- , 2- 7 - aw rè.v 7
 ar-m~1-
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But the first two terms on the right of this equation have limits as N —> °°, so 
that it suffices to show that the third term has such a limit. But from (6) 

TTM 
(10) 

CO 

Z' 
T=—oo 

Cr 

7T - c o f 

so that the series 
CO 

Z' ~~CLr,m-l 

converges absolutely. Thus the limit of the last term in (9) also exists, and 
the lemma is proved. 

With each sequence c, satisfying the hypotheses of Lemma 2 we can now 
associate a sequence n(c) defined by 

N 

(11) ihnic) = lim J2 CjaT,m> 
iV->co r=-N 

The sequence JJL(C) has certain properties that we summarize as a lemma. 

LEMMA 3. If c satisfies the hypotheses of Lemma 2, then 

(12) no(c) = Co, 

/ i o \ / \ I — m Co m y?sf Cr 

(13) /*(*) = y j ^ -2- + MI - 2 ^ g 7 ar,m-i m>0. 

Proof. Equation (12) follows immediately from (8) and (11). Now from 
(7), aTti = (2irir)~1

) r j£ 0, a0,i = J. Hence from (11) and (9), 
JV 

Hm(c) = K m X ) Crdr,m 
N-*x> r=—N 

v ( 1 , 1 v*, c* m ^fcr \ 

N^œ \m + 1 2 _^ 2TT^ _^ r / 

_ 1 ~~ m ^ i m V"' £z 
1 + ra 2 2-KI T^ r 

since by (10), this last series converges absolutely. 
We are now ready to state and prove our theorem. 

THEOREM. Necessary and sufficient conditions that a sequence c be represented 
in the form (2) for some a £ K are that 

(i) \cT\ <M,r = 0, ± 1 , ± 2 , . . . , 
N c 

(ii) lim 22' ~ exists, 

(iii) JJL(C) is represented in the form (1) with a t K. 
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Proof of necessity. Suppose 

cn = f e-2n*uda{t), n = 0, ± 1 , ± 2 , . . . , 

where a £^K. Clearly, 

\Cn\ < f dV{t) = Jlf, 
«Jo 

where F(£)|is^the total variation of a, so that (i) is necessary. 
Now let 

(3(t) = 2ira(t/2Tr) - c0t, 0 < t < 2TT, 

and define #(/) outside this interval by 

0(/ + 2T) = 0(*). 

Then 0(t) is periodic and of bounded variation, so that if 

1 C27r 

4 = ^ " e-intmdt, n = 0, ± 1 , ± 2 , . . . , 

it follows from the Dini-Dirichlet test (4, Chapter II, Theorem 8,1) 

(14) l i m G E dn = \ (0(0 + ) + 0 ( 0 - ) ) . 

But if n y£ 0, 
-J /* 27T /» 27T /» 2îT 

4 = - L e-intp(t)dt = e-inta(t/2T)dt - £- te~intdt 
Zir */ o «Jo ZTT *J Q 

= 2TT f e-2nTita{t)dt 
Jo 

~T~ • » 

in 
and integrating by parts, we obtain, if ^ ^ 0, 

Thus, (14) becomes 

Km Z ' - = | (0(0+) + /3(0-)) - ido, 

and (ii) is necessary. 
Now let 

« = -̂ f V*tt|8(0. 
Zw J o 

Then, since 

J
» 1 / » 2 i r 

tne2ri"dt= (21r)-(re+1) * V t o , 
0 v o 

https://doi.org/10.4153/CJM-1961-038-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1961-038-8


458 P. G. ROONEY 

it follows from Parseval's theorem for Fourier series (4, Chapter IV, Theorem 
8.7 (iv)) that 

J»2TT oo 

fdfiit) = 2 ) df
T(2T)n+1aT,n (C, 1). 

0 r = - o o 

But the left-hand side of (15) is equal to 

J» 2-7T n 2ir / » 2TT 

fd$(t) = 2ir fdaif/2*) - Co fdt 
o «Jo «Jo 

= (27rf+1 { J o Vda(0 - Co/(n + 1) j . 

Also 
1 /»2TT /»2TT /»2TT 

# = T" e-*"d/3(0 = e-in'da(t/2ir) - - ^ c-*"* 
Z7T t / o «/ 0 ^7T «/ o 

J» 1 / » 2 T T 

e-imitda(t) - p- e-inldt 
0 Z7T */ o 

_ jcn n j± 0 
~ \o « = o, 

so that (15) becomes 

( 2 * r + 1 { J / d a ( 0 - ^ - q r j } = (2^)B+1 £ ' cr ar,B (C, 1). 

Thus, since a0)W, = (w + l ) - 1 

J» l oo 

Afo(0 = E c ra r,„ (C,1). 
o 

But, since by (i), (ii), and Lemma 2 
N 

lim Yl crar,n 
jV-^oo r=- JV 

exists and equals JUW(C), and since the (C, 1) method is consistent, we must 
have 

ixn{c) = I fda{t), 
«Jo 

and (iii) is necessary. 

Proof of sufficiency. From (iii), a £ K exists so that 

Mn(c) = I tnda(t). 
«Jo 

Let 

«^ 0 

e da(t). 
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We shall show t h a t cn
f = cn. Firstly, c0' = cQ, for from (12), 

Co = 110(c) = I da(t) = Co. 

Then , if w ^ 0, 

4= fV2w^^(o 
•/o 

^ 0 w! J o ^ 0 w! 

the interchange of integration and summation being justified by the uniform 
convergence of the exponential series. 

Bu t then using (13) and (12), if n 5* 0, 

T 
na\ s X^ (-2TITI) , . 
(16) cn= Zs --. fim{c) 

m=o ml 
, x , V* (-2niri)m fl - rn Co , w v v cr \ 

= MoW + à ~~^T~ \F+V 2 +fXl~27ih 7a''-V 
/ , , 1 ^ (1 - w ) ( - 2 ^ 7 r i ) m \ , ^ ( - 2 ^ 7 r i ) m 

= Col 1 + ^ 2-> 7 r"TYi / T M i L ; 
\ 2 ^ i (w + 1)! / t^i m\ 

•\m—l (~2niri)m-1 ^,cr \--\ \~M7rt) ^ , Cr 
~ x (m - 1)! ~ r 

Now 

and 

^ _ xm_ = ex - 1 _ 
^ i (m~+ 1)! x " l f 

W X 3; C — 1 
= C 

^ i (m + 1)! x 

so t h a t the coefficient of Co in (16) is equal to 

1 / —2rnri H —2rnri -t\ 

2 \ — Ln-Ki —Znirt / 

Also, 

00 m 

Z X x 1 

—- = e - 1, 

so t h a t the coefficient of MI in (16) is also zero. Thus if n ^ 0 

0 0 / 0 '\m—l 00 

/ i« \ t v^ l~Zniri) \^, cr 

(17) rf = »£ V H j r S 70^-
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But the series 

fi \(-2tiTi)\m-
hx (m- l ) ! 

For from (10) it is smaller than 

£' Cr 

*T,m—1 < °°. 

3 & (m- 1)! 3 6 ^ " • 

Hence we can interchange the orders of summation in (17) and obtain 

(-2mriy 
(18) W 5 ' ^ J ? '(m-l)! •̂m-1 

( - 2 ^ ) * 
m: 

&r ,m* 

But 

^ (-2n^r 
Zs i ~ar 

( — 2mri 

m\ 

'\m n 1 

- J ' 
• /o 

t e at 

Jo V ^ o w! / r 0 \ m = 0 

lO, r 4= w 
,1 , r = n, 

and using this in (18) we obtain cn' = cn, that is 

• /o 

2(r—n)7ri« 
W 

cn = \ e 
Jo 

-2nTi lda{f),n = 0, ± 1 , ± 2 , . 

with a £ K. 
As an example of the use of the theorem to obtain solutions of the trigono­

metric moment problem, let us take K = 5 7(0, 1). Then from (3, Chapter 
III , Theorem 2b), a necessary and sufficient condition that sequence M be the 
Hausdorff moment sequence of a function in BV(0, 1) is that for some con­
stant L 

Z2 \^k,m\ < L, k = 0, 1, 2, . . . , 

where 

9 ^ = Q) ( - i ) *" m ' A " m 
Mm» 

and A is the advancing difference operator. 
Thus, given a sequence c, we find as necessary and sufficient conditions 

that c be the trigonometric moment sequence of a function in BV(0, 1), are 
that (i) and (ii) of the theorem be satisfied, and that for some constant L, 
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where 

(19) 

where 

£ |X*.«(c)| <L,k = Q, 1 , 2 , . . . , 
m=0 

lim ^ crar,jc,m, 
N-$co r=—N 

dr,k,m = I / (—1) A ar,m = I / M U — 0 * <"• 

We list in Table I the conditions for representation as a trigonometric 
moment sequence for some of the more common classes K. In all cases (i) 
and (ii) of the theorem must hold and the column marked (iii) gives the 
third condition that must hold. The last column gives the place from which 
the conditions for the Hausdorff representation are taken. 

TABLE I 

K (iii) Reference (3, 
Chapter I I I ) 

1 B V (0,1) £ |X*,«(c) | < L, k = 0, 1, 2, . . . . Theorem 2b 

2 Increasing functions on [0,1] XAm(c) > 0, k = 0, 1, 2, . . . , 0 < m < k, Theorem 4a 
k 

3 K' = Lp(0, 1), 1 < p < co (k + l ) p - 1 S |X*tmto I* < A & = 0 , 1 , 2 , . . . . Theorem 5 

4 X ' = Lœ (0, 1) (jfe + 1) |XrTO | < L, k = 0, 1, 2, . . . , Theorem 6 
0 < m < k. 

Case 2 is of particular note, since the trigonometric moment problem for 
this K was given a particularly elegant solution by Bochner (1, § 20). 
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