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Abstract
Why do people sometimes hold unjustified beliefs and make harmful choices? Three hypotheses include
(a) contemporary incentives in which some errors cost more than others, (b) cognitive biases evolved to
manage ancestral incentives with variation in error costs and (c) social learning based on choice frequen-
cies. With both modelling and a behavioural experiment, we examined all three mechanisms. The model
and experiment support the conclusion that contemporary cost asymmetries affect choices by increasing
the rate of cheap errors to reduce the rate of expensive errors. Our model shows that a cognitive bias can
distort the evolution of beliefs and in turn behaviour. Unless the bias is strong, however, beliefs often
evolve in the correct direction. This suggests limitations on how cognitive biases shape choices, which fur-
ther indicates that detecting the behavioural consequences of biased cognition may sometimes be challen-
ging. Our experiment used a prime intended to activate a bias called ‘hyperactive agency detection’, and the
prime had no detectable effect on choices. Finally, both the model and experiment show that frequency-
dependent social learning can generate choice dynamics in which some populations converge on widespread
errors, but this outcome hinges on the other two mechanisms being neutral with respect to choice.

Keywords: Cultural evolution; error management theory; herding; social learning; hyperactive agency detection

Media summary: An evolutionary analysis of distorted beliefs and widespread errors when incentives,
cognitive bias, and social learning mix.

Introduction

In early modern Europe, Christian zealots put thousands of innocent people to death because these
innocents were seen to be agents of Satan (Boyer, 2001). In parts of Asia and Africa, ‘penis panics’
have occurred repeatedly. These outbreaks of paranoia centred on the belief that one’s genitals were
receding into one’s body or had been stolen. People resorted to self-destructive measures to protect
themselves, and they arbitrarily accused others of genital thievery (Yap, 1965; Sachdev, 1985;
Ilechukwu, 1992; Cheng, 1996; Buckle et al., 2007; Bures, 2008). In 2003, the United States justified
its invasion of Iraq by arguing that the Iraqi government was manufacturing weapons of mass destruc-
tion. In the wake of the invasion, the evidence overwhelmingly indicated that Iraq did not have such
weapons, but many US citizens maintained the opposite belief (Gaines et al., 2007).

Whether witches, disappearing genitalia or bombs that do not exist, why do large numbers of peo-
ple sometimes hold seemingly unjustified beliefs or make seemingly bad choices? Put differently, what
is the evolutionary explanation for widespread errors in a risky and uncertain world (Haselton &
Nettle, 2006; Foster & Kokko, 2009)? We distinguish between beliefs in error and choices in error.
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A belief in error means a decision maker holds a belief about her situation that available evidence does
not fully justify. A choice in error comes in two forms, ex ante and ex post. From an ex ante perspec-
tive, the decision maker makes a sub-optimal choice given the information she has about her situation
at the time of her decision. From an ex post perspective, the outcome that follows from a choice is not
the best possible outcome given the situation the decision maker actually faces. Under risk and uncer-
tainty, the two perspectives are linked, but not perfectly so. Bad decision making may increase the
probability of bad outcomes, but good outcomes are still possible. Analogously, good decision making
may increase the probability of good outcomes, but bad outcomes can still occur.

Here, we address errors in belief and errors in choice by examining the effects of three different
mechanisms. Each mechanism represents a prominent hypothesis about the origin and persistence
of errors. No hypothesis is mutually exclusive with respect to any other, and so we examine the
three mechanisms in all combinations.

First, the incentive structure of the current decision-making task can support frequent errors in
choice if some errors are costlier than others (Pascal, 1995, originally published in 1670). Under asym-
metric error costs, choosing optimally requires the decision maker to minimise expected costs. In turn,
people should commit cheap errors with a relatively high probability to reduce the probability of
expensive errors. This is simply optimal decision making under risk (McKay & Efferson, 2010). It
does not require unjustified beliefs, and choices are errors only from an ex post perspective that con-
ditions on the decision maker’s realised environment or situation. Imagine, for example, that Charles
offers Ryan a gamble. With probability 0.01, Charles pays Ryan 10,000 dollars. With probability 0.99,
Ryan pays Charles one dollar. Objective probabilities are known and verifiable, and so beliefs are per-
fectly accurate. Ryan accepts the offer, but ex post he typically walks away with one less dollar, a good
bet with a bad outcome. The only mechanism of interest is that losing one dollar is far better than
losing the opportunity to gain 10,000 dollars. In evolutionary terms, the hypothesis of interest is
that evolution has shaped parts of the mind to develop so that they are tolerably adept at general-
purpose optimising (Frankenhuis et al., 2013; Barrett, 2015).

Second, error management theory (Haselton & Nettle, 2006; McKay & Efferson, 2010; Johnson
et al., 2013; Marshall et al., 2013; Haselton et al., 2015) posits that the incentive structures of ancestral
decision-making tasks can support contemporary errors in belief and, by extension, errors in choice.
The claim is that many decision-making domains in the ancestral past involved consistent variation in
error costs. Cognition for a given domain evolved to process information from the environment in a
way that helped ancestral humans avoid especially costly errors. Contemporary humans retain the
psychologies in question. If environmental stimuli activate an associated cognitive process, the deci-
sion maker chooses in accord with ancestral conditions, and she does so even if the contemporary set-
ting is quite different (Cosmides & Tooby, 2013). Because underlying beliefs are potentially distorted
by psychologies adapted to ancestral conditions that may no longer hold, beliefs can be errors, as can
attendant choices from both ex ante and ex post perspectives.

Finally, we consider the hypothesis that frequency-dependent social learning supports multiple
equilibria and path-dependent cultural evolutionary dynamics (Boyd & Richerson, 1985;
Bikhchandani et al., 1992; Young, 1996, 2015; Toyokawa et al., 2019). When people learn socially
by observing how common or rare different behaviours are, the path a population takes can depend
sensitively on small random events that occur early in the cultural evolutionary process. Consequently,
a tradition in which nearly everyone chooses in error, given their situation, can be a stable equilibrium
that obtains with positive probability (Boyd & Richerson, 1985; Bikhchandani et al., 1992). This mech-
anism has been offered as an explanation for the persistence and even origin of many harmful tradi-
tions, including foot binding and female genital cutting (Mackie, 1996; Efferson et al., 2015, 2020;
Platteau et al., 2018), child marriage (Cloward, 2016) and duelling (Young, 2015).

Importantly, social learning and path-dependent dynamics are perfectly consistent with a rational
benchmark in which everyone has Bayesian beliefs and maximises expected payoffs given these beliefs
(Bikhchandani et al., 1992). Consequently, the mechanism requires neither unjustified beliefs nor sub-
optimal decision making. Nonetheless, social learning could amplify or attenuate the effects of other
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mechanisms, and so social learning also does not preclude unjustified beliefs and sub-optimal decision
making. One of our main tasks here is to examine interactions between social learning and other
mechanisms, specifically mechanisms related to contemporary error costs and to psychologies evolved
to manage ancestral error costs.

We present a model that combines the three mechanisms above, and we then show results from a
behavioural experiment with a design that parallels the model closely. This jointly theoretical and
empirical approach has key advantages. It requires us to provide precise operational definitions of
the three mechanisms. This is especially critical with respect to contemporary vs. ancestral cost asym-
metries as the distinction between these two mechanisms is not always clear (McKay & Efferson, 2010;
Marshall et al., 2013). Moreover, our modelling and empirical efforts jointly link the present study to
other fields, some theoretical and some empirical. These include expected utility and cumulative pro-
spect theories (von Neumann and Morgenstern, 1944; Kahneman and Tversky, 1979; Tversky &
Kahneman, 2000), error management theory (Haselton & Nettle, 2006; McKay & Efferson, 2010;
Johnson et al., 2013; Haselton et al., 2015), risk dominance in game theory (Harsanyi & Selten,
1988; Camerer, 2003), information cascades and herding (Bikhchandani et al., 1992; Anderson &
Holt, 1997; Chamley, 2004; Goeree et al., 2007; Goeree & Yariv, 2015), and the study of cultural evo-
lution (Cavalli-Sforza & Feldman, 1981; Sperber, 1996; Richerson & Boyd, 2005; Mesoudi, 2011;
Henrich, 2015; Morin, 2016; Heyes, 2018). Finally, our joint approach ensures that we have a frame-
work for interpreting our experimental results (Muthukrishna and Henrich, 2019). For example, as
explained below, past implementations of the generic experimental paradigm we used (e.g.
Anderson & Holt, 1997) led us to expect that social learning would routinely generate path-dependent
dynamics and associated harmful traditions in our experiment. The model suggested a more subtle
result. Our intuition was wrong; the model was not.

A model of beliefs and choices with explicit incentives, biased cognition and social learning

The environment takes one of two states, 0 or 1. The ex ante probability of state 1 is p1∈ (0, 1).
Individuals have two actions to choose from, which we also label as 0 and 1. Choosing 0 in state 0
is better than choosing 1, and choosing 1 in state 1 is better than choosing 0. Specifically, u00 is
the payoff from choosing 0 in state 0, u10 is the payoff from choosing 1 in state 0, and u00 > u10.
Similarly, u11 is the payoff from choosing 1 in state 1, u01 is the payoff from choosing 0 in state 1,
and u11 > u01. This is the ‘explicit incentive structure’ of the decision-making task, which represents
the first mechanism we consider.

Two errors are possible. A decision maker can choose 1 when the state is 0, with a loss of u00− u10,
or the decision maker can choose 0 when the state is 1, with a loss of u11− u01. If error costs are the
same, the explicit incentive structure is ‘symmetric’. If error costs are different, it is ‘asymmetric’. We
arbitrarily designate state 1 as the state with relatively large error costs under asymmetric incentives,
which means u11− u01≥ u00− u10. To illustrate asymmetric incentives, imagine a woman walking
through the forest. She spies something long, dark and skinny. Is it a dangerous snake, equivalent
to state 1, or just a stick, equivalent to state 0? Treating a snake as a stick is worse than treating a
stick as a snake, and so the woman decides to tread carefully. Treading carefully does not require
her to process snake-like stimuli in a special way, although we consider this possibility below.
Rather, treading carefully simply requires the woman to recognise explicitly that snakes are more dan-
gerous than sticks. A long dark skinny object in the forest is in this sense equivalent to the gamble
above that Charles offers to Ryan. Put differently, the explicit incentive structure of a task at hand
is a general mechanism that can shape choices via asymmetric costs in ways unrelated to specific
decision-making domains and associated selection in the ancestral past.

Our treatment of cognition, in contrast, centres on hypotheses about past selection. Specifically,
decision makers do not simply respond to explicit incentives and an ex ante probability; they also
learn. Learning may or may not yield beliefs in error depending on the structure of evolved cognition.
This is the second mechanism we examine.
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Before choosing, each decision maker observes a private signal about the state. She interprets this
signal and learns accordingly. Like the state, a signal can take a value of 0 or 1. After observing her
signal, a decision maker updates her beliefs about the environment via Bayes’ Rule. Beliefs take the
form of a subjective probability that the state is 1. If the decision maker observes 0 as a private signal,
her belief goes down. If she observes 1, her belief goes up. Because the signal is private, associated
learning is individual. With Bayesian updating, we do not suggest that real people routinely perform
Bayesian calculations. Rather, whatever the actual cognitive processes people use, Bayesian beliefs pro-
vide the unbiased benchmark. Using Bayes’ Rule in the model thus allows us to posit a precise oper-
ational definition of beliefs formed via biased vs. unbiased cognition.

In particular, decision makers interpret private signals in a way that may or may not be accurate.
Decision makers think that private signals match the state with probability q̂ [ (0.5, 1). The actual prob-
abilities that govern perceived private signals may be different. If so, decision makers systematically mis-
interpret signals, and we thus refer to a ‘cognitive bias’. We focus on cognitive biases that distort beliefs
in favour of state 1. If the state is 0, the actual probability a decision maker perceives a 0 signal is q̂− a
for some a [ [0, q̂]. If the state is 1, the actual probability that a decision maker perceives a 1 signal is
q̂+ b for some b [ [0, 1− q̂]. To see why this represents a cognitive bias favouring belief in state 1,
consider the extreme case in which a = q̂ and b = 1− q̂. Perceived signals indicate state 1 regardless
of the actual state, and thus private signals are completely uninformative. However, because decision
makers are unaware of their bias, they interpret perceived signals as evidence for state 1.

An archetypical scenario illustrates. A contemporary human is walking through the forest, and she
spies something long, dark, and skinny. Is it a dangerous snake, equivalent to state 1, or just a stick,
equivalent to state 0? Ancestral error costs were presumably asymmetric because treating a snake as a
stick in the ancestral past was worse than treating a stick as a snake (Haselton & Galperin, 2012).
Crucially, however, we considered explicit incentives above as the first of our three mechanisms,
and these incentives, whether ancestral or contemporary, are not our concern here. Rather, our con-
cern is the hypothesis that ancestral cost asymmetries led to the evolution of a cognition that distorts
contemporary belief formation. Such a cognition would imply that contemporary humans are hyper-
sensitive to snake-like stimuli and draw inferences about the threat of dangerous snakes that are not
fully justified by the evidence at hand. Formally, α, β > 0, and thus beliefs deviate systematically from
the unbiased Bayesian benchmark. Many cognitive biases of this sort have been hypothesised owing to
ancestral cost asymmetries (Abbey, 1982; Haselton & Nettle, 2006; McKay & Efferson, 2010; Delton
et al., 2011; Johnson et al., 2013; Marshall et al., 2013; Haselton et al., 2015; Perilloux & Kurzban,
2015; Zimmermann & Efferson, 2017; Murray et al., 2017), and our experiment below considers a spe-
cific bias known as ‘hyperactive agency detection’ (Guthrie et al., 1980; Guthrie, 1993; Barrett, 2000,
2004, 2012; McKay et al., 2018; Maij et al., 2019).

As the final mechanism, decision makers learn socially by observing others. They make choices one
at a time in a sequence indexed by t. At any given point in the sequence, the decision maker in ques-
tion has a prior belief that the state is 1, which we call p̂t . The decision maker observes her private
signal and updates her belief. Given the explicit incentive structure and her updated belief, the decision
maker has an expected payoff from choosing 0 and an expected payoff from choosing 1. She then
makes a choice. Decision makers tend to choose in a way that maximises expected payoffs, but
they do not do so with certainty. The parameter λ ∈ [0, ∞) controls how strongly choices respond
to expected payoffs. For low values of λ, choices are relatively noisy and only somewhat responsive
to expected payoffs. For high values of λ, decision makers are extremely responsive and almost always
maximise expected payoffs, which means decision making is relatively systematic.

Social learning occurs because choices are observable. For the first decision maker, at position t = 1,
her subjective prior is the ex ante objective prior, p̂1 = p1. The decision maker observes her private
signal, updates her beliefs, and makes a choice observable to everyone else. All downstream decision
makers (t > 1) update their beliefs after observing the choice at t = 1. The ex ante objective prior (p1),
the incentive structure (u00, u10, u11 and u01), q̂ and λ are all common knowledge, and so everyone
downstream updates beliefs in the same way. The result is p̂2, which we treat as a new prior for the
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decision maker in position t = 2. The decision maker at t = 2 observes her private signal, updates her
beliefs accordingly, and makes an observable choice. Downstream decision makers update their beliefs
based on this observable choice, and so the process goes. In sum, the first decision maker only learns
individually, while all subsequent decision makers learn both individually and socially. Importantly, if
cognition is biased (α, β > 0), no one is aware of the bias. Decision makers do not account for the bias
when updating their beliefs by learning individually via private signals, and they do not account for the
bias when learning socially by observing the choices of others.

To avoid any confusion, we would like to explain our use of the word ‘bias’ when referring to social
learning. We do not mean biased social learning in the sense of Boyd and Richerson (1985), who used
the term ‘biased’ to mean any social learning strategy that generates endogenous cultural evolutionary
dynamics. When we say ‘biased’, we mean a cognitive system that processes information in some way
that deviates systematically from a Bayesian with an accurate understanding of priors, private infor-
mation and observed choices. The two views of bias are not at odds; they simply emphasise different
questions. Interestingly, recent theoretical research has shown that genetic evolution can support social
learning strategies that are both consistent with Bayesian updating and generate endogenous cultural
evolutionary dynamics (Perreault et al., 2012; Efferson et al., 2016). Such strategies are biased in the
sense of Boyd and Richerson (1985) but unbiased by our definition.

Model results, analytical

Cost asymmetries in the explicit incentive structure exert a powerful influence on choice by weakening
the belief a decision maker requires before choosing 1. Moreover, this mechanism does not require a
large asymmetry. Indeed, the largest effects on behaviour occur when moving from no asymmetry to
small asymmetries (Supplementary Information). Moreover, the potency of explicit cost asymmetries
has nothing to do with the origin of beliefs. Explicit cost asymmetries exert their considerable influ-
ence on behaviour regardless of whether beliefs are prior to learning or posterior, and regardless of
whether or not beliefs are distorted by cognitive bias. Cost asymmetries mean that decision makers
require a relatively weak belief that the state is 1 before choosing 1, and this claim is independent
of how beliefs are formed.

Belief formation is a separate process, and we show that beliefs can only evolve in the wrong dir-
ection if cognition is biased in a sufficiently strong way (Supplementary Information). Specifically, if
cognition is unbiased (α = β = 0), beliefs evolve in expectation in the right direction. If the state is 0,
beliefs that the state is 1 are expected to go down. If the state is 1, beliefs that the state is 1 are expected
to go up. If cognition is biased (α, β > 0), beliefs may or may not evolve in expectation in the right
direction. Because we focus on cognitive biases that distort beliefs in favour of state 1, belief evolution
when the state is 1 is not especially interesting. The associated cognitive bias (β > 0) may speed up the
evolution of beliefs in favour of state 1, but it cannot send belief evolution off in the wrong direction.
Information from the environment and the cognitive bias point towards the same conclusion.

The interesting scenario centres on the evolution of beliefs in favour of state 1 when the actual state
is 0. We show that beliefs evolve in expectation in favour of state 1, and hence in the wrong direction, if
and only if p̂t , a/(2q̂− 1). In effect, beliefs are expected to evolve consistently away from reality if
and only if decision makers think that private signals are much noisier than these signals really are. For
example, if q̂ = 0.6, decision makers think that private signals are relatively noisy, α can take any value
in [0, 0.6], and 2q̂− 1 = 0.2. By extension, for any feasible α≥ 0.2, a/(2q̂− 1) ≥ 1. Consequently,
p̂t , a/(2q̂− 1) always holds, and thus beliefs favouring state 1 always increase in expectation. In con-
trast, if q̂ = 0.9, α can take any value in [0, 0.1], and 2q̂− 1 = 0.8. Even if α = 0.1, the maximum feas-
ible value, beliefs favouring state 1 only increase in expectation if the prior is sufficiently small, namely
if p̂t , a/(2q̂− 1) = 1/8. Here, the effects of the cognitive bias are fundamentally limited. The cogni-
tive bias prevents beliefs from converging on the truth, but the bias does not systematically distort belief
evolution in the wrong direction. For most priors (p̂t . 1/8), beliefs are expected to move in the right
direction, namely towards zero, even though cognition is biased in the other direction.
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All in all, our model isolates a/(2q̂− 1) as an important measure of cognitive bias. If a/(2q̂− 1) is
sufficiently large, beliefs are always expected to evolve in the wrong direction when reality is inconsist-
ent with the bias. Alternatively, if a/(2q̂− 1) is sufficiently small, beliefs are only expected to evolve in
the wrong direction when the decision maker’s prior is sufficiently close to the truth. Otherwise, beliefs
are distorted by the cognitive bias, but they still evolve in expectation in the right direction.

Model results, simulation

To provide a complete depiction of how beliefs and behaviour evolve, we developed an agent-based
simulation of the exact model detailed above, and we ran simulations under a diverse array of parameter
values (Supplementary Information). In particular, we varied the explicit incentive structure (u00, u10,
u11 and u01) and the properties of cognition (α and β). Like the analysis above, we arbitrarily limit
attention to associated biases in favour of 1. This means, if error costs are asymmetric, the asymmetry
favours choosing 1 (u11− u01 > u00− u10). We varied the incentive structure to range from no asym-
metry to large asymmetries. As explained above, however, the difference between symmetric error
costs and small asymmetries is the difference that matters most. In addition, if cognition is biased,
the bias distorts beliefs in favour of 1 (α, β > 0). We specifically set q̂ = 0.6 and varied α and β over
the full range of possible values. As explained above, any associated distortions in information process-
ing may or may not be strong enough to lead beliefs to evolve in the wrong direction under state 0.

Finally, we also varied how strongly choices respond to expected payoffs (λ), and we varied the ex
ante probability of state 1 (p1). For every combination of parameter values, we simulated 100 inde-
pendent sequences of 201 decision makers each. Below we provide a link to the files for the simulation,
a script for managing the entire project over a user-defined parameter space, and a script for graphing
results for each parameter combination.

Here we focus on the interesting case in which state 0 is the most likely state ex ante and the actual
state ex post. Specifically, we consider cases in which p1 = 1/3, and 0 is the actual state, which is expected
to happen for 2/3 of all simulated populations. This scenario is interesting for two key reasons. First, if
the actual state is 1, cognitive biases and explicit cost asymmetries can only reinforce the evolution of
beliefs and choices in a way that is consistent with the actual environment. The tendency for cognitive
biases and explicit cost asymmetries to support errors, in contrast, hinges on the environment being in
the opposite state, and this is why we focus on cases in which the actual state is 0. Second, by making
state 1 ex ante unlikely (p1 = 1/3), populations that converge on choosing 1 in state 0 are converging on
a behavioural tradition that is not just an error, but an error with a relatively high ex ante probability. As
explained later, we chose p1 = 1/3 in our experiment for exactly this reason.

Figures 1–3 show the evolution of beliefs and choices under these conditions. We use bubble plots
because they allow us to depict the complete distribution of outcomes over all relevant simulations,
and the graphs thus provide complete information about simulation results. To read the graphs,
take Figure 1a as an example. First consider beliefs. The prior belief for a given decision maker can
take values in [0, 1]. Accordingly, we partition this interval into 10 bins, {[0, 0.1], (0.1, 0.2], (0.2,
0.3], …, (0.9, 1]}. For a given position (i.e. a decision maker in the sequence), we calculate the distri-
bution over the prior beliefs of the decision makers in that position, with one decision maker per
simulation, and show that distribution as a bubble plot in open blue circles. Bubbles are centred
for each of the 10 bins, and the sizes of bubbles are proportional to the frequency of observations
for the bin in question. For example, all decision makers in position 1 have the ex ante objective
prior as their subjective priors (p̂1 = p1 = 1/3), and so this position has one large open circle at
the centre of the interval (0.3, 0.4]. To prevent clutter, we only show the distribution of priors for
every 10 positions in the sequence, and distributions are offset slightly to the left relative to the
sequence position in question.

Now consider choices. For a given point in the sequence, t, we calculate the cumulative proportion
of decision makers choosing 1 for each simulated sequence. Let cn∈ {0, 1} denote the choice of the
decision maker choosing in position n for a specific sequence. The cumulative proportion choosing
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1 is simply
∑t

n=1cn/t. For a given t, we have multiple cumulative proportions, one for each simulated
sequence. A bubble plot in closed blue circles represents the distribution of these values over
sequences. As above, we partition the unit interval into 10 bins and show the distribution of cumu-
lative proportion values over these 10 bins. To illustrate with t = 1 in Figure 1a, most simulations
under state 0 have cumulative proportions in [0, 0.1], but a few also have cumulative proportions

Figure 1. The evolution of beliefs and choices when error costs are symmetric (u11 = u00 = 1 and u01 = u10 = 0). For each panel, we
simulated 100 independent sequences with 1/3 as the ex ante probability of state 1. Each panel shows results for the specific
sequences in which the actual state is 0. Over these sequences, the graph shows the distribution of prior beliefs that the state
is 1 (open circles) for every tenth decision maker in the sequence. It also shows the associated distribution over the cumulative
proportions, by sequence, of decision makers incorrectly guessing state 1 (closed circles). Distributions are represented as bubble
plots. (a) Cognition is biased (α = 0.5) and decision making relatively noisy (λ = 10). (b) Cognition is biased (α = 0.5) and decision
making relatively systematic (λ = 100). (c) Cognition is unbiased (α = 0) and decision making relatively noisy (λ = 10). (d)
Cognition is unbiased (α = 0) and decision making relatively systematic (λ = 100). See the main text for a detailed description of
how to read the graphs and a summary of key results.
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in (0.9, 1]. We show the distribution for every 10 positions in the sequence, and distributions are offset
slightly to the right relative to the sequence position in question.

Simulations show four key results.

(1) The dynamics of both beliefs and choices unfold slowly when choices respond strongly to
expected payoffs and are thus relatively systematic (Figures 1–3, panels b and d, λ = 100).

Figure 2. The evolution of beliefs and choices when error costs involve a relatively weak asymmetry (u11 = 1, u00 = 0.75, u01 = 0, and
u10 = 0.25). For each panel, we simulated 100 independent sequences with 1/3 as the ex ante probability of state 1. Each panel
shows results for the specific sequences in which the actual state is 0. Over these sequences, the graph shows the distribution
of prior beliefs that the state is 1 (open circles) for every tenth decision maker in the sequence. It also shows the associated dis-
tribution over the cumulative proportions, by sequence, of decision makers incorrectly guessing state 1 (closed circles).
Distributions are represented as bubble plots. (a) Cognition is biased (α = 0.5) and decision making relatively noisy (λ = 10). (b)
Cognition is biased (α = 0.5) and decision making relatively systematic (λ = 100). (c) Cognition is unbiased (α = 0) and decision mak-
ing relatively noisy (λ = 10). (d) Cognition is unbiased (α = 0) and decision making relatively systematic (λ = 100). See the main text
for a detailed description of how to read the graphs and a summary of key results.
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To see why, consider the extreme case in which all decision makers always maximise expected
payoffs (λ→∞). When this is true, decision makers start off choosing in perfect accord with
their private signals. Downstream decision makers can thus infer, with complete accuracy, the
private signals of the decision makers in question. Prior beliefs evolve towards one of the two
boundaries as the sample of signals and congruent choices grows. Before long, however, prior
beliefs become so strong that the weight of history exceeds the informational value of a private

Figure 3. The evolution of beliefs and choices when error costs involve a relatively strong asymmetry (u11 = 1, u00 = 0.6, u01 = 0, and
u10 = 0.4). For each panel, we simulated 100 independent sequences with 1/3 as the ex ante probability of state 1. Each panel shows
results for the specific sequences in which the actual state is 0. Over these sequences, the graph shows the distribution of prior
beliefs that the state is 1 (open circles) for every tenth decision maker in the sequence. It also shows the associated distribution
over the cumulative proportions, by sequence, of decision makers incorrectly guessing state 1 (closed circles). Distributions are
represented as bubble plots. (a) Cognition is biased (α = 0.5) and decision making relatively noisy (λ = 10). (b) Cognition is biased
(α = 0.5) and decision making relatively systematic (λ = 100). (c) Cognition is unbiased (α = 0) and decision making relatively noisy
(λ = 10). (d) Cognition is unbiased (α = 0) and decision making relatively systematic (λ = 100). See the main text for a detailed
description of how to read the graphs and a summary of key results.
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signal. At this point, the choice maximising expected payoffs is independent of the signal the
decision maker observes (Bikhchandani et al., 1992, 1998). All learning stops because choices
no longer reveal private information. For finite but large values of λ (Figures 1–3, panels b and
d, λ = 100), learning never stops in this way (Goeree et al., 2007), but it is slow. It is slow
because, even though choices are not independent of signals, probability distributions over
choices are nonetheless highly skewed. Observing a choice thus conveys some information
but only a little (Cover & Thomas, 2006). With more noise (Figures 1–3, panels a and c, λ
= 10), probability distributions are less skewed, and observed choices convey more information.
This speeds up learning and associated cultural evolutionary dynamics.

(2) When explicit error costs are symmetric, beliefs and choices are congruent. If the belief in state
1 is high, choosing 1 is common (Figure 1a). If the belief in state 1 is low, choosing 1 is uncom-
mon (Figure 1b–d). When error costs are asymmetric, beliefs and choices can be incongruent.
Choosing 1 can be common even when the belief in state 1 is low (Figures 2b, d and 3b–d).

(3) Beliefs only evolve consistently in the wrong direction, namely away from 0, when cognition is
biased (Figures 1a, 2a, b and 3a). Here we implement a cognitive bias that we know, given our
analytical results above, is a strong bias because a/(2q̂− 1) = 0.5/(2(0.6)− 1) = 2.5.

(4) Social learning can generate path-dependent dynamics, but it has no general tendency to do so.
Figure 2c, d shows specific situations that support path dependence. Some sequences converge
on nearly everyone correctly choosing 0, while other sequences converge on nearly everyone
incorrectly choosing 1. For these figures, the cost of an error if the state is 1 is twice the
cost of an error if the state is 0. When coupled with the fact that state 1 is half as likely as
state 0 (1/3 vs. 2/3), the explicit incentive structure creates no initial bias towards choosing
0 or 1. In addition, cognition is unbiased, and so decision makers do not process information
in a systematically distorted way. As a result, both the explicit incentive structure and cognition
are neutral with respect to choice. Because incentives and cognition are neutral in this way, the
tendency for social learning to generate path-dependent dynamics in behaviour can rise to the
surface. In contrast, if explicit incentives are not neutral (Figure 1a–d), or if cognition is biased
(Figures 1–3, a and b), sequences do not exhibit this path dependence, and all sequences tend
to evolve towards most decision makers choosing either 0 or 1.

Experimental methods

We conducted behavioural experiments in which subjects made decisions under risk in a shared envir-
onment (Supplementary Information). This shared environment took one of two possible states,
labelled simply as ‘red’ and ‘blue’. The actual state was not known with certainty, and the basic experi-
mental task was to guess the state correctly. Errors amounted to either guessing blue when the state
was red or guessing red when the state was blue. Both errors cost subjects real money. To draw a
link with the model above, blue is state 0, and red is state 1.

For a given experimental session, we typically had 34 decision-making subjects and one additional,
randomly selected subject who served as the monitor. With probability 1/3 subjects faced the red state,
while with probability 2/3 the state was blue. Red was thus ex ante unlikely. Accordingly, a group in
which red choices spread under the blue state was a group generating a shared tradition expected to be
an error with a relatively high ex ante probability.

In each experimental session we repeated the experiment five times. Treatment conditions were
held constant for all repetitions within a session, and each repetition proceeded as follows. The moni-
tor rolled a die to determine the state. A roll of 1 or 2 resulted in the red state, while 3, 4, 5 or 6 resulted
in the blue state. The monitor rolled the die while out of sight but within earshot of the other subjects,
and all subjects knew the process for determining the state. After rolling the die, the monitor returned
to her computer, entered the realised state for the remaining 34 subjects, and the experiment proper
began. The experimenter observed all of the monitor’s activities to ensure accuracy, and the monitor’s
payoff did not depend in any way on the realised state or the choices of the other participants.
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After the monitor had entered the state, the remaining subjects made their guesses one at a time in
a randomly determined order that was independent for each repetition of the experiment. Before mak-
ing a guess, each subject received a private signal only she could observe. This private signal matched
the realised state with probability 0.6, and thus private signals were informative but noisy.

After observing her private signal, each decision-making subject made a guess about the state.
Subjects received an increase in payoffs for correct guesses and a decrease for incorrect guesses. As
explained below, in some treatments guesses were publicly displayed immediately. As a result, down-
stream decision makers, in addition to relying on their private signals, could learn socially. In other
treatments, guesses were not publicly observable, subjects had only their private signals, and thus
learning was strictly individual. Our overall experimental design included eight treatments based on
variation in explicit incentives, the presence of a payoff-irrelevant prime intended to induce biased
cognition and whether social learning was possible.

Explicit incentives

In the symmetric case, each subject received an endowment of 8 CHF (Swiss Francs). An incorrect
guess about the state resulted in a loss of 3 CHF, while a correct guess resulted in a gain of 3 CHF.
These gains and losses held regardless of whether the realised state was red or blue. In the asymmetric
case, endowments were the same, and the losses and gains in the blue state were the same. If the rea-
lised state was red, however, a correct guess resulted in a gain of 6 CHF, while an incorrect guess led to
a loss of 6 CHF. This means that the cost of an error in the red state was 6− ( − 6) = 12 CHF, which
was twice as much as the error cost of 3− (− 3) = 6 CHF when the state was blue.

Our asymmetric treatments involved a weak asymmetry in which the cost of choosing blue
when the state was red was only twice the cost of choosing red when the state was blue. Moreover,
we exactly offset this asymmetry by making blue twice as likely as red ex ante. The net result was
that, in treatments with an asymmetric payoff structure, the a priori expected payoff from choosing
red ((1/3)(6) + (2/3)(− 3) = 0) exactly equalled the a priori expected payoff from choosing blue
((1/3)(− 6) + (2/3)(3) = 0). Put differently, before the first subject in a sequence had received her pri-
vate signal, the cost asymmetry did not produce an initial bias favouring blue or red for risk-neutral
subjects. Once subjects started to receive information and learn, this equivalence no longer held.

Agency prime

Treatments varied in terms of how we described payoffs. In no agency prime treatments, the payoff
consequences associated with a correct guess were explained in the instructions and on the decision-
making screen during the experiment by saying, for example, ‘Your income rises by 3 CHF’. With an
incorrect guess, we analogously said, ‘Your income falls by 3 CHF’. This frame was used for both the
red and blue states. In agency prime treatments, the frame was the same for describing the correct and
incorrect guesses under the blue state. However, when describing the payoff consequences under the
red state, with the symmetric case as an example, we said, ‘We will reward you with an increase of 3
CHF’ or ‘We will punish you with a reduction of 3 CHF’. For screen shots in the original German, see
the Supplementary Information (Figures S3 and S4).

Our aim here was to use a linguistic manipulation to activate the concept of an intentional agent
associated with a specific environmental state. The hypothesised cognitive bias of interest is hyper-
active agency detection (Guthrie et al., 1980; Guthrie, 1993; Barrett, 2000, 2004, 2012; McKay et al.,
2018; Maij et al., 2019). The hypothesis posits that one of the biggest threats ancestral humans
faced was other people with furtive, malevolent intentions. Ancestral humans faced two associated
errors. They could have assumed an unseen agent was trying to harm them when no such agent
was present, or they could have ignored the possibility of an unseen hostile agent when in fact one
did exist. The latter error was typically more costly, and this would have increased the tendency to
guard preemptively against the hazards of unseen agents. In the end, humans evolved a cognitive
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bias that discounts the role of chance and overestimates the probability that unseen agents are respon-
sible for many events in life, from the mundane to the extraordinary. Metaphorically, people do not
simply see clouds; they see faces in the clouds (Guthrie, 1993).

For our purposes, guessing the state is theoretically equivalent to guessing if an unseen agent is
nearby. Under one state, in our case blue, no unseen agent is nearby and costs and benefits simply
occur. Under the other state, in our case red, an agent is nearby to discharge costs and benefits as
punishments and rewards. This is why we attach the agency prime to the red state. Previous experi-
ments have successfully used both word primes (Shariff & Norenzayan, 2007; Gervais & Norenzayan,
2012) and face primes (Haley & Fessler, 2005; Nettle et al., 2013; Sparks & Barclay, 2013) to activate
agency concepts, and linguistic priming effects have been widely documented in behavioural experi-
ments (Tversky & Kahneman, 1981). The question is whether this manipulation shapes choices in a
way that is distinct from the effects of explicit material incentives. As explained in our theory section
above, such an effect would reflect our operational definition of a cognitive bias.

Individual and social learning

In social treatments, guesses were posted in order, as they occurred, across the top of every subject’s
screen using either an ‘R’ or a ‘B’. In asocial treatments, the character ‘X’ appeared instead, regardless
of whether the relevant decision was red or blue.

Overall, our empirical strategy was to design an experiment that captures the potential effects of
three mechanisms in all eight combinations. The three mechanisms are asymmetric error costs asso-
ciated with contemporary explicit incentives, evolved cognitive biases owing to ancestral cost asym-
metries and path-dependent cultural evolutionary dynamics. Each mechanism represents a distinct
hypothesis about the origin and persistence of errors, and our model suggests that all three should
affect if and how decision makers exhibit errors given environmental states.

First, for subjects maximising expected payoffs, treatments including an explicit cost asymmetry
should reduce the belief in the red state a subject requires before actually guessing red, which should
increase red choices all else equal. Second, treatments using agency language to describe outcomes
under the red state should evoke a psychology to mollify the unseen agents who distribute punish-
ments and rewards if the state is red, which should also increase red choices all else equal. Finally,
under publicly observable choices, social learning should lead to path-dependent dynamics when
other mechanisms are neutral and by extension a subset of populations that converge on a harmful
tradition. The neutrality of other mechanisms holds in asymmetric treatments without an agency
prime.

We conducted experiments under anonymous laboratory conditions on a local computer network
running z-Tree (Fischbacher, 2007) in the Department of Economics at the University of Zurich. We
ran sequences of length 34 because this was the maximum length we could implement given the size of
the laboratory. Altogether, we ran 20 sessions with 670 subjects, recruited via the laboratory’s standard
subject pool, for a total of 3365 observations over 100 separate sequences (Supplementary
Information). The final sample was 47.5% female with an average age of 22.1 (SD 4.45). Excluding
the monitors, subjects made an average of 43.89 CHF in the experiment, and they additionally received
10 CHF each as a show-up fee. Monitors received fixed total payments of 50 CHF. The study was
approved by the Human Subjects Committee of the Faculty of Economics, Business Administration,
and Information Technology at the University of Zurich. We did not pre-register the study because
we collected the data before recent replication studies (Open-Science-Collaboration, 2015; Camerer
et al., 2016) and the trend towards pre-registration that followed.

Experimental results

For all analyses, whether modelling binary or continuous response variables, we rely on ordinary least
squares with robust clustered standard errors as a robust approach to estimating average treatment
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effects under minimal assumptions (Angrist & Pischke, 2009). We conservatively cluster at the session
level, which yields 20 clusters. Accordingly, we calculate both the variance-covariance matrix allowing
for heteroskedastic errors correlated within clusters (Wooldridge, 2002; Arai, 2011), and we use clus-
tered bootstrapping to obtain 95 and 99% confidence intervals (Cameron & Trivedi, 2005; Angrist &
Pischke, 2009). We emphasise results robust to multiple approaches to statistical inference. As add-
itional robustness checks, we also model treatment effects both with and without controls. We provide
a link to the data below.

Red choices

Figure 4 shows the proportion of red guesses conditional on the treatment and the realised state. The
figure reveals that explicitly asymmetric error costs had an overwhelmingly dominant effect. Modelling
red choices as a function of the treatments confirms this conclusion by showing that asymmetric error
costs produced a large and highly significant increase in the rate at which participants guessed red
(Table 1, Asym). This means that asymmetric error costs reduced the error rate when the state was
red, which was relatively rare, and increased the error rate when the state was blue, which was relatively
common. The other treatment dimensions did not robustly affect the rate of red guesses. The results
provide some suggestive evidence that the availability of social information slightly increased the prob-
ability of participants choosing red, but the effect is not robust to multiple forms of statistical inference
(Table 1, Social). In addition, observing a red private signal had a strong and robust positive effect on
the probability of making a red choice (Table 1, Signal red).

Although the availability of social information did not have a robust effect on the average tendency
to choose red, this does not mean that social learning was unimportant. Rather, the result simply
means that the possibility to learn socially did not affect average behaviour. For any given social
learner, however, the social information available might still have affected her decision making, and
before running the experiments we expected social information to influence choices. Indeed, a long
tradition of research has shown that people exhibit some tendency to conform when presented
with social information about how common or rare different behaviours are (Sherif, 1936; Asch,
1955; Anderson & Holt, 1997; Berns et al., 2005; Morgan et al., 2012; Goeree & Yariv, 2015;
Efferson et al., 2016; Muthukrishna et al., 2016; Efferson & Vogt, 2018). We examined such effects
by analysing choices in social treatments as a function of frequency-dependent social information.
In particular, because our paradigm relies on sequential choices with one choice per subject in a
given environment, this analysis avoids the interpretive problems that plague many attempts to iden-
tify the causal impact of information about how others behave (Manski, 2000; Angrist, 2014).

Accordingly, Table 2 shows an analysis of red choices in social treatments, where we have
added lagged frequency-dependent social information to the independent variables. To specify this
variable, let cn = 1 denote a red choice in position n of a sequence and cn = 0 a blue choice. For any
position t > 1, lagged social information is the centred proportion of upstream subjects choosing
red,

∑t−1
n=1 cn/(t − 1)− 0.5. Like the analysis of all treatments (Table 1), the analysis of social treat-

ments shows large and robust effects associated with asymmetric costs and the participant’s private
signal (Table 2, Asym and Signal red). Asymmetric costs and observing a red private signal both
resulted in large and robust increases in the probability a participant chose red. The proportion of
observed upstream participants choosing red also had a robust positive effect on the probability of
a red choice (Table 2, Lagged social info).

Altogether, our results indicate that frequency-dependent social information affected individual
decision making, but it did so without affecting average choices. This result suggests that social learn-
ing might have instead affected the variance in choices. Put differently, in comparison to asocial treat-
ments, social treatments might have shifted some of the overall variation in choices from within
sequences to between sequences. Such a result would reduce the variation in choices within sequences,
and it would be consistent with the hypothesis that social learning supports path-dependent dynamics
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(Young, 1996, 2015; Bowles, 2004). To test the idea, we now turn to an analysis of the variance in
choices by sequence.

Variance in choices within sequences

Frequency-dependent social learning can generate path-dependent cultural evolutionary dynamics.
Path-dependent dynamics, in turn, can generate an important aggregate pattern in which groups differ
from one another, but choices within groups are relatively homogeneous (Young, 2015). Whether this
aggregate-level pattern occurs, however, can be extremely sensitive to the details of how heterogeneous
decision makers respond to social information (Granovetter, 1978; Young, 2009; Efferson et al., 2020).
Specifically, conformist social learning at the individual level may or may not translate into path-
dependent dynamics at the aggregate level. The most direct route to examining this question is to ana-
lyse outcomes directly at the aggregate level (Efferson & Vogt, 2018).

To do so, we treated each sequence of choices as a sample from a Bernoulli distribution and mod-
elled sample variance by sequence as a function of the treatments. Given that our generic experimental

Figure 4. Red choices by treatment and realised state. The proportion of red choices for (a) asocial treatments and (b) for social
treatments. The colour of the bars signifies the realised state. Consequently, the red bars represent correct choices in the relatively
rare case of a red state, while the blue bars represent errors in the relatively common case of a blue state. These results show that
explicit cost asymmetries had an overwhelmingly dominant effect on average choices (see Table 1).
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Table 1. Red choices in all treatments. Linear probability models with red choices as the response variable and robust clustered standard errors calculated by clustering on session. In
addition, the table shows 95% and 99% confidence intervals calculated with a non-parametric bootstrap clustered at the session level. Independent variables include a dummy for the
realised environment for the sequence (Env red), the realised private signal (Signal red), the subject’s gender, order in the sequence and treatment dummies (Asym, Agency prime,
Social). Columns 2–4 are for models that only include treatments as independent variables. Columns 5–7 add controls.

Estimate Cluster boot Cluster boot Estimate Cluster boot Cluster boot

Parameter (standard error) 95% CI 99% CI (standard error) 95% CI 99% CI

Intercept 0.141*** [0.118, 0.312] [0.074, 0.431] −0.001 [−0.059, 0.095] [−0.112, 0.194]

(0.017) (0.026)

Env red 0.043 [−0.022, 0.106] [−0.040, 0.131]

(0.032)

Signal red 0.262*** [0.228, 0.295] [0.219, 0.306]

(0.018)

Female 0.001 [−0.046, 0.049] [−0.061, 0.065]

(0.025)

Order in sequence −0.0004 [−0.002, 0.001] [−0.002, 0.002]

(0.0008)

Asym 0.409*** [0.191, 0.512] [0.127, 0.512] 0.393*** [0.252, 0.473] [0.187, 0.497]

(0.060) (0.040)

Agency 0.026 [−0.211, 0.065] [−0.297, 0.111] 0.019 [−0.124, 0.083] [−0.201, 0.135]

(0.020) (0.017)

Social 0.048* [−0.157, 0.089] [−0.248, 0.120] 0.070*** [−0.056, 0.107] [−0.139, 0.179]

(0.019) (0.015)

Asym × Agency prime −0.027 [−0.153, 0.220] [−0.176, 0.271] 0.037 [−0.076, 0.199] [−0.108, 0.249]

(0.069) (0.056)

Asym × Social −0.024 [−0.179, 0.186] [−0.231, 0.225] −0.026 [−0.139, 0.134] [−0.177, 0.177]

(0.081) (0.059)
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Table 1. (Continued.)

Estimate Cluster boot Cluster boot Estimate Cluster boot Cluster boot

Agency prime × Social −0.047 [−0.117, 0.204] [−0.137, 0.285] −0.036 [−0.113, 0.121] [−0.148, 0.188]

(0.036) (0.036)

Asym × Agency prime × Social 0.125 [−0.096, 0.342] [−0.154, 0.398] 0.057 [−0.120, 0.248] [−0.176, 0.301]

(0.100) (0.085)

*(0.05); **(0.01); ***(0.001).
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paradigm has proven quite conducive to path dependence in the past (Anderson & Holt, 1997), we
initially imagined that social sequences would be uniformly more homogeneous than asocial
sequences. Our experimental results turned out to be more subtle than this in a way that was consistent
with our model. We found that choices were extremely homogeneous, but without path dependence,
in asocial sequences with symmetric error costs. For these treatments, blue choices predominated, and
adding social information to the mix did not increase homogeneity because choices were already
extremely homogeneous. In contrast, social learning led to path-dependent cultural evolution and
an associated increase in homogeneity when explicit error costs were asymmetric. As explained
below, the incentive structure in asymmetric treatments was relatively neutral with respect to choice,
and choices within asocial sequences were correspondingly heterogeneous. Adding social information
could then generate path-dependent dynamics and an associated increase in homogeneity.

Figure 5 shows the choice dynamics for all treatments, and Table 3 shows an analysis of the vari-
ance in choices within sequences. In asocial treatments with symmetric costs, the symmetry of error
costs did not offset the fact that blue was twice as likely as red ex ante. All sequences converged on blue
(Figure 5a), which resulted in homogeneity without path dependence. This left little scope for social
information to homogenise choices further (Figure 5c vs. Figure 5a), and regression results show no
effect (Table 3, Social and Social × AgencySym).

Table 2. Red choices in social treatments with frequency-dependent social information. Linear probability models with
red choices as the response variable and robust clustered standard errors calculated by clustering on session. In
addition, the table shows 95% and 99% confidence intervals calculated with a non-parametric bootstrap clustered at
the session level. Independent variables include a dummy for the realised environment for the sequence (Env red), the
realised private signal (Signal red), the subject’s gender, order in the sequence, the centred cumulative proportion
choosing red through the previous period (Lagged social info), and relevant treatment dummies (Asym, Agency prime).

Estimate Cluster boot Cluster boot

Parameter (standard error) 95% CI 99% CI

Intercept 0.297*** [0.234, 0.344] [0.208, 0.359]

(0.025)

Env red −0.012 [−0.056, 0.033] [−0.070, 0.050]

(0.023)

Signal red 0.231*** [0.201, 0.257] [0.191, 0.264]

(0.015)

Female −0.003 [−0.050, 0.040] [−0.065, 0.053]

(0.024)

Order in seq 0.0004 [−0.002, 0.002] [−0.002, 0.003]

(0.001)

Lagged social info 0.701*** [0.612, 0.772] [0.581, 0.792]

(0.040)

Asym 0.125*** [0.073, 0.206] [0.061, 0.236]

(0.030)

Agency prime −0.025 [−0.055, 0.033] [−0.066, 0.064]

(0.016)

Asym × Agency prime 0.047 [−0.030, 0.120] [−0.050, 0.138]

(0.035)

*(0.05); **(0.01); ***(0.001).
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Adding asymmetric error costs, however, neutralised the tendency for explicit incentives to favour
blue choices. Although the blue state was twice as likely as red ex ante, choosing blue in the red state
cost twice as much as choosing red in the blue state. Neutralising incentives in this way allowed natural
variation in private signals to create considerable variation in choices within asocial sequences
(Figure 5b). The result was a highly significant increase in the variance relative to asocial treatments
with symmetric error costs (Table 3, NoAgencyAsym and AgencyAsym). Moreover, by pushing
choices away from blue, asymmetric error costs increased the scope for social information to hom-
ogenise choices within sequences via path-dependent dynamics. This reduction in variance within
sequences is exactly what happened (Figures 5d vs. 5b), and interacting the availability of social infor-
mation with asymmetric costs (Table 3, Social × NoAgencyAsym and Social × AgencyAsym) produced
highly significant negative interactions. In sum, asymmetric costs decreased homogeneity within
groups, and social information, given asymmetric costs, increased homogeneity within groups.

Discussion

Both our model and experiment indicate that asymmetries in the explicit incentive structure can exert
a powerful effect on choices. Indeed, even without a cognitive bias, rational optimisers with Bayesian

Figure 5. Choice dynamics for all treatments. Let cn = 0 denote a blue choice in sequence position n and cn = 1 a red choice. Given
position t, the graphs show the cumulative proportion choosing red by sequence,

∑t
n=1cn/t, as a function of sequence position, t,

for all sequences in the experiment. The colour of the line shows the realised state for the sequence in question. Solid lines are for
sequences in no agency prime treatments, while dashed lines are for sequences in agency prime treatments. Panels (a) and (b)
show asocial treatments, while (c) and (d) show social treatments. Panels (a) and (c) show treatments with symmetric error
costs, while (b) and (d) show asymmetric error costs. Social learning led to path-dependent dynamics and an associated increase
in homogeneity within sequences when error costs were asymmetric.
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Table 3. Ordinary least squares models with the variance in choices by sequence as the response variable and robust clustered standard errors calculated by clustering on session. The
table also shows 95% and 99% confidence intervals calculated with a non-parametric bootstrap clustered at the session level. Independent variables include a dummy for the realised
environment by sequence (Env red), a dummy for treatments that allowed social learning (Social), and dummies for the four treatment combinations involving the agency prime and
the explicit payoff structure. We used combined dummies for these four combinations in order to avoid three-way interactions. The dummies are defined according to the presence
(Agency) or absence (NoAgency) of the agency prime and either symmetric (Sym) or asymmetric (Asym) error costs. Columns 2–4 are for models that only include treatments as
independent variables. Columns 5–7 add the sequence-level control.

Estimate Cluster boot Cluster boot Estimate Cluster boot Cluster boot

Parameter (standard error) 95% CI 99% CI (standard error) 95% CI 99% CI

Intercept 0.122*** [0.105, 0.183] [0.106, 0.198] 0.123*** [0.102, 0.183] [0.097, 0.199]

(0.012) (0.012)

Env red −0.004 [−0.031, 0.023] [−0.039, 0.032]

(0.014)

Social −0.019 [−0.080, 0.004] [−0.090, 0.009] −0.019 [−0.078, 0.005] [−0.091, 0.009]

(0.013) (0.013)

AgencySym 0.021 [−0.042, 0.047] [−0.059, 0.047] 0.021 [−0.043, 0.050] [−0.061, 0.053]

(0.014) (0.015)

NoAgencyAsym 0.122*** [0.046, 0.143] [0.036, 0.143] 0.122*** [0.045, 0.143] [0.035, 0.145]

(0.013) (0.014)

AgencyAsym 0.127*** [0.065, 0.147] [0.057, 0.147] 0.126*** [0.065, 0.147] [0.056, 0.150]

(0.013) (0.012)

Social × AgencySym −0.002 [−0.038, 0.068] [−0.050, 0.082] −0.003 [−0.042, 0.069] [−0.055, 0.085]

(0.019) (0.021)

Social × NoAgencyAsym −0.066*** [−0.097,−0.005] [−0.105, 0.006] −0.066*** [−0.097,−0.006] [−0.106, 0.005]

(0.016) (0.016)

Social × AgencyAsym −0.051*** [−0.080,−0.022] [−0.088,−0.018] −0.049** [−0.080,−0.019] [−0.087,−0.011]

(0.015) (0.015)

*(0.05); **(0.01); ***(0.001).
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beliefs can choose in a way that is optimal under risk, and yet the resulting choices are likely to be
costly errors given the state that actually obtains. In effect, smart bets do not always produce good out-
comes. More interestingly, explicit contemporary cost asymmetries readily yield scenarios in which
smart bets are extremely likely to lead to bad outcomes. We can hijack a staple example from the
error management literature to illustrate the point (Haselton & Buss, 2000; Haselton, 2003;
Haselton & Nettle, 2006; Johnson et al., 2013; Haselton et al., 2015; Perilloux & Kurzban, 2015;
Murray et al., 2017). Imagine a man in a bar approaching every woman there, only to be repeatedly
rejected. His persistence could follow from the fact that he is overestimating his chances, but this is not
necessary. Perhaps he simply views a missed opportunity as far more costly than a rejection. Such an
asymmetry could easily generate the behaviour in question even if the man has an accurate and
extremely precise understanding of just how bad his objective chances are (McKay & Efferson,
2010). He persists as a general-purpose optimiser, and he usually goes home alone.

Importantly, cost asymmetries do not need to be especially large, just something other than trivial.
Consistent with this idea, we used a relatively small cost asymmetry in our experiment, and it pro-
duced a large behavioural effect. The cost of choosing blue when the state was red was only twice
the cost of choosing red when blue. Introducing this moderate asymmetry, however, increased the
rate of red choices by a factor of nearly 3.5, from 16.9% to 58.8% (Figure 4).

Frequency-dependent social learning can also have dramatic effects via path-dependent dynamics,
but the details are decisive. Path dependence implies at least two dynamically stable equilibria. One of
the equilibria has most people choosing correctly given the state, while another equilibrium has most
people choosing in error given the state. Because widespread errors can be a stable equilibrium, social
learning provides a cogent hypothesis about the origin and persistence of seemingly harmful traditions
(Mackie, 1996). The existence of path dependence owing to social learning, however, can be hypersen-
sitive to the effects of other mechanisms. Ordinary individual heterogeneity (Granovetter, 1978; Young,
2009; Muthukrishna et al., 2016; Efferson et al., 2020), an evolved combination of individual and social
learning (Perreault et al., 2012; Efferson et al., 2016), systematic errors (Goeree et al., 2007) and identity
concerns (Efferson et al., 2020) can all destabilise or eliminate equilibria in a system that would otherwise
exhibit multiple equilibria, path-dependent dynamics and the potential for stable harmful traditions.

Our results support this overall picture. We found that frequency-dependent social learning
strongly influenced cultural evolutionary dynamics, but the details were critical. When error costs
were symmetric, the prior distribution over environmental states favoured blue 2/3 to 1/3. Most par-
ticipants simply chose blue, which left little scope for social learning to amplify random variation in
choices early in sequences. In these cases, path dependence played little or no role. Asocial and social
learning were similar (Table 3), with perhaps only a small and uncertain tendency for social learning
to increase red choices (Table 1 and Figures 5a and c).

When error costs were asymmetric, in contrast, the cost asymmetry favoured red, while the prior
distribution over states favoured blue. These two countervailing forces neutralised each other, allowing
the aggregate-level effects of social learning to appear. We found that social learning had little effect on
average behaviour (Table 1), but it had a large effect on how choices were distributed within vs.
between groups. Social learning and associated path dependence shifted much of the behavioural vari-
ation from within groups to between groups (Table 3 and Figures 5b, d). Social learning thus trans-
formed errors from a question about individual decision making into a question about the cultural
evolution of group traditions. Importantly, we have focussed on frequency-dependent social learning
and associated cultural evolutionary dynamics, but this is only one of many possible cultural evolu-
tionary processes (Cavalli-Sforza & Feldman, 1981; Sperber, 1996; Richerson & Boyd, 2005;
Mesoudi, 2011; Henrich, 2015; Morin, 2016; Heyes, 2018). Our study does not allow conclusions
about the effects of social learning more broadly.

Finally, we found no evidence that our linguistic prime activated a cognitive bias. Error manage-
ment theory (Haselton & Nettle, 2006; Johnson et al., 2013; Haselton et al., 2015) has provided a
rich framework for generating hypotheses and empirical studies about evolved cognitive biases. As
discussed above, the key idea is that persistent cost asymmetries in the past shaped the evolution of
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human cognition to avoid errors that would have been especially costly in ancestral environments. If
stimuli activate this ancestral psychology in a contemporary setting, the person in question will choose
in a way that avoids the ancestral error. Moreover, she will do so in a way that is somehow distinct
from the effects of explicit contemporary information and explicit contemporary incentives.

We have written before about the challenges associated with defining and identifying cognitive
biases of this sort (McKay & Efferson, 2010; Haselton et al., 2015; McKay et al., 2018).
Notwithstanding the difficulties, at least two empirical strategies exist. First, the researcher can com-
pare two situations that are equivalent in terms of the value of the information available to subjects.
One situation is consistent with the hypothesised error management bias, while the other is not. If
decision making varies between the two situations in the predicted direction, the result provides sup-
port for the cognitive bias. Predicting outcomes in negatively vs. positively autocorrelated sequences
(Scheibehenne et al., 2011) provides an example of this approach. Second, the researcher can manipu-
late payoff-irrelevant stimuli in a way that runs orthogonal to explicit incentives. This is what we have
done here. Economic games with eye spots (Haley & Fessler, 2005; Nettle et al., 2013; Sparks &
Barclay, 2013; Vogt et al., 2015; Northover et al., 2017) and alternative framings of the Wason task
(Cosmides & Tooby, 1992) provide other examples.

In choosing this latter strategy, we varied the frame used to describe outcomes by switching
between a neutral frame and a frame that associated unseen agents with a specific state. By varying
the frame independently of explicit incentives, our design effectively decomposed asymmetric error
costs into a component related to the explicit incentives of the contemporary decision making task
and a component related to how cognition evolved owing to ancestral incentive structures. With
respect to contemporary incentives, we implemented incentive structures that either did or did not
involve explicit error cost asymmetries. With respect to activating biased cognition, our agency
prime posited a state (blue) in which costs and benefits simply occur and a state (red) in which unseen
agents distribute these costs and benefits as punishments and rewards. We compared this with a con-
trol in which costs and benefits for both states were framed in neutral terms. Interestingly, this decom-
position mirrors the two dimensions at work when we ask, ‘Does God exist?’ First, the question
involves incentives (Pascal, 1995, originally published in 1670). Going to hell instead of heaven is
quite costly, while going to church when you could stay home is less so. Second, the question involves
beliefs about the origin of outcomes (Barrett, 2012). Under one state, outcomes originate from the dis-
passionate workings of nature. Under the other state, God is responsible.

Although our prime did not affect choices, this does not mean that people do not have a cognitive
bias that overinfers the existence of unseen agents. People may have such a bias, but our agency frame
failed to activate it. We cannot exclude this interpretation, and this represents a key limitation of our
study. Another recent study, however, also failed to find positive evidence for hyperactive agency
detection (Maij et al., 2019).

Regardless, our model suggests that a cognitive bias, even if present and active, may have limited
effects in a setting with individual and social learning. To consistently distort the evolution of beliefs
away from the truth, the bias must be relatively strong. Otherwise, even if cognition is biased, beliefs
can still evolve towards the truth under a wide range of conditions. This implies yet another possibility.
Namely, our agency prime may have activated a cognitive bias, but only weakly so, in which case the
behavioural effects were too small to detect. Consequently, future research could profit from a more
forceful approach to attaching unseen agents to a particular environmental state. For example,
some studies have used a paradigm in which participants play a game against partners who are either
real people or computers programmed to play like real people (e.g. Falk et al., 2008). This isolates the
effects of playing against an active decision maker vs. playing against nature when nature’s choices
mimic active decision makers. To modify this approach for present purposes, one would require
instead that active decision makers, who fill the role of unseen agents, mimic nature.

Finally, even if a cognitive bias does not always lead beliefs to evolve in the wrong direction when
the bias conflicts with reality, our model supports the general claim that bias always prevents beliefs
from getting arbitrarily close to the truth. This suggests that empiricists can maximise the chances of
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detecting biases if they work in settings where prior beliefs are close to accurate. We hope this unex-
pected theoretical finding highlights the value of modelling cognitive biases relative to an explicitly
unbiased benchmark (McKay & Efferson, 2010; Zimmermann & Efferson, 2017).

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.1017/ehs.2020.25.
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