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Nonvanishing of L-functions, the
Ramanujan Conjecture, and Families of
Hecke Characters

Valentin Blomer and Farrell Brumley

Abstract. We prove a nonvanishing result for families of GLn × GLn Rankin–Selberg L-functions in

the critical strip, as one factor runs over twists by Hecke characters. As an application, we simplify the

proof, due to Luo, Rudnick, and Sarnak, of the best known bounds towards the Generalized Ramanu-

jan Conjecture at the infinite places for cusp forms on GLn. A key ingredient is the regularization of

the units in residue classes by the use of an Arakelov ray class group.

1 Introduction

In this paper we prove a nonvanishing result for Rankin–Selberg L-functions for cusp

forms on GLn when one factor ranges over twists by infinite order Hecke characters

and give applications to bounds towards the Ramunujan conjecture.

1.1 Infinite Order Hecke Characters

Before stating our precise results, we enunciate two ways, one automorphic, the other

arithmetic, in which infinite order Hecke characters have been put to use to solve

problems in number theory whose formulation is naturally posed over number fields.

The first is the principle that a cusp form (for the group GL2 at least) should

always be taken together with its twists by mod 1 Grossencharacters. This philosophy

has been attributed to Sarnak and has its origins in the hybrid mean value estimate

of [30]. A striking justification is the recent article by Booker and Krishnamurthy [5]

where it is shown that for an irreducible two-dimensional complex representation ρ
of the Weil–Deligne group, if the Artin–Weil L-function L(s, ρ ⊗ ω) is entire for all

mod 1 Grossencharacters ω then ρ is automorphic.
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Nonvanishing of L-functions and Families of Hecke Characters 23

The second viewpoint, which is the one we shall emphasize in this paper, is that

infinite order Hecke characters allow one to regularize the behavior of an erratic,

arithmetically defined quantity. The simplest example is the class number hK of a

number field K, measured with respect to the discriminant. Although there exist con-

structions of sparse sequences of K for which hK is as large as possible (see [25] for a

detailed look at the classical example of K = Q(
√

n2 + 1), and Duke [12] for a gen-

eralization to certain cubic fields), within arbitrary sequences of number fields with

a fixed signature, the class number hK varies wildly. Recent experience has shown,

however, (see [13] and [24, Section 1.4]) that by making full use of the infinite places,

i.e., using Arakelov structures, one can bypass the irregular behavior of hK .

A more pertinent example to our line of inquiry is the size of the ray class group

mod q for a fixed number field K and varying integral ideals q. The size of the ray

class group is determined by the size of the image of the units of K within the group

of invertible residue classes mod q. When K has at least two archimedean places, the

unit group is infinite, and its image can be as large as possible, conjecturally for a

sequence of prime ideals q of positive density [9], [21]. On the other hand, similarly

to the specially constructed number fields in the previous example, there exists a

sparse subsequence of ideals q for which one can prove that the ray class group is

large. This is the fundamental work of Rohrlich [28], in which he shows that for

every ε > 0 there are infinitely many square-free ideals q such that the size of the

ray class group is at least N(q)1−ε. This result was of vital importance not only to

Rohrlich’s own work but also to several later papers concerning nonvanishing over

number fields [1], [23]. Note, however, that the sparsity of the q constructed by

Rohrlich becomes a liability when one wants to average over moduli, as in the work

of Kim–Sarnak [18]. As above, this problem can be resolved taking advantage of the

infinite places, replacing the ray class group with something larger supporting infinite

order characters.

We were led to consider these constructions in algebraic number theory as a re-

sult of our own work on extending the bounds towards the Ramanujan conjecture

of Kim-Sarnak to arbitrary number fields. This paper represents a fully expanded

version of our coda in [3].

1.2 Description of Main Result

Our main result establishes the nonvanishing at points in the critical strip of Rankin–

Selberg L-functions of GLn cusp forms when they are twisted by a large, spectrally de-

fined class of characters. We will state this as Theorem 4.1 in Section 4 after the nec-

essary notation has been developed. Just to give the reader a preview of the contents

of Theorem 4.1, we state below a special case, and in somewhat informal language,

suppressing some technical conditions.

Let π be a cusp form on GLn over a number field K, where n ≥ 2. Fix an

archimedean place v of K. Denote by X the set of all Hecke characters whose conduc-

tor divides a fixed ideal c, whose component at v is trivial, and whose components at

archimedean places other than v are restricted to a box around the origin. Write V

for the total volume of all ramification conditions: this is roughly the norm of c times

the volume of the box. Finally, fix any β ∈
(

1− 2(n2 + 1)−1, 1
)

. Then, as long as the
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archimedean volume is taken large enough with respect to the field, we prove

∑

χ∈X

|L(β, π ⊗ χ× π̃)| ≫ε V 1−ε.

Clearly, when K = Q or an imaginary quadratic field, the condition of being triv-

ial at the one archimedean embedding renders meaningless the final condition on

the other archimedean parameters. In these cases, the set X is the group of Dirichlet

characters of conductor dividing c, and our result is not new (see [22] and the discus-

sion after Theorem 4.1). For all other fields, X consists (primarily) of infinite order

characters. This greater generality allows us, for instance, to take c arbitrary in con-

trast to the nonvanishing result of [23]. We present an application in Section 1.4. The

precise formulation of the above result, which we state in Theorem 4.1, seems to be

the first nonvanishing theorem for twists by infinite order characters in the literature

(although see [24, Section 1.4]).

1.3 Families of L-functions

In the branch of analytic number theory concerned with the analytic properties of

L-functions associated with automorphic forms, the notion of a family of automor-

phic forms is a helpful organizing principle. Its aim is to group together “like”

forms according to sometimes well-defined, sometimes statistical or phenomeno-

logical, shared traits. Such traits can include the distribution of zeros of L-functions

close to the point s = 1/2 (the so-called low-lying zeros first studied by Iwaniec–

Luo–Sarnak [14]) and associated nonvanishing theorems at s = 1/2, their functorial

provenance such as base-change lifts, or simply the size of their conductor. A recent

preprint of Sarnak [31] summarizes these various groupings, as well as many others.

The families of character twists occurring in our work arise as a spectral family.

They appear in the spectral support of idelic test functions defined by local ramifica-

tion restrictions, once they are averaged over K×. The process of defining these idelic

test functions resembles the general Paley–Wiener theorem of Clozel–Delorme [8],

and we have borrowed various notations from this set-up. In Section 2.3 we develop

a very general approach to defining spectrally generated families of characters. In

particular, the condition of being trivial at one given archimedean place, imposed in

the informal discussion of Section 1.2 is replaced by a more general linear condition.

For example, one could ask that the characters be trivial on the diagonally embedded

copy of the positive reals, which is a rather standard normalization. Indeed, in the

case of c = 1 this normalization recovers the characters of the extended class group

D̃iv
0

K/K× of [13].1

What makes our family amenable to analysis and useful for applications is the

equilibrium between the size of the family and their local ramification data, as well

as their analytic conductor. This is a quantification of the regularization effect on

the ray class group mentioned in Section 1.1, and it is the reason why no hypothesis

1We note that the definition Arakelov class group given by Schoof in [32] is different and less robust

than that of [13], in that no use is made of the compact part of K×

v for archimedean v.
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need be imposed on the ideal c. These two properties are recorded in Lemma 2.1 and

Remark 4.2, respectively.

1.4 Principal Application

At this point we confine ourselves to explaining one of the consequences of Theo-

rem 4.1. An important observation of Luo, Rudnick, and Sarnak [22] shows that

bounds towards the Ramanujan conjecture for the group GLn can be deduced from

the nonvanishing of certain L-functions. Following their argument (which we shall

briefly reprise in the paragraph preceding Remark 4.2), we use Theorem 4.1 to ap-

proach the Generalized Ramanujan Conjecture, thereby re-proving the central result

of [23] at infinite places. Our methods work equally well for ramified archimedean

places, which was the case subsequently established by Müller–Speh in [26].

For a place v of K let m(π, v) = max j σπ(v, j), if πv is nontempered, and m(π, v) =

0 otherwise. For the notation relative to Langlands parameters, see Section 3.1.

Corollary 1.1 Let π be a unitary cuspidal automorphic representation of GLn(A). Let

v be an archimedean place. Then m(π, v) ≤ (1/2) − 1/(n2 + 1).

The original proof of Corollary 1.1 in [23] uses Deligne’s estimate [10] for hyper-

Kloosterman sums together with Rohrlich’s deep work [28] which is based among

other things on the large sieve and the Bombieri–Vinogradov theorem over number

fields. Our proof of Corollary 1.1 avoids all of these results. In fact, the local esti-

mates of Section 6 are elementary, being obtained by standard stationary phase type

arguments for real and p-adic oscillatory integrals.2 In this way the classical method

of Landau [20], Rankin [27], and Serre [33] is put on the same footing as that of

Luo–Rudnick–Sarnak [22], [23]: for the latter just like the former, no deep results in

algebraic geometry are needed to obtain the same quality bounds.

We remark that one can easily modify our proof of Corollary 1.1 to apply to all

places v, archimedean or not. There are two ways to do this; we briefly describe

them here although neither approach, for the sake of a simplified presentation, will

be pursued in this paper.

The first would be to adopt the method in [3], with the necessary modifica-

tions for the present context. One should replace the symmetric square L-functions

with Rankin–Selberg L-functions and eliminate the average over moduli in Section 6

of [3]. The remaining modulus q can then be chosen to be the square of a prime,

so that the bounds for Kloosterman sums become elementary, cf. Remark 4.3 below.

This argument does not proceed by nonvanishing of L-functions but rather by av-

eraging their Dirichlet series coefficients. One may view this approach as a direct

extension to all number fields and all places (without any loss in the degree of the

number field) of Rankin’s method [27], as generalized by Serre [33]. See the begin-

ning of Section 6 for more details.

Alternatively, one could deduce Corollary 1.1 for finite places from the nonvani-

shing of L-functions, as was done in [22] and [23]. To do so, one would need to

2Although the degree of generality in which we state Theorem 4.1 requires the use of profound results
of Deligne, for the application to Corollary 1.1 his work is not needed. We will discuss this aspect of our
work more thoroughly in Remark 4.3.
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broaden the class of characters introduced in Section 2.3 to include those that are

trivial at a fixed finite place. We have avoided doing this here since such characters

would not enjoy the equilibrium properties described in Lemma 2.1 and Remark 4.2,

even after allowing for them to be of infinite order.

1.5 Organization of Paper

In Section 2 we review the necessary local and global structures associated to number

fields. In particular we define the class of Hecke characters used in our theorems and

prove that their size behaves regularly with respect to the local ramification condi-

tions.

In Section 3 we review the theory of Rankin–Selberg L-functions.

In Section 4 we state our main theorem, Theorem 4.1, and comment on its relation

to the existing literature. The proof of Theorem 4.1 derives from an application of

the functional equation of Rankin–Selberg L-functions, along with the positivity of

their coefficients, and local estimates on the resulting integral transforms. Sections 5,

6, and 7 then give the details of the proof of Theorem 4.1.

In Section 5 we prove the summation formula which encodes the functional equa-

tion of the Rankin–Selberg L-functions L(s, π⊗χ× π̃) as χ ranges through all Hecke

characters of prescribed ramification.

In Section 6 we prove the required estimates on the local transforms, and then

package them together in the form of an S-adic statement.

Finally, in Section 7, we put all the ingredients together to complete the proof.

2 Preliminaries

Let K be a number field of signature (r1, r2). Let d = r1 + 2r2 be the degree of K

over Q and r = r1 + r2 the number of inequivalent archimedean embeddings. Let

OK denote the ring of integers of K, O×
K the unit group, and µ the group of torsion

units. Let Cl denote the class group of K and put h = |Cl|. The norm map is defined

to be the completely multiplicative function on integral ideals whose value at prime

ideals is the cardinality of the associated residue field. For an integral ideal c of OK ,

we write N(c) for the norm of c and put φ(c) = |(OK/c)×|. If S is a finite set of

places, we denote by PK (S) the group of fractional principal ideals prime to S. This is

naturally isomorphic with O
×
S \K×, where O×

S are the S-units of K.

If v is a place of K, we let Kv be the completion of K relative to the norm | · |v
induced by the normalized valuation at v. If v = C, then | · |v = | · |2, the square of

the modulus.

For v | ∞ let Uv be {±1} or U (1) accordingly to whether v is real or complex,

respectively. Let U∞ =
∏

v|∞ Uv and a = Rr. Then K×
∞ =

∏
v|∞ K×

v decomposes as

U∞ × Rr
>0 and therefore one has an isomorphism K×

∞ ≃ U∞ × a. We will write

(2.1) log : K×
∞ → a, (xv)v|∞ 7→ (log |xv|v)v|∞

for the projection onto the second factor.
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When v = p is finite we write Op for the ring of integers in Kp and ℘ for its unique

maximal ideal. Let ̟p be any generator of ℘ . Put Up = O×
p for the unit group. For

an integer e ≥ 1 the degree e neighborhood 1 + ℘ e of 1 in Up is denoted by U (e)
p .

Let A be the adele ring and I the idele group of K. Write | · |A =
∏

v | · |v for the

idelic norm, and put I1 for the subgroup of norm 1 ideles. Let ∆ : R>0 → I be the

norm preserving embedding sending the positive real number t to the idele having

all finite components equal to 1 and the v component, for v | ∞, equal to t1/d.

Denote the idele class group by C = K×\I. Since K× ⊂ I1, we may consider

the quotient C 1
= K×\I1, a compact group. For c an integral ideal of OK we define

C (c) = C /U (c) and C 1(c) = C 1/U (c), where

U (c) =
∏
p∤c

Up

∏
pep ||c

U
(ep)
p .

These two groups, C (c) and C 1(c), may be given a more explicit description by

means of the Strong Approximation Theorem for I. This states that

I =
⊔

i=1,...,h

K×ai

∏
p

UpK×
∞,

for elements a1, . . . , ah ∈ I f . If we then put

V (c) =
∏

pep ||c

Up/U
(ep)
p ×U∞,

we find that

(2.2) C (c) ≃
(
O

×
K

∖(
V (c) × a

)) h
.

2.1 Characters

Let Î (resp., Î1) be the group of continuous unitary characters of I (resp., I1). We

may and will identify Î1 (resp., Ĉ 1) with the subgroup of Î (resp., Ĉ ) consisting of

characters trivial on ∆(R>0). When χ ∈ Ĉ we agree to write χ = ω| · |itA for the

unique t ∈ R such that ω ∈ Ĉ 1. We will see in a moment that the characters of C (c)

are precisely the Hecke characters of conductor dividing c.

At archimedean v a character χv ∈ K̂×
v takes the form

• χv(x) = sgn(x)δv |x|iτv for some δv ∈ {0, 1} and τv ∈ R if v = R,
• χv(z) = (z/|z|)δv |z|2iτv for some δv ∈ Z and τv ∈ R if v = C.

In general we shall write

χv(x) = δv(x)eiτv(log |x|v),

where the real number τv is now thought of as a linear map on the reals, and δv, by

slight abuse of notation, is in Ûv. A character of Uv or U∞ will generally be denoted

δv or δ∞, respectively. We adopt the convention that a character of V (c) will be

denoted δ, with no subscript.
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Now let a∗ = Hom(a,R). A character χ of K×
∞ is called unramified if it is trivial

on U∞. Such characters are obtained from a∗ by setting χ(x) = eiτ (log x) for τ ∈ a∗

and x ∈ K×
∞, where we have made use of the definition (2.1).

With this notation in place, we deduce from (2.2) that

(2.3) Ĉ (c) ≃
(
{(δ, τ ) ∈ V̂ (c) × a∗ : eiτ (log u)δ(u) = 1 ∀u ∈ O

×
K }

) h
.

In classical language this corresponds to the well-known fact that a Hecke character

of conductor dividing c is, up to a class group character, determined by a character

of (OK/c)×, and a character of K∞, whose product is trivial on units. Fixing the

principal branch of the logarithm we may write the above condition as

(2.4) τ (log u) ∈ − arg δ(u) + 2πZ for every u ∈ O
×
K ,

where arg δ(u) ∈ (−π, π). For χ ∈ Ĉ (c) we write
(
δ(χ), τ (χ)

)
∈ V̂ (c) × a∗ for the

coordinates of χ.

We proceed to recall the definition of the analytic conductor of a character χ ∈ Î.

We first recall the notion of the conductor of a local character χv of K×
v . At finite

places v = p, one has

χp(x) = δp(x)|x|itp

p ,

where δp ∈ Ûp and tp ∈ R is well-defined up to a multiple of 2π/ logN(p). The

continuity of χp implies the existence of a largest open compact subgroup U
(rp)
p of Up

on which δp is trivial. The local conductor at v = p is then

(2.5) C(χp) := N(p)rp .

At archimedean v the conductor of χv is taken to be

(2.6) C(χv) := (1 + |δv + iτv|[Kv :R]) for v | ∞.

Now let χ =
∏

v χv ∈ Ĉ be a (unitary) Hecke character. For almost all p we have

c(χp) = Op so that C(χp) = 1. We write c(χ) =
∏

prp , the product taken over all

finite primes p. In the terminology of [15], one says that χ has analytic conductor

C(χ) :=
∏

v C(χv). It is expected that the analytic conductor is the proper measure

of complexity of a Hecke character χ (and of automorphic forms in general).

2.2 Normalization of Haar Measures

We fix a nontrivial character ψv of Kv by taking ψv(x) = exp(2πix) when v = R,

ψv(x) = exp
(

2πi(x + x)
)

when v = C, and ψp the unique additive character trivial

on d−1
p and on no larger subgroup when v = p is nonarchimedean. Let dxv be the

self-dual Haar measure on Kv. Explicitly, dxv is Lebesgue measure if v is real, twice

the Lebesgue measure if v is complex, and the unique Haar measure such that Op has

volume N(dp)−1/2 if v = p is finite.
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On K×
v we choose the normalized Haar measure d×xv = ζv(1)dxv/|xv|v, where

ζv is the Tate local zeta function at v. We let d×x be the measure on I that on the

standard basis of open sets of I coincides with
∏

v d×xv; this descends to a quotient

measure on C .

The image measure of d×x under the isomorphism

C
∼
−→ C

1 × R>0

is the product of the Haar measure of volume c−1
K on the first factor, where c−1

K =

Ress=1 ζK (s), and the multiplicative measure t−1dt on the second factor (see [34,

VII.6. Prop. 12]).

Next we normalize measures on the relevant groups of characters. We refer to

[3, Section 2] for the notation relative to Fourier–Mellin transforms. We normalize

the Haar measure dχv on K̂×
v so as to recover the Mellin inversion formula. Explicitly

dχv is given by

cv

∑

m

∫

(σ)

g(s, ηm)
ds

2πi
,

∑

η∈Ûp

∫ σ+ iπ
log N(p)

σ− iπ
log N(p)

g(s, η) logN(p)
ds

2πi
,

for v | ∞ and p, respectively. Here cR = 1/2 and cC = 1/(2π). The corresponding

measure on

(2.7) Ĉ ≃ Ĉ 1 × R

is the product of cK times the counting measure on the first factor and 1/2π times

Lebesgue measure on the second factor.

2.3 Families of Hecke Characters

The set of all unitary Hecke characters is a disjoint union of continuous families, each

given byχ| · |itA for t varying in R. The presence of these continuous families is a direct

expression of the noncompactness of the idelic quotient C = K×\I. We index them

by the discrete group Ĉ 1. Thus

Ĉ =

⊔

ω∈Ĉ 1

{ω| · |itA : t ∈ R}.

2.3.1 Discrete Subfamilies

In this section we discuss a general method for isolating a discrete subset of Ĉ by

means of linear constraints on the parameters τv, for v | ∞. This method is valid for

all number fields but becomes trivial for fields with only one archimedean embed-

ding.

We regard a and a∗ as Euclidean spaces for the standard inner product. Let a0 be

the trace-zero hyperplane in a and let l0 be the orthogonal complement of a0 in a.
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logK∗

∞
= a

∼= R
2

l0

l

a0 ⊇ Λ0 = logO×

K•

•

•

•

•

•

•

•

•

Figure 1

Denote by a∗ = a⊥0 ⊕ h0 the dual decomposition. Thus h0 = l⊥0 is the trace-zero

hyperplane in a∗. As τ runs over the line a⊥0 = R.(1, . . . , 1), the characters ei(τ◦log)

describe the characters | · |it∞ for t ∈ R, while as τ runs over h0, the characters ei(τ◦log)

comprise the totally unramified characters of K×
∞ trivial on ∆(R+).

The Hecke characters having τ (χ) ∈ h0 are precisely those in Ĉ 1. As natural as

this normalization is, however, it is important in applications to work with families

whose exponents τ (χ) are taken to lie in a more general hyperplane h. On the other

hand, if h contains the line of exponents a⊥0 , then the set of Hecke characters hav-

ing exponents in h is not discrete. We are led therefore to consider the following

definition.

A hyperplane h ⊂ a∗ is called admissible if a⊥0 ( h.

We fix now an admissible hyperplane h ⊂ a∗. Write Λ0 = logO×
K ⊂ a0 and let

Λ
⊥
0 = {τ ∈ a∗ : τ (x) ∈ 2πZ ∀x ∈ Λ0}

be the dual of Λ0 within all of a∗. It is a disjoint union of continuous families. Let

Lh = Λ
⊥
0 ∩ h. If h = l⊥ for a line l ⊂ a then Lh is the discrete family of τ ∈ Λ

⊥
0 that

are trivial on l. See Figures 1 and 2 for an example in the real quadratic case.

To be more concrete, let h be defined by the linear equation
∑

v αvτv = 0. So h

admissible means
∑

v αv 6= 0. Now let u1, . . . , ur−1 be a system of generators for

O
×
K /µ, and for v | ∞ denote by u(v)

j the image of u j in Kv. Then the admissibility of h

is equivalent to the regularity of the r × r-matrix

Mh :=


 (log |u(v)

j |v)1≤ j≤r−1
v|∞

(αv)v|∞


 .

(See [7, p. 78] for an example calculation for the totally real case.) Finally the dis-

creteness of Lh is deduced from the invertibility of Mh since the volume of the fun-

damental mesh of Lh is given by the absolute value of the determinant of Mh.
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a∗ ∼= R
2

Λ
⊥

0

h = l
⊥

a⊥
0

h0 = l
⊥

0

•

•

•

•

•

•

•

•

•

Figure 2: Hecke characters trivial on l

Figure 2: Hecke characters trivial on l.

2.3.2 Prescribing Ramification

Fix a norm on a∗ and for T ≥ 1 let B(0,T) ⊂ a∗ denote the ball of radius T about

the origin. Let h ⊂ a∗ be an admissible hyperplane. Let c be an integral ideal of OK ,

and D ⊂ Û∞ a finite subset. We consider

(2.8) X(c,D,T) = {χ ∈ Ĉ (c) : δ∞(χ) ∈ D, τ (χ) ∈ B(0,T) ∩ h}.

This is the most general form of families we will consider in this paper. Let

V (c,D,T) := φ(c)|D| vol
(

B(0,T) ∩ h
)

be the product of local volumes. This quantity measures the size of the family of

χ ∈ Î having ramification prescribed by c, D, and B(0,T)∩ h but subject to no global

invariance requirement.

Lemma 2.1 If T ≫ 1 then |X(c,D,T)| ≍ V (c,D,T).

In other words, Lemma 2.1 states that for the families X(c,D,T) the global ob-

struction to being trivial on K× is analytically negligible.3

Proof For δ ∈ V̂ (c) let Λ⊥
0 (δ) consist of all τ ∈ a∗ satisfying (2.4). As in the discus-

sion of Section 2.3.1 we put Lh(δ) = Λ
⊥
0 (δ)∩ h; this is a shifted lattice in h. Recalling

(2.3) we have

|X(c,D,T)| = h|{(δ, τ ) ∈ V̂ (c) × a∗ : δ∞ ∈ D, τ ∈ Lh(δ) ∩ B(0,T)}|.
3In Lemma 2.1, and indeed throughout this entire paper, all implied constants are allowed to depend

on the number field K and the admissible hyperplane h, which we consider as fixed. We have suppressed
this dependence on the notation for typographical simplicity.
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We estimate |X(c,D,T)| by fibering over the set D(c) = {δ ∈ V̂ (c) | δ∞ ∈ D}. To

this end, for δ ∈ V̂ (c) we put X(δ,T) = {τ ∈ a∗ : τ ∈ Lh(δ) ∩ B(0,T)}. Thus

(2.9) |X(c,Ω,T)| = h
∑

δ∈D(c)

|X(δ,T)|.

An elementary lattice point argument (see, e.g., [19, Theorem 1.7]) shows that

|X(δ,T)| ∼ c · vol
(

B(0,T) ∩ h
)

as T → ∞,

for some constant c > 0 depending only on K and h. In particular, since arg δ(u) is

confined to a bounded interval, if T ≫ 1 is sufficiently large, then

|X(δ,T)| ≍ vol
(

B(0,T) ∩ h
)

for all choices of δ. Inserting this into (2.9) we find that for T ≫ 1,

|X(c,Ω,T)| ≍ h|D(c)| vol
(

B(0,T) ∩ h
)

= hφ(c)|D| vol
(

B(0,T) ∩ h
)
≍ V (c,D,T),

which proves the lemma.

Remark 2.2 The ray class characters are precisely those characters χ =
∏

v χv such

that τ (χ) = 0 and δv(χ) = 0 for all complex v. The group X(c) of ray class characters

of conductor dividing c can be seen to fit into the above framework. Indeed we can

choose any admissible hyperplane h ⊂ a∗ and then the notation X(c, {0, 1}r1 , 0)

is nothing other than X(c). One peculiarity of X(c) is that it can dramatically fail to

satisfy Lemma 2.1. As discussed in Section 1.1, it may well happen that even for large c

the set X(c) consists only of the trivial character. This highlights the importance of

the assumption T ≫ 1 (recall that the implied constants depend on h and K).

3 Rankin–Selberg L-functions

Let π ≃ ⊗vπv, π ′ ≃ ⊗π ′
v be cuspidal automorphic representations of GLn over K.

Most of the fundamental properties of the Rankin–Selberg L-function L(s, π × π ′)

were established in the influential work [16]. We briefly review some of these prop-

erties below.

3.1 Local Theory

For the definition of L(s, πv × π ′
v) when πv and π ′

v are tempered, we refer the reader,

for example, to the Appendix of [29]. We now explain how to reduce the definition of

the local Rankin–Selberg L-function for arbitrary pairs of generic unitary irreducible

representations π and π ′ to that of tempered pairs.

For a general nontempered representation, we have the following parametrization

of πv as a Langlands quotient. One associates with πv a standard parabolic subgroup
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P of GLn(Kv) of type (n1, . . . , nr) with unipotent radical U , irreducible tempered

representations τ j of GLn j
(Kv), and real numbers σ j satisfying 1/2 > σ1 > · · · >

σr > −1/2. These data satisfy the property that πv is equivalent to the fully induced

representation

Ind
(

GLn(Kv), P; τ [σ]
)
,

where τ [σ] is the representation of the group

M = P/U ≃ GLn1
× · · · × GLnr

given by

τ [σ] = τ1[σ1] ⊗ · · · ⊗ τr[σr].

Here we have denoted by τ [σ] the twisted representation g 7→ τ (g)| det g|σv . Note

that by the unitarity of πv we have an equality {τi[σi]} = {τ̃i[−σi]} as sets. For the

parametrization of π ′
v as a Langlands quotient, we simply add a prime ′ to all objects

in the above notation.

With the above conventions in place we can now write the local Rankin–Selberg

L-function as a product

L(s, πv × π ′
v) =

r∏
i=1

r ′∏
j=1

L(s + σi + σ ′
j , τi × τ ′

j ).

We single out the important property that L(s, τi × τ ′
j ) is holomorphic on ℜ(s) > 0.

From this (and the fact [17] that 0 ≤ |σi |, |σ ′
j | < 1/2) we deduce that L(s, πv × π ′

v)

is holomorphic on ℜ(s) ≥ 1. Let m(π, v) = max j |σ j | if π is nontempered, and

m(π, v) = 0 otherwise. Then, in the case of contragredient pairs π ′
v ≃ π̃v the real

number 2m(π, v) is precisely the right-most pole of L(s, πv × π̃v). This last observa-

tion will be used in the paragraph preceding Remark 4.2 below.

For finite places the local L-factor is of the form Pp(N(p)−s), where Pp is a poly-

nomial of degree at most n2 with Pp(0) = 1. For infinite places there exist complex

parameters µπ×π ′(v, j), j = 1, . . . , n2, such that

L(s, πv × π ′
v) =

n2∏
j=1

Γv

(
s − µπ×π ′(v, j)

)
,

where as usual we have written ΓR(s) = π−s/2
Γ(s/2) and ΓC(s) = 2(2π)−s

Γ(s).

When π ′ ≃ π̃ we have

(3.1) 2m(π, v) = max
j

ℜµπ×π̃(v, j).

Recall that we have fixed once and for all the standard additive character ψv. Hav-

ing done so we may define the local γ-factor γ(s, πv × π ′
v , ψv) which appears in the

local functional equation

L(s, πv × π ′
v) = γ(s, πv × π ′

v, ψv)L(1 − s, π̃v × π̃ ′
v).
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One has

γ(s, πv × π ′
v , ψv) = ǫ(s, πv × π ′

v , ψv)L(1 − s, π̃v × π̃ ′
v)/L(s, πv × π ′

v)

for a canonically defined function ǫ(s, πv × π ′
v , ψv).

We now record several exact formulae for γ(s, πv × π ′
v , ψv) when πv is twisted by

a character. Let p be a prime, unramified over Q , and not dividing any of the finite

places at which either π or π ′ ramifies. Let χp be a character of K×
p of conductor pr.

If r = 0 then

(3.2) γ(s, πp ⊗ χp × π ′
p, ψp) = L(1 − s, π̃p ⊗ χp × π̃ ′

p)/L(s, πp ⊗ χp × π ′
p),

while if r ≥ 1 we have

(3.3) γ(s, πp ⊗ χp × π ′
p, ψp) = ǫ(s, πp ⊗ χp × π ′

p, ψp) = N(pr)−n2sG(χp)n2

,

where G(χp) is the classical Gauss sum

G(χp) =
∑

[u]∈Up/U
(r)
p

χp(u)ψp(̟−1
p u).

For archimedean places v | ∞ and χv = δveiτv ∈ K̂×
v we have

γ(s, πv ⊗ χv × π ′
v, ψv) = ǫ(s, πv × π ′

v , ψv)i|δv|

×
n2∏

j=1

Γv

(
1 − s − iτv − µπ×π̃(v, j) + |δv|/ deg(v)

)

Γv

(
s + iτv − µ̄π×π̃(v, j) + |δv|/ deg(v)

) .

(3.4)

This can be deduced, for example, from the explicit description of the local factors in

[29, Appendix].

3.2 Global Theory

For ℜ(s) > 1 we define the completed Rankin–Selberg L-function to be the Euler

product

Λ(s, π × π ′) =
∏
v

L(s, πv × π ′
v).

It admits a meromorphic continuation to a function of order 1 on the entire complex

plane, and one has complete information on the location and order of its poles. In

fact, if π ′ 6≃ π̃ then Λ(s, π × π ′) is entire, and in the case of contragredient pairs,

Λ(s, π × π̃) has simple poles at s = 1 and s = 0 and nowhere else. We call

L(s, π × π ′) =
∏

p

L(s, πp × π ′
p)
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the finite-part L-function, the product extending over all finite primes p. Since

Λ(s, π × π ′) and the inverse of the Gamma function are functions of order 1, so

too is L(s, π × π ′).

More generally, let S be a finite set of places containing all infinite places as well as

all places where π, π ′, or the number field K is ramified and put

LS(s, π × π ′) =
∏

p /∈S

L(s, πp × π ′
p).

In the summation formula of Section 5 we shall rely heavily on the (asymmetric)

functional equation of LS(s, π × π ′), which states that

(3.5) LS(s, π × π ′) = γS(s, π × π ′)LS(1 − s, π̃ × π̃ ′),

where γS(s, π×π ′) =
∏

v∈S γ(s, πv×π ′
v , ψv). Note that since S contains all bad places

the γS-factor is independent of the global character ψ =
⊗

v ψv ∈ Â/K.

Finally, let C(π ⊗ χ × π̃) be the analytic conductor of the pair (π ⊗ χ, π̃). Com-

puting explicit epsilon factors as in [22] one finds

(3.6) C(π ⊗ χ× π̃) = c(π × π̃)c(χ)n2

C(π∞ ⊗ χ∞ × π̃∞) ≪π C(χ)n2

.

4 The Main Theorem

Let ‖τ‖ = maxv|∞{|τv|v} be the maximum norm on a∗. Thus for a parameter T ≥ 1

we have

B(0,T) = {τ ∈ h : |τv| ≤ T1/[Kv :R] for every v}.
Let c be any integral ideal of OK . Let v0 | ∞ be an archimedean place. Let h ⊂ a∗ be

the admissible hyperplane defined by the linear condition τv0
= 0. Next put

D = {δ∞ ∈ Û∞ : δv0
= 0 and |δv| ≤ T1/2 for all complex v 6= v0}.

Then using the definition (2.8) and the above input, the family X(c,D,T) consists

of all Hecke characters χ =
∏

v χv of conductor dividing c, whose component χv0
is

trivial, and whose archimedean parameters δv(χ), τv(χ), for v 6= v0, lie in the above

boxes. In this case we have

(4.1) V (c,D,T) ≍ φ(c)Tr−1.

The following theorem is valid for the above choice of ramification data.

Theorem 4.1 For n ≥ 2 let π be a unitary cuspidal automorphic representation of

GLn(A). Assume that c is coprime to the finite places at which π or K is ramified and let

ν denote the number of distinct prime ideal divisors of c. Let β ∈
(

1− 2(n2 + 1)−1, 1
)

.

Then for any ε > 0 there exists c = c(ε,K, ν) > 0 such that for T ≥ cN(c)ε one has

(4.2)
∑

χ∈X(c,D,T)

|L(β, π ⊗ χ× π̃)| ≥ V (c,D,T)1−ε.
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In the special case of K = Q the above theorem in principle reproduces the nonva-

nishing theorem of Luo–Rudnick–Sarnak in [22, Proposition 3.1]. Note however that

the nonvanishing theorem in [22] involves an additional summation over moduli in

a dyadic interval. The advantage of this extra summation is to give an asymptotic

formula for the average of L-values, but for the strict application to Ramanujan this

is unnecessary. It suffices to have a lower bound, and this can obtained by the positiv-

ity of coefficients of the Rankin–Selberg L-function. See the recent book by Bergeron

[2, Proposition 7.39] where this simplification is carried out for the special case when

n = 2.

The argument that deduces Corollary 1.1 from Theorem 4.1 follows now verbatim

the argument of [23] at the beginning of their Section 2. From (3.1) we need to show

that the local factor at v0 of Λ(s, π× π̃) has no pole on the segment 1− (n2 + 1)−1 <
s < 1. More generally, if χ is any Hecke character trivial at v0, we need to show that

the local factor at v0 of Λ(s, π⊗ χ× π̃) has no pole on this segment. Since the global

Rankin–Selberg L-function Λ(s, π⊗χ×π̃) is holomorphic (except possibly for a pole

at s = 0 or s = 1) and the archimedean factors never vanish, it suffices to show for

every β ∈
(

1−(n2 +1)−1, 1
)

there exists χ trivial at v0 such that L(β, π⊗χ×π̃) 6= 0;

this in turn is guaranteed by Theorem 4.1.

Remark 4.2 From the definitions (2.5) and (2.6) we see that

C(χ) ≪ N(c)Tr−1

for every χ ∈ X(c,D,T). By Lemma 2.1 and (4.1) we have (with an implied constant

depending on the number of prime factors of c)

|X(c,D,T)| ≍ N(c)Tr−1

so that C(χ) ≪ |X(c,D,T)| for every χ ∈ X(c,D,T). We see then that the twisting

family employed in Theorem 4.1 not only satisfies the estimates in Lemma 2.1, but

in addition the conductors of its members are majorized by its size. Note that this

is true only for the choice of hyperplane h given by setting one of the coordinates

equal to 0. Indeed, keeping the above maximum norm on a∗, if h is any other choice

of hyperplane (including the “usual” convention h0 given by
∑

v tv = 0), then the

analytic conductor of the characters χ in this family satisfy

C(χ) ≪ N(c)Tr,

which is a factor of T(r−1)/r times larger than |X(c,D,T)|. Thus the hyperplanes given

by τv0
= 0, which can be thought of as Weyl chamber walls inside a∗, give rise to the

most analytically well-behaved families.

The interest in having such well-behaved families for an arbitrary modulus c is not

academic. Indeed the absence of such families was the principal obstacle to extending

to arbitrary number fields the best known bounds, due to Kim and Sarnak [18],

towards the Ramanujan conjecture for the group GL2. Over general number fields all

previous approaches had relied upon Rohrlich’s construction of special moduli [28].

This problem was successfully resolved in [3], although we did so in the most direct

way, without recourse to nonvanishing results.
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Remark 4.3 When c is taken to be square-full, that is, p | c ⇒ p2 | c, the local

estimates of Section 6 can be done elementarily; otherwise, one must use Deligne’s

bounds [10] for hyper-Kloosterman sums to deduce Theorem 4.1. As the choice is

ours, we can opt for the former and make the implication to Theorem 1.1 indepen-

dent of Deligne’s bounds.

Remark 4.4 It is of some historical interest to note that if K has at least two archi-

medean places, we can choose c = 1 in the statement of Theorem 4.1 in which case

our twisting family consists of characters unramified at finite places. Then only the

archimedean estimates of Section 6 are needed for Theorem 4.1, and the proofs of

these use nothing more than standard bounds for oscillatory integrals. Hence when

applied to fields of rank r ≥ 2 and characters of modulus c = 1, our own deduction

of Corollary 1.1 from Theorem 4.1 gives the first proof of the 1/2−1/(n2 +1) bounds

at an archimedean place using only archimedean ramification. This route towards

Ramanujan was taken by Serre [33], but he could only deduce the bounds 1/2 −
1/(dn2 + 1) for a number field of degree d. See Section 6 for a description of how our

method resolves this problem.

From knowledge of upper bounds on each individual term in the sum (4.2), we

can obtain information on the number of nonvanishing members (all are of course

nonzero under the Generalized Riemann Hypothesis). To see this, note that any

bound on the local parameters of (fixed) polynomial strength, such as the Jacquet–

Shalika bounds [17], can be inserted pointwise into the Dirichlet series to deduce

L(1 + ε, π ⊗ χ × π̃) ≪π,ε 1, uniformly in χ. Combining this majorization with the

bounds (3.6), the functional equation of the Rankin–Selberg L-function (3.5), and

the Phragmèn–Lindelof convexity principle (recall L(s, π×π ′) is of order 1), we find

L(β, π ⊗ χ× π̃) ≪π,ε C(χ)
n2

2
(1−β)+ε.

Thus, for β > 1 − 1/(n2 + 1), we have

L(β, π ⊗ χ× π̃) ≪π,ε T
n2

2
(1−β)+ε ≤ T1−(n2+1)−1+ε.

This leads to the following quantitative result.

Corollary 4.5 Keep the notation and assumptions of Theorem 4.1. Then

|{χ ∈ X(c,D,T) : L(β, π ⊗ χ× π̃) 6= 0}| ≫ε V (c,D,T)
1

n2+1
−ε

for every ε > 0.

Corollary 4.5 yields nowhere near a positive proportion of nonvanishing L-values.

On the other hand, it is valid for arbitrary number fields and certain L-functions of

possibly very large degree.

It would be interesting to study this and related families further. For instance,

one could ask about the nonvanishing at the central point of the Hecke L-functions

associated toχ ∈ X(c,D,T). Current technology should suffice to compute or bound

first and second moments over this family and to conclude that L(1/2, χ) 6= 0 for

≫ V (c,D,T)1−ε characters χ ∈ X(c,D,T). We leave this for future investigation.
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5 A Summation Formula

The goal of this section is to establish a summation formula that lies at the heart

of our proof of Theorem 4.1. One may give various names to this formula, such

as Voronoi summation or approximate functional equation for Rankin–Selberg L-

functions. In any case, the formula takes as input factorizable functions g =
⊗

v gv

on the ideles I. The summation formula will then output a relation between two

smoothened sums of Dirichlet series coefficients of the Rankin–Selberg L-function

and a smooth average of this same L-function twisted by Hecke characters, evaluated

at the point s = β.

Let Bπ,K the set of finite places where π or K is ramified. In what follows we fix an

integral ideal c of OK , written c =
∏

pep , assumed to be prime to all places in Bπ,K .

We put S = {p | c} ∪ Bπ,K ∪∞ and fix v0 | ∞.

5.1 Defining g

We now define functions gv at each place. More general assumptions are certainly

possible, but the following definition suffices for our application.

5.1.1 Test Functions

At all primes places v ∈ S \ {v0} we choose a test function gv ∈ C∞
c (K×

v ). Hence

for archimedean v 6= v0, the transform ĝv(σ, χv) = ĝv(σ, eiτvδv) = ĝv(s, δv) is entire

in the complex variable s = σ + iτv and decays rapidly in vertical strips. Moreover,

if v = C, then ĝv(s, δv) is also rapidly decaying in δv ∈ Z. At finite primes in S we

impose a ramification condition: we require gp to be invariant under U
(ep)
p for p | c

and under U (1)
p for p ∈ Bπ,K .

5.1.2 Function at v = v0

At v0 we let gv0
(x) = |x|−βv0

g0(|x|v0
), where g0 ∈ C∞

c (R≥0) is a fixed nonnegative

smooth function with support in [0, 1], satisfying g0(0) = 1, and whose (right-)

derivatives at 0 vanish to all orders.

Since gv0
is invariant under Uv, the transform ĝv0

(s, δv0
) is nonzero only for δv0

= 0

corresponding to the trivial character. Moreover ĝv0
(s, 0) is holomorphic in s except

for a simple pole at s = β and decays rapidly in vertical strips away from the pole β.

5.1.3 Coefficient Function

Finally, for all p /∈ S we define gp in such a way as to recover the Dirichlet series

coefficients λπ×π̃(pr) when these latter are thought of as Up-invariant functions on

K×
p . To this end, for every p /∈ S we put

(5.1) gp(x) =

{
λπ×π̃(pr), vp(x) = r ≥ 0,

0, vp(x) < 0.
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We colloquially refer to this choice of gp as the coefficient function. An easy calcula-

tion shows that

ĝp(s, δp) =

{
L(s, πp × π̃p), if δp = 1,

0, else.

For all but finitely many primes p (namely, for all p /∈ S) gp is clearly invariant

under Up. It then makes sense to consider

gS =
∏
v∈S

gv and g =
⊗
p /∈S

gp × gS.

5.2 Defining g∗

Similarly to the above we shall now define a function g∗v at each place, a sort of

transform of gv defined via the γ-factor appearing in the local functional equation

of L(s, πv × π̃v).

For a place v of K and gv ∈ C∞(K×
v ) as defined above we put

(5.2) g∗v (x) =

∫
̂
K×

v

ĝv(1 − σ, χ−1
v )γ(1 − σ, πv ⊗ χv × π̃v, ψv)χ−1

v (x)|x|−σv dχv

where σ > 1. The integral is absolutely convergent. By Mellin inversion

ĝ∗v (σ, χv) = ĝv(1 − σ, χ−1
v )γ(1 − σ, πv ⊗ χv × π̃v, ψv).

If p /∈ S and gp is defined as in (5.1), then g∗p is Up-invariant (in fact, g∗p = gp). From

this we deduce that with the choice of g =
⊗

v gv as in Section 5.1, it makes sense to

consider

g∗S =
∏
v∈S

g∗v and g∗ =
⊗
p /∈S

g∗p × g∗S .

5.3 Summation Formula

We let

(5.3) GS(x) =
∑

u∈O
×
S

gS(ux) and G(x) =
∑

γ∈K×

g(γx),

obtaining well-defined functions on O
×
S \K×

S and C , respectively. In the same way

one defines G∗
S (x) and G∗(x) as sums over S-units and nonzero field elements. Almost

verbatim as in [3, Lemma 4, (2.3)] one sees that the sums are absolutely convergent

and that the Mellin inversion formula holds for G and G∗; in fact we have

G(x) =

∫

Ĉ

ĝ(σ, χ)χ−1(x)|x|−σ
A

dχ, G∗(x) =

∫

Ĉ

ĝ∗(σ, χ)χ−1(x)|x|−σ
A

dχ
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for any σ > 1. Moreover, when xv = 1 for all v /∈ S, the sums G(x) and G∗(x) may

be written as smooth sums of Dirichlet coefficients. Indeed, it is not hard to see that

(5.4) G(x) =
∑

a=(α)∈PK (S)

λπ×π̃(a)GS(αxS)

and

(5.5) G∗(1/x) =
∑

a=(α)∈PK (S)

λπ×π̃(a)G∗
S (αx−1

S ).

Proposition 5.1 We have

G(x) = |x|−1
A

R + |x|−1
A

G∗(1/x),

where

R = cK

∑

ω∈Ĉ 1(c)

ω̄(x)
∑

ρ

Ress=ρ LS(s, π ⊗ ω × π̃)|x|1−s
A

ĝS(s, ω),

the sum over ρ running over all poles of the integrand in ℜ(s) ∈ [0, 1]. Possible poles

can occur only at s = 0, s = 1 (if ω is trivial), or ℜs = β, and the infinite sum over ρ is

absolutely convergent.

Proof By Mellin inversion and (2.7) we have

G(x) = cK

∑

ω∈Ĉ 1

ω̄(x)

∫

(2)

ĝ(s, ω)|x|−s
A

ds

2πi

= cK

∑

ω∈Ĉ 1(c)

ω̄(x)

∫

(2)

LS(s, π ⊗ ω × π̃)|x|−s
A

ĝS(s, ω)
ds

2πi
.

For each ω we shift the contour to ℜs = −1. This is admissible by the rapid decay

of the infinite components of ĝ(s, ω) along vertical lines. In doing so, pick up the the

residue of the integrand coming from the pole at s = 1 (and possibly at s = 0) of

LS(s, π × π̃) as well as those coming from the function ĝv0
(s) at ℜs = β. We obtain

G(x) = |x|−1
A

R + cK

∑

ω∈Ĉ 1(c)

ω̄(x)

∫

(−1)

LS(s, π ⊗ ω × π̃)|x|−s
A

ĝS(s, ω)
ds

2πi
.

By the rapid decay of ĝS(s, ω), the infinite sum R converges absolutely. We apply the

functional equation and change variables (s, ω) 7→ (1 − s, ω̄). An application of the

inverse Mellin transform shows that the remaining integral is precisely |x|−1
A

G∗(1/x).

https://doi.org/10.4153/CJM-2011-068-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-068-7


Nonvanishing of L-functions and Families of Hecke Characters 41

6 Local and S-adic Estimates

This is a technical section that establishes certain estimates that we shall need in

Section 7 when we prove Theorem 4.1. Proposition 6.1 estimates (and in certain

cases evaluates) the transforms g∗v for explicit choices of gv to be prescribed below.

These transforms are oscillatory integrals, and we bring several tools to bear to ex-

amine their size. One of these is stationary phase, which in a sense replaces Landau’s

lemma [20]. Another is Deligne’s theorem, which we need only when the modulus c

is not square-full. We then go on to average these estimates over S-units, obtaining

Corollary 6.3, with which we end the section.

The archimedean estimates in this section describe how the loss in the degree of

the number field observed by Serre (cf. Remark 4.4) can be repaired. An illustrative

example is that of an imaginary quadratic field, which is treated in the v = C com-

putation below. Here, rather than using a test function gv supported on annuli, we

take a function supported in a small ball around 1 and then dilate it, thereby approx-

imating an annular sector. The resulting transform g∗v then involves an additional

summation over the character group of the circle. We convert this Z-sum by Poisson

summation into a dual Z-sum which is essentially supported on the first term. As a

result, a stationary phase argument in 1 dimension is replaced by one of 2 dimen-

sions, gaining back the loss by a factor of 2. This observation extends to all number

fields by factorization of test functions.

6.1 Local Estimates

As in the beginning of Section 5, let c be an integral ideal of OK , written c =
∏

pep ,

and put S = {p | c} ∪ Bπ,K ∪ ∞. Let T ≥ 1 be a parameter. For v ∈ S \ {v0} we

define gv as follows:

• for p | c let gp be the characteristic function on U
(ep)
p ;

• for p ∈ Bπ,K let gp be the characteristic function on U (1)
p ;

• for archimedean v 6= v0 let gv(x) = g0(T|x − 1|v).

For v 6∈ S \ {v0} we define gv as in subsections 5.1.2 and 5.1.3. The function gv is

Uv-invariant for every v. Except at the place v0 the function gv is of compact support.

We begin by evaluating or estimating the Fourier transforms ĝv of the above de-

fined functions. It is easy to see that for p | c

(6.1) ĝp = φ(pep )−11deg(χ)≤ep
.

Moreover, ĝv0
(s, δ) is nonzero only for δ = 0, holomorphic in s except for a simple

pole at s = β, and satisfies the bound

(6.2) ĝv0
(σ + iτ , 0) ≪σ,A (1 + |τ |)−A, |s − β| ≥ 1/100

for any A ≥ 0. For archimedean v 6= v0, the transform ĝv(s, δ) is entire in s and

satisfies the bound

(6.3) ĝv(σ + iτ , δ) ≪σ,A
1

T

(
1 +

|δ + iτ |[Kv :R]

T

)−A
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for any A ≥ 0. We now estimate the transforms g∗v .

Proposition 6.1 For any ε > 0, A ≥ 0 the following bounds hold:

(6.4) g∗p (x) ≪ 1

φ(pep )|x|p
·
{

(1 + |x|
1
2

+ 1

2n2

p ), |x|p ≤ N(p)epn2

,

0, |x|p > N(p)epn2

,

for p | c;

(6.5) g∗v (x) ≪A,ε
1

T|x|v
(1 + |x|

1
2

+ 1

2n2 +ε
v )

(
1 +

|x|v
Tn2+ε

)−A

for archimedean v 6= v0; and

(6.6) g∗v (x) ≪A,v |x|−1
v (1 + |x|v)−A

if v = v0 and if v = p ∈ Bπ,K is a finite ramified prime.

6.1.1 Trivial Estimate

We start with the proof of (6.6). By the Jacquet–Shalika bounds γ(1 − s, πv ⊗ χv ×
π ′

v , ψv) is holomorphic in ℜs ≥ 1, and for v | ∞ we have by (3.4) and a crude form

of Stirling’s formula the bounds

(6.7) γ(1 − s, πv ⊗ δv × π̃v, ψv) ≪πv

{
(1 + |τ |)n2(σ− 1

2
), v = R;

(τ 2 + δ2
v )n2(σ− 1

2
), v = C,

where s = σ + iτ .

If v = v0, then by (6.2) we can shift the contour in (5.2) to ℜs = 1 or 1 + A, estab-

lishing (6.6) in the case v = v0. If v is a finite ramified place, then by construction ĝp

is supported on characters of degree at most 1, and the same contour shift followed

by a trivial estimate establishes the required bounds.

It remains to prove (6.4) and (6.5) which we do in the next two subsections.

6.1.2 Nonarchimedean Case

Using the explicit formula for γ(1 − s, πp ⊗ χp × π̃p, ψp) given in (3.2) and (3.3) we

write

g∗p (x) =
1

φ(pep )

∑

0≤ν≤ep

Aν(x)

where

A0(x) =

∫ σ+iπ/ log N(p)

σ−iπ/ log N(p)

L(s, π̃p ⊗ χp × πp)

L(1 − s, πp ⊗ χp × π̃p)
|x|−s

p logN(p)
ds

2πi

https://doi.org/10.4153/CJM-2011-068-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-068-7


Nonvanishing of L-functions and Families of Hecke Characters 43

and

Aν(x) =
∑

deg(δp)=ν

G(δp)δ̄p(x/|x|p)

∫ σ+iπ/ log N(p)

σ−iπ/ log N(p)

N(pep )n2(s−1)|x|−s
p logN(p)

ds

2πi

for ν > 0. We recall that

L(s, π̃p ⊗ χp × πp)/L(1 − s, πp ⊗ χp × π̃p) = P
(
N(p)s

)
/Q

(
N(p)−s

)

where P, Q are two polynomials of degree n2 and Q(0) = 1. Hence for ℜs sufficiently

large we can expand 1/Q into an absolutely convergent power series in N(p)−s, in-

tegrate term by term, and a standard application of the residue theorem shows that

A0(x) = 0 if |x|p > N(p)n2

. For 1 < |x|p ≤ N(p)n2

we shift the line of integration to

some very large A, getting a negligible contribution. For |x|p ≤ 1 we shift to σ = 1

and estimate trivially A0(x) ≪ |x|−1
p , |x|p ≤ 1.

We proceed to bound the terms Aν(x) for ν ≥ 1 and distinguish two cases. If

ep = 1, the integral vanishes unless |x|p = N(p)n2

in which case we get, by Deligne’s

bounds [10] for Hyper-Kloosterman sums,

|x|pA1(x) =
∑

deg(δp)=1

G(δp)n2

δ̄p(x/|x|p) =
∑

deg(δp)≤1

G(δp)n2

δ̄p(x/|x|p) − 1

= φ(p)
∑

x1,...,xn2∈Up

x1···xn2=x/|x|p

ψp

(
̟−1

p (x1 + · · · + xn2 )
)
− 1 ≪ N(p)(n2+1)/2

= |x|
1
2

+ 1

2n2

p ,

proving (6.4).

If ep ≥ 2, (6.4) can be established in an elementary manner. Again the integral

vanishes unless |x|p = N(p)epn2

. It is now easy to see that the terms Aν(x), 1 ≤ ν <
ep, vanish, and the term Aep

can be bounded by a routine calculation. For K = Q

complete details can be found in [4], and the general case differs only by notational

changes.

6.1.3 Archimedean Case

We begin by recalling the definition of g∗v . We have

(6.8) g∗v (x) = cv

∑

δv∈Ûv

δv(x)−1I(x, δv),

where cv = 1/2 or 1/(2π) for v real or complex, respectively, and for σ large enough,

(6.9) I(x, δv) =

∫

(σ)

ĝv(1 − s, δv)γ(1 − s, πv ⊗ δv × π̃v, ψv)|x|−s
v

ds

2πi
.
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In fact, one can take σ ≥ 1 by the Jacquet–Shalika bounds. As usual we identify δv

with the corresponding integer in {0, 1} or Z according to whether v is real or com-

plex, respectively.

When |x|v ≤ 1 we shift the contour in I(x, δv) to σ = 1 and obtain by a trivial

estimate g∗v (x) ≪ |x|−1
v T−1. To handle large |x|v, we first let ε > 0 and A > 0

be as in the statement of Proposition 6.1. By (6.7) and (6.3) we obtain g∗v (x) ≪
|x|−A

v Tn2(σ− 1
2

). If σ is sufficiently large with respect to ε and A then this proves (6.5)

in the range |x|v ≥ Tn2+ε.

It therefore remains to prove

(6.10) g∗v (x) ≪ε T−1|x|−
1
2

+ 1

2n2 +ε
v , 1 < |x|v < Tn2+ε,

when v 6= v0. For convenience we fix σ = 1 in the integral I(x, δv). The proof

of (6.10) relies on the principle of stationary phase. See, for example, [11, Proposi-

tion 5.2] for a proof of the following result.

Lemma 6.2 Let u ∈ C∞
c (Rd) have support in a compact set K. Let φ be a smooth

real-valued function on Rd having a single nondegenerate critical point y0 ∈ K and no

other critical point. There is a constant C, depending only on d and K, such that for

λ ≥ 1, ∣∣∣∣
∫

K

eiλφ(y)u(y) dy − Aλ−d/2

∣∣∣∣ ≤ Cλ−1−d/2‖u‖S3+d .

Here A = (2π)d/2u(y0) exp
(

i π
4

sgn
(

det Qφ(y0)
)

+ iλφ(y0)
)
| det Qφ(y0)|−1/2, with

Qφ the Hessian of φ, and ‖u‖Sk the k-th Sobolev norm of u.

Putting the integrals defining g∗v into the form required by Lemma 6.2 proceeds es-

sentially in two steps. The first is to use Stirling’s formula to explicate the correspond-

ing phase function φ; the second is to reduce the domain of integration to a compact

set on which we have have good control of the size of ‖u‖S3+d and | det Qφ(y0)|−1/2.

In our application, the amplitude function u will actually depend on the parame-

ter λ. So the version of Lemma 6.2 that we shall use will be of the following form. Let

u(y, λ) ∈ C∞(Rd+1). Suppose that

(1) for all λ ≥ 1 the support of u(·, λ) is contained in a fixed compact set K ⊂ Rd;

(2) ‖u( · , λ)‖S3+d ≪ 1 uniformly in λ;

(3)
∣∣det Q

(
φ(y0)

) ∣∣ ≫ 1.

Then it follows immediately from Lemma 6.2 that

(6.11)

∫

K

eiλφ(y)u(y, λ) dy = O(λ−d/2).

We now proceed to the proof of (6.10) for the real and complex places. The esti-

mate (6.11) will be used with d = 1 and d = 2, respectively.

Proof of (6.10) if v = R We recall the expression (6.8). We will only estimate the

integral I(x, δ) for δ = 0, the case δ = 1 being similar. We therefore write I(x) =

I(x, 0) for notational simplicity.
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We begin by isolating the region around the real axis where the quotient of

Gamma functions fails to oscillate. Let ω0 ∈ C∞
c (R) be such that ω0(τ ) = 1 on

|τ | ≤ M + 1 and ω0(τ ) = 0 on |τ | ≥ M + 2, where M = max |ℑµ j |. Put ω = 1−ω0.

Then ∫

R

ω0(τ )ĝv(−iτ )γ(−iτ , πv × π̃v, ψv)|x|−1−iτ dτ = O(1/T|x|).

On the remaining integral, we can now insert the precise version of Stirling’s formula

(with oscillating factor) in the form of

γ(−iτ , πv × π̃v, ψv) = α(τ )|τ |n2/2(|τ |/2πe)in2τ ,

for |τ | ≥ M + 1, where α(τ ) is a smooth bounded function satisfying α( j)(τ ) ≪
|τ |− j for integers j ≥ 0. Putting f (τ ) = ĝv(−iτ )α(τ )ω(τ ), we have f ( j)(τ ) ≪ j,A

T−1|τ |− j(1 + |τ |/T)−A by (6.3), and

I(x) = |x|−1

∫

R

f (τ )|τ |n2/2 exp

(
iτ
(

n2 log
|τ |
2πe

− log |x|
))

dτ + O
( 1

T|x|
)
.

By a change of variables τ 7→ 2π|x|1/n2

τ we obtain

(6.12) I(x) = |x|− 1
2

+ 1

n2

∫

R

f̃ (τ , |x|) exp
(

i|x|1/n2

φ(τ )
)

dτ + O(1/T|x|),

where f̃ (τ , |x|) = (2π)1+n2/2 f (2π|x|1/n2

τ )|τ |n2/2 is supported on |τ | ≫ |x|−1/n2

and

φ(τ ) = 2πn2τ (log |τ | − 1).

The phase function φ has a stationary point at τ0 = 1 and nowhere else. This critical

point is nondegenerate.

We apply a smooth partition of unity and cut out smoothly the interval [1/2, 2]

in (6.12). The remaining portion of (6.12) is, by repeated integration by parts,

O(T−1|x|−1/2+ε), which is most easily seen by splitting the range of integration into

dyadic intervals. Hence (6.12) equals

|x|− 1
2

+ 1

n2

∫ 3

1/4

u(τ , |x|) exp
(

i|x|1/n2

φ(τ )
)

dτ + O(T−1|x|−1/2+ε)

where u( · , |x|) has compact support in (1/4, 3) on which we have the uniform size

condition u( j)(t, |x|) ≪ j T−1 for all j ∈ N0 and φ( j)(t) ≍ j 1 for j ≥ 2. There-

fore we can apply (6.11) in the case d = 1 and bound the main term of (6.12) by

O(T−1|x|− 1
2

+ 1

2n2 ).

Proof of (6.10) if v = C The complex case is very similar to the real case, but a few

extra ingredients are necessary. We will highlight the main points, leaving the rest of

the argument for the reader to fill in.
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Using the notation of (6.8) and (6.9) and writing θ = arg(z) ∈ [−π, π), we have

g∗v (z) =
1

2π

∑

δ∈Z

e−iδθI(z, δ).

As in the real case we introduce a smooth weight function ω to restrict the support of

δ and τ = ℑs in the integral (6.9) such that |δ| ≫ 1 with an error of O(T−1|x|− 1
2

+ 1

2n2 ).

Combining positive and negative δ, we obtain after Poisson summation

(6.13) g∗v (z) =
∑

δ∈Z

Ĩ+(z, δ) + Ĩ−(z, δ),

where

Ĩ±(z, δ) =
∫ ∞

−∞

∫ ∞

0

ω(s)e±iσ(δ−θ)ĝv(−iτ ,−σ)γ(−iτ , πv ⊗ σ × π̃v, ψv)|z|−2(1+iτ ) dσ dτ .

In the above integral we have written s = σ + it . By (3.4) we have

γ(s, πv ⊗ δ × π̃v, ψv) = ǫ(s, πv × π̃v, ψv)iδ
n2∏

j=1

ΓC

(
1 − s − µπ×π̃(v, j) + δ/2

)

ΓC

(
s − µπ×π̃(v, j) + δ/2

)

for δ > 0, and the latter expression makes perfect sense for δ = σ ∈ R.

It is now easy to see that the δ-sum in (6.13) is rapidly converging and Oε

(
(T|z|)ε

)

of δ contribute nonnegligibly to g∗v (z). It suffices then to estimate Ĩ±(z, δ) for a sin-

gle δ. For convenience of exposition we bound Ĩ(z) := Ĩ+(z, 0), all other cases are

essentially identical. Stirling’s formula then reads

γ
(
−iτ , πv ⊗ (2σ) × π̃v, ψv

)
= α(s)|s|n2

exp

(
2in2

(
τ log

|s|
2πe

+ σ arctan
τ

σ

))

for s ∈ supp(ω), where α(s) is a smooth bounded function satisfying α(i, j)(s) ≪πv,i, j

|s|−i+ j for integers i, j ≥ 0 and |s| ≥ M + 1. We must consider then the integral

|z|−2

∫ ∞

−∞

∫ ∞

0

f (s)|s|n2

× exp

(
2in2

(
τ log

|s|
2πe

+ σ
( π

2
+ arctan

τ

σ

))
− 2iτ log |z| − 2iσθ

)
dσ dτ ,

where f (s) = ĝv(−iτ ,−σ)α(s)ω(s). Changing variables s 7→ 2π|z|1/n2

s we obtain

|z|−1+ 2

n2

∫

R2

f̃ (s, |z|) exp
(

i|z|1/n2

φ(s)
)

ds,
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where f̃ (s, |z|) = (2π)2 f (|z|1/n2

s)|s|n2

is supported on |τ | ≫ |z|−1/n2

and

φ(s) = 4πn2

(
τ (log |s| − 1) + σ

( π
2
− θ

n2
+ arctan

τ

σ

))
.

Now let us examine the critical points of φ. For s ∈ supp(ω) we have

∇φ(s) = 4πn2

(
arctan(τ/σ) + π/2 − θ/n2

log |s|

)
.

There is at most one stationary point ∇φ(s) = 0. Any such critical point is nonde-

generate since the Hessian

Qφ(s) =
4πn2

|s|2
(
−τ σ
σ τ

)

has determinant −4πn2 along |s| = 1.

Having identified the critical points and established their nondegeneracy, the rest

of the argument (partition of unity, integration by parts away from the critical point

giving an error O(T−1|x|− 1
2

+ 1

2n2 +ε), application of (6.11) with d = 2 around the crit-

ical point) now follows that of the real case.

6.2 S-adic Estimate

We now average the local estimates in Proposition 6.1 to obtain our next corollary.

Recall the definition (5.3) of GS. Henceforth we use the abbreviation V for the vol-

ume

V = V (c,D,T) ≍ N(c)Tr−1.

Corollary 6.3 For |x|S ≥ 1 we have

(6.14) G∗
S (x) ≪A,ε,π,|S| V

n2−1
2

+ε|x|−1
S

(
1 +

( |x|S
V n2+ε

)−A
)

for any A ≥ 0, ε > 0.

Before proving the corollary we indicate the approach. The function g∗S has essen-

tial support inside a box of volume about V . By Dirichlet’s unit theorem, the S-units

are logarithmically distributed in K×
S , and hence only V ε terms contribute in a non-

negligible way. This heuristic, at least for those units in O
×
K , has been made precise in

a useful lemma of Bruggeman–Miatello [6].

Lemma 6.4 (Bruggeman–Miatello) Let g : K×
∞ → C be a function satisfying |g(x)| ≤∏

v|∞ min(1, |xv|−A
v ) for some A ≥ 0. Then

∑

u∈O
×
K

|g(ux)| ≪A min
(

1 +
∣∣ log |x|∞

∣∣ r−1
, |x|−A

∞

)
.
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We now proceed to the proof of Corollary 6.3.

Proof For v ∈ S put

vol(g∗v ) =





Tn2+ε, if v | ∞, v 6= v0;

Npep(n2+ε), if v = p is finite;

1, if v = v0.

Here we agree to set ep = 0 if p ∈ Bπ,K . Let

vol(g∗∞) =
∏

v|∞

vol(g∗v ) = T(r−1)(n2+ε) and vol(g∗S ) =
∏
v∈S

vol(g∗v ) = V n2+ε.

The estimates of Proposition 6.1 yield

g∗S (x) ≪ |x|−1
S V n2( 1

2
− 1

2n2 )+εM(x),

where

M(x) =
∏
v∈S

Mv(xv) and Mv(xv) =
(

1 +
|xv|v

vol(g∗v )

)−A

.

We proceed to estimate
∑

u∈O
×
S

M(ux). We index the sum by first fixing a set {u ′} of

representatives of O×
S /O

×
K , and then summing over uu ′ for u ∈ O

×
K . By Lemma 6.4

we have

∑

u∈O
×
K

M∞(uu ′x∞) ≪ min

(
1 +

∣∣∣ log
|u ′x∞|∞
vol(g∗∞)

∣∣∣
r−1

,
( |u ′x∞|∞

vol(g∗∞)

)−A
)
.

If u ′ ∈ O
×
S /O

×
K has p-valuation kp, say, then letting ℓp := kp + epn2 + vp(xp) we have

Mp(upxp) = (1 + Np−ℓp )−A.

We can now view the sum over u ′ as a sum over certain integer vectors ℓ = (ℓp)p∈Sfin
∈

Z|Sfin|, where Sfin denotes the set of finite primes in S. If u ′ corresponds to ℓ then

|u ′x∞|∞
vol(g∗∞)

=
|x|S

V n2+ε

∏
p∈Sfin

Npℓp := Xℓ.

Thus we find

∑

u∈O
×
S

M(ux) ≪
∑

ℓ∈Z|Sfin|

min
(

1 + | log Xℓ|r−1,X−A
ℓ

) ∏
p∈Sfin

(1 + Np−ℓp )−A

≪ min
(

1 +
∣∣ log(|x|S/V n2+ε)

∣∣ |S|−1
, (|x|S/V n2+ε)−A

)
,

as one confirms easily by induction. This implies the corollary.
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7 Proof of Theorem 4.1

Let 0 < Y < 1 be a parameter to be chosen later, and let x ∈ I be the idele satisfying

(7.1) xv0
= Y 1/[Kv0

:R]; xv = 1, v 6= v0.

We choose ramification data as in Theorem (4.1) and as before abbreviate V =

V (c,D,T). We apply the summation formula in Proposition 5.1 with the test func-

tion defined in Section 5 and x as in (7.1). By the positivity of the coefficients λπ×π̃(a)

and the functions gv we may drop all but the term corresponding to a = (1) and

u = 1 in the sum (5.4) getting

(7.2) G(x) ≥ gv0
(Y 1/[Kv0

:R]) ≫ Y−β .

Next, using (6.14) and (5.5) together with the fact that |x|A = |x|S we estimate

|x|−1
A

G∗(1/x) ≪ V
n2−1

2
+ε

∑

a⊆OK

λπ×π̃(a)

N(a)

(
1 +

N(a)

YV n2+ε

)−1

.

The absolute convergence of the Rankin–Selberg L-function to the right of ℜs = 1

implies

|x|−1
A

G∗(1/x) ≪ V
n2−1

2
+ε.

Finally we come to the residual terms in Proposition 5.1. It is easy to see that

|x|−1
A

(Ress=0 + Ress=1) ≪π ĝS(0, triv) + |x|−1
A

ĝS(1, triv) ≍ (YV )−1.

The remaining poles come exclusively from ĝv0
(s, ω). We first write ω =

∏
v ωv ∈

Ĉ 1(c) where the component of ωv0
at v0 is (iτ0, δ0), say. Then ĝv0

(s) has a pole at

s = β − iτ0 if and only if δ0 = 0. Thus the poles strictly within the critical strip

contribute

cK

∑

ω∈Ĉ 1(c)
ωv0

=(iτ0,0)

ω̄(x)LS(β − iτ0, π ⊗ ω × π̃)ĝS\{v0}(β − iτ0, ω)|x|β−iτ0

A

= cKY−β
∑

χ∈Ĉ (c)
τv0

(χ)=0

χ̄(x)LS(β, π ⊗ χ× π̃)
∏

v∈S\{v0}

ĝv(β, χ)

≪A (Y βV )−1
∑

χ∈Ĉ (c)
τv0

(χ)=0

|LS(β, π ⊗ χ× π̃)| ∏
v|∞
v 6=v0

(
1 +

C(χv)

T

)−A

≪ε (Y βV )−1
∑

χ∈X(c,D,TV ε)

|LS(β, π ⊗ χ× π̃)| + V−100.

(7.3)
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Here we used (6.1), (6.3) and the definition (2.8), and in the final step truncated the

series at the cost of a negligible error. Combining (7.2)–(7.3), we obtain

∑

χ∈X(c,D,TV ε)

|LS(β, π ⊗ χ× π̃)| ≫ V + Oε(Y
β−1 + V

n2+1
2

+εY β).(7.4)

We choose Y = V− n2+1
2 . Then for β > 1 − 2/(n2 + 1) and ε sufficiently small, the

main term on the right hand side of (7.4) dominates the error term. This completes

the proof of Theorem 4.1.
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