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We investigate the dynamics of close-contact melting (CCM) on ‘gas-trapped’
hydrophobic surfaces, with specific focus on the effects of geometrical confinement and
the liquid–air meniscus below the liquid film. By employing dual-series and perturbation
methods under the assumption of small meniscus deflections, we obtain numerical
solutions for the effective slip lengths associated with velocity λ and temperature λt fields,
across various values of aspect ratio Λ (defined as the ratio of the film thickness h to
the structure’s periodic length l) and gas–liquid fraction φ. Asymptotic solutions of λ
and λt for Λ � 1 and Λ � 1 are derived and summarised for different surface structures,
interface shapes and Λ, which reveal a different trend of λ for Λ � 1 and depending on
the presence of a meniscus. In the context of constant-pressure CCM, our results indicate
that longitudinal grooves can enhance heat transfer under the effects of confinement
and a meniscus when Λ� 0.1 and φ < 1 − 0.52/3 ≈ 0.37. For gravity-driven CCM, the
parameters of l and φ determine whether the melting rate is enhanced, reduced or nearly
unaffected. We construct a phase diagram based on the parameter matrix (log10 l, φ) to
delineate these three regimes. Lastly, we derive two asymptotic solutions for predicting
the variation in time of the unmelted solid height.
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1. Introduction
In the domain of melting, a phenomenon known as close-contact melting (CCM) stands
out. Unlike conventional convection-driven melting with expanding molten liquid spaces,
CCM involves a distinct process where the surface of an unmelted solid and a heating
element are pressed together under external force. This results in the formation of a
thin molten film flow between the solid and heating surfaces, facilitating solid–liquid
phase change heat transfer at a low-Reynolds-number flow of the liquid. Close-contact
melting can be observed in two primary modes: heat source-driven (constant pressure) and
unmelted solid-driven (gravity-driven) (Hu et al. 2022), depending on the external force
applied to the object. The former mode refers to the scenario where the heated surface
penetrates into an unmelted solid, which includes glacier drilling by heating (Schuller,
Kowalski & Raback 2016), subtractive machining (Mayer & Moaveni 2008) and the ‘melt
down’ of nuclear fuel (Emerman & Turcotte 1983). The latter mode can be observed
readily in daily life, such as when ice, butter or chocolate melts on a heated substrate.
Also, it is found in latent heat thermal energy storage (Kozak, Rozenfeld & Ziskind 2014)
and thermal management systems (Fu et al. 2022), where a considerable heat flux can be
achieved easily. In the area of thermal energy storage, the melting rate is equivalent to the
charging rate.

Given the widespread applications of CCM, it has been studied extensively for decades
(Hu et al. 2022). These studies explore the effects of geometry (Moore & Bayazitoglu
1982; Sparrow & Geiger 1986; Dong et al. 1991; Fomin, Wei & Chugunov 1995) and
boundary conditions for heating (Moallemi & Viskanta 1985; Saito et al. 1985a,b;
Bejan 1992; Fomin, Saitoh & Chugunov 1997; Groulx & Lacroix 2007; Schueller &
Kowalski 2017), with a primary focus on heat transfer characteristics. Recently, attention
has shifted towards understanding the mechanisms of flow and heat transfer within the
liquid film. Hu et al. measured the thickness variation of the thin film for the first
time, confirming a magnitude of O(102) µm (Hu et al. 2019). Non-Newtonian features,
including Bingham (Kozak et al. 2019), power-law (Kozak 2023) and Carreau properties
for the viscosity variations (Hu & Fan 2023), as well as temperature-dependent properties
(Cregan, Williams & Myers 2020), have been considered to study their impact on film
thickness variation and flow behaviour. Strategies such as the use of permeable surfaces
(Turkyilmazoglu 2019), slip surfaces (Aljaghtham, Premnath & Alsulami 2021; Kozak
2022) and pressure-enhanced conditions (Chen et al. 2022; Fu et al. 2022) have been
proposed to accelerate melting.

In addition, hydrophobic or superhydrophobic surfaces with microscale-trapped air can
provide an effective slip length, of the order of O(102) µm, for liquid transport (Lee,
Choi & Kim 2008; Quéré 2008). This characteristic is considered a promising strategy
for reducing liquid film thickness, thereby potentially enhancing heat transfer of CCM.
Recently, Kozak theoretically studied postpatterned hydrophobic surfaces and showed
that a temperature slip length λ∗t (the definition is given in § 2.2.1) greater than velocity
slip length λ∗ (Kozak 2022) leads to a reduced heat transfer; the calculation utilised
the formulae λ∗/ l∗ = 3

√
π/(1 − φ)/16 − 3 ln(1 + √

2)/(2π) (Davis & Lauga 2010) and
λ∗ = 3λ∗t /4 (Enright et al. 2014), where ∗ represents dimensional quantities, l∗ is the
period of a post pattern and φ is the liquid–gas area fraction. Although this work
established a framework for analysing velocity and temperature slip effects on CCM, the
expressions for λ∗ rely on three assumptions: (i) shear flow in the liquid above the surface;
(ii) a flat gas–liquid interface; (iii) perfect slip on the gas–liquid interface. Assumption (iii)
is satisfied when h∗

s μ
∗
l /μ

∗
g � l∗ (Belyaev & Vinogradova 2010; Asmolov & Vinogradova

2012), where h∗
s , μ∗

l and μ∗
g denote microstructure height, liquid viscosity and gas
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viscosity, respectively. However, assumptions (i) and (ii) may not apply to CCM due to
the features of Poiseuille flow and deformation of the meniscus, leading to a complicated
effective slip. The assumption of a constant ratio λ∗t /λ∗ is valid for large aspect ratios
Λ ≡ h∗/ l∗ (Enright et al. 2014), where h∗ is the liquid film thickness. Furthermore, the
slip lengths are governed by the geometrical patterns of the microstructure, which should
be evaluated and compared.

In the literature on slip, since the early works by Philip (1972a,b), it has been shown
that the velocity slip length λ∗ is influenced by confinement effects (Lauga & Stone 2003;
Sbragaglia & Prosperetti 2007; Teo & Khoo 2008; Feuillebois, Bazant & Vinogradova
2009; Schnitzer & Yariv 2017; Landel et al. 2020). The asymptotic limit of slip length for
flow past transverse slip regions inside a tube (radius R∗) has been determined (Lauga &
Stone 2003), specifically λ∗⊥/ l∗ ∼ ln(sec(φπ/2))/(2π) when l∗/R∗ � 1, while λ∗⊥/R∗ ∼
φ/(4 − 4φ) when l∗/R∗ � 1; this result indicates that the velocity slip length can depend
on the tube radius R∗ instead of the pattern period l∗. Sbragaglia & Prosperetti (2007)
numerically obtained for longitudinal grooves a variation of velocity slip length λ‖ =
λ∗‖/ l∗ for various aspect ratios Λ = h∗/ l∗, where longitudinal means grooves oriented
parallel to the flow, demonstrating that λ‖ remains constant when Λ� 10, but shows
a scaling law λ‖ ∼ Λ when Λ < 10. Similar confinement effects on the effective slip
length can be found for either longitudinal or transverse grooves with symmetrical or
asymmetrical boundary conditions (Teo & Khoo 2008; Schnitzer & Yariv 2017) or on
interfacial velocity at the liquid–gas interface (Landel et al. 2020). An interesting fact
related to confinement effects is that longitudinal grooves provide the largest slip lengths
while transverse grooves yield the smallest ones in the limit of Λ � 1 (Feuillebois et al.
2009). This contrasts with predictions for Λ � 1, where arrays of posts have a larger slip
length than grooves. Given the special feature of CCM that film thickness h∗ (also the
channel height) is variable and sensitive to conditions, we can consider the examples from
Kozak (2022), where l∗ ∼ 50 µm and h∗ ∼ 50 µm (φ = 0.99), as well as l∗ ∼ 16 µm and
h∗ ∼ 80 µm (φ = 0.84). In this case, confinement effects may be non-negligible due to
1 �Λ� 5.

At the same time, another issue arises concerning the curved gas–liquid interface due to
the wide variation of pressure exerted on the liquid film in CCM. It has been demonstrated
that meniscus protrusion into cavities will either increase or decrease the slip length λ∗
depending on the aspect ratio Λ (Sbragaglia & Prosperetti 2007; Teo & Khoo 2010;
Crowdy 2016; Game et al. 2017; Kirk, Hodes & Papageorgiou 2017). When Λ � 1, both
slip lengths λ∗⊥ and λ∗‖ decrease along with a larger meniscus angle θ that protrudes into
grooves (Teo & Khoo 2010). However, for Λ � 1, the slip length λ∗ can be increased by
a meniscus for symmetrical boundaries (Sbragaglia & Prosperetti 2007; Kirk et al. 2017).
Besides the velocity slip length λ∗, confinement and meniscus effects also play an impor-
tant role in the temperature slip length λ∗t (Enright et al. 2014; Kirk et al. 2017; Hodes et al.
2023; Tomlinson et al. 2024). The primary conclusions drawn are that the confinement
effect results in a larger temperature slip length, while meniscus influences tend to reduce
it. However, for CCM studies, the latter has not been considered (Kozak 2022).

1.1. Scope and structure of this work
Since constant-pressure and gravity-driven CCM are characterised by constant and
growing liquid film thicknesses, respectively, as well as also corresponding to two different
application scenarios, melt drilling and thermal energy storage, respectively, we focus on
parallel-groove textured surfaces as a promising candidate for both modes of CCM, owing
to the theoretical limit of a significant slip length for a given gas–liquid contact ratio
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Interface Slip length h∗/ l∗ � 1 h∗/ l∗ � 1

Flat (θ = 0) λ∗‖
l∗
π

ln(sec( φπ
2 ))

φ
1−φ

h∗

Flat (θ = 0) λ∗⊥
l∗
2π

ln(sec( φπ
2 ))

φ
4(1−φ)

h∗

Curved or flat λ∗t l∗
π

ln(sec( φπ
2 ))

φ
1−φ

h∗

Curved (θ > 0) λ∗‖
l∗
π

ln(sec( φπ
2 )) − εφ3l∗F(φ)

φ
1−φ

h∗ + ε
8φ3

3(1−φ)2 l∗

Interface Slip length h∗/ l∗ � 0.2

Curved (θ > 0) λ∗‖
l∗
π

ln(sec( φπ
2 )) + l∗ε(−φ3F(φ) + 4l∗

h∗ φ4G(φ))(1 + l∗
4h∗π

ln(sec( φπ
2 )))2

Table 1. Dimensional asymptotic formula of velocity (λ∗‖ or λ∗⊥) and thermal (λ∗t ) slip lengths for various
confinement and meniscus effects.

(Feuillebois et al. 2009). Furthermore, by incorporating double re-entrant structures, these
surfaces can readily maintain the Cassie state for a wide range of liquids (Liu & Kim 2014;
Wilke et al. 2022). In § 2, we introduce the theoretical framework for CCM, considering
the influences of the velocity slip length λ and the temperature slip length λt (noting that
quantities without a ∗ are dimensionless), where the subscript ‖ represents longitudinal
grooves; also, f and c denote flat interfaces and curved interfaces (menisci), respectively.
Specifically, dimensional analysis of the problem is presented in § 2.1, followed by the
derivation of the effective thermal slip length λt, f and λt,c, corresponding to a flat
gas–liquid interface (§ 2.2.1) and a curved surface (§ 2.2.2), respectively. The effective
velocity slip lengths λ‖, f and λ‖,c are derived for flat (§ 2.3.1) and the curved (§ 2.3.2)
liquid–gas interface, respectively. Slip lengths for all cases are solved by the standard dual-
series method, whose details are introduced in the appendices. Based on the obtained
effective slip lengths, a generalised one-dimensional description is developed for both
constant-pressure and gravity-driven CCM in § 2.4.

In § 3.1, we discuss the influences of the dimensionless film height Λ on the slip lengths
for the flat (§ 3.1.1) and curved (§ 3.1.2) gas–liquid interfaces. Asymptotic solutions of λ
and λt for Λ � 1 and Λ � 1 are summarised in table 1. In addition, a modified asymptotic
solution for λ‖,c is proposed for a wide range of Λ� 0.2. We then discuss the slip effects
on constant-pressure CCM in § 3.2, revealing the critical conditions of Λ and φ to achieve
a faster melting rate. On the other hand, we analyse gravity-driven CCM in § 3.3, under
limiting conditions derived from the dimensionless periodic length l, and construct a l-φ
phase diagram to illustrate the influences of slip.

2. Physical model and theoretical framework
A typical CCM process on a microtextured hydrophobic surface is sketched in figure 1(a).
Here and in the following, the notation ∗ represents a dimensional quantity. A cuboid-
shaped solid phase change material (PCM) with length L∗, width W ∗ and initial height H∗

0
is heated from below by a textured (microgrooved) surface maintained at wall temperature
T ∗

w and characterised by a periodic length l∗. The solid PCM, initially at its melting
point T ∗

m < T ∗
w, will continuously melt from the bottom under a certain pressure, which

could be either a specific constant value P∗ or the self-weight pressure of the PCM,
ρ∗

s g∗(H∗ − h∗), depending on the mode of CCM. Given the microgrooved structure
(periodic length l∗ and gas fraction φ), the mixed interface, composed of solid–liquid and
gas–liquid contacts, when approximated with a one-dimensional description, introduces
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Figure 1. (a) Close-contact melting of a cuboid-shaped unmelted solid with initial height H∗
0 , length L∗

and width W ∗ pressed downwards by constant pressure P∗ or self-weight ρ∗
s g∗(H∗ − h∗) on a heated

microgrooved hydrophobic surface with characteristic periodic length l∗, where h∗ is the liquid film thickness;
quantities with ∗ are dimensional. Schematic diagrams of boundary conditions for (b) two-dimensional
descriptions, or (c) a one-dimensional description, for the temperature distribution and temperature slip length
λt ; similarly, (d)–(e) characterise the velocity boundary conditions and velocity slip length λ on the longitudinal
grooves. It is noted that length is scaled by l∗ for convenience. (f ) The dimensionless schematic diagram
(L∗ � W ∗) by scaling as X = x∗/L∗, Y = y∗/h∗

0 and T = (T ∗ − T ∗
m)/(T ∗

w − T ∗
m), showing the remaining solid

height H and film thickness h is influenced by the effective velocity slip length λ and temperature slip length λt .

effective coefficients of temperature slip λ∗t and velocity slip λ∗, which are described below
and significantly affect the fluid flow and heat transfer in the CCM process.

2.1. Scaling analysis and non-dimensionalization
Typically, a thin melted film of liquid separates the substrate from the solid PCM.
Hence, a lubrication-style analysis is suggested. The relevant physical parameters are
the gravitational acceleration g∗, viscosity μ∗, solid density ρ∗

s , liquid density ρ∗
l , liquid

specific heat capacity c∗
p,l , thermal conductivity of liquid k∗

l and latent heat of fusion H∗.
By scaling pressure and stresses with p∗

c = ρ∗
s g∗(H∗

0 − h∗
0) for the gravity-driven mode

or p∗
c = P∗ for the constant-pressure mode, velocity with u∗

c = h∗
0

2 p∗
c /(μ∗L∗), time with

t∗c = L∗/u∗
c and temperature with T ∗

w − T ∗
m , we can define dimensionless variables as

t = t∗

t∗c
, X = x∗

L∗ , Y = y∗

h∗
0
, Z = z∗

l∗
, u = u∗

u∗
c
, v = v∗L∗

u∗
c h∗

0
, w = w∗L∗

u∗
cl∗

,

P = P∗

p∗
c
, T = T ∗ − T ∗

m

T ∗
w − T ∗

m
, h = h∗

h∗
0
, H = H∗

H∗
0

, Δ = H∗ − h∗

H∗
0 − h∗

0
,

𝒽= h∗
0

L∗ , A = H∗
0

L∗ , 𝓁= l∗

L∗ , l = l∗

h∗
0
, Λ = h∗

l∗
= h

l
,

(2.1)
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where h∗
0 is the initial film thickness identified below as (2.51) in § 2.4. The aspect ratio

Λ is a key parameter related to the confinement effect in the following discussion. Hence,
the dimensionless variables are denoted as the velocity vector V ≡ ueX + veY + weZ ,
temperature T , pressure P , spatial gradient operator ∇ ≡ eX∂X + eY ∂Y + eZ∂Z and ∂t
is the time derivative. The Reynolds number Re, Péclet number Pe, Prandtl number Pr,
Eckert number Ec, Stefan number St, density ratio ρ and hydrostatic pressure ratio ph are,
respectively, defined as

Re ≡ ρ∗
l L∗u∗

c

μ∗ , Pe ≡ u∗
c L∗ρ∗

l c∗
p,l

k∗
l

, Pr ≡ μ∗c∗
p,l

k∗
l

, (2.2a)

Ec ≡ u∗
c

2

c∗
p,l

(
T ∗

w − T ∗
m

) , St ≡ c∗
p,l

(
T ∗

w − T ∗
m

)
H∗ , ρ ≡ ρ∗

s

ρ∗
l
, ph = ρ∗

l g∗h∗
0

p∗
c

. (2.2b)

In this case, the equations of continuity, momentum (in the X , Y -and Z directions), and
energy, including the dissipation of mechanical to thermal energy in the bulk liquid and
an energy balance at the melting front, are, respectively,

∇ · V = 0, (2.3a)

Re𝒽2∂t u + Re𝒽2(V · ∇)u = −∂X P +𝒽2∂2
X u + ∂2

Y u + l−2∂2
Z u, (2.3b)

Re𝒽4∂tv + Re𝒽4(V · ∇)v = −∂Y P +𝒽4∂2
Xv +𝒽2∂2

Y v + l−2𝒽2∂2
Zv + ph, (2.3c)

Re𝒽2𝓁2∂tw + Re𝒽2𝓁2(V · ∇)w = −∂Z P +𝒽2𝓁2∂2
Xw + 𝓁2∂2

Y w +𝒽2∂2
Zw,

(2.3d)

Pe𝒽2∂t T + Pe𝒽2(V · ∇)T =𝒽2∂2
X T + ∂2

Y T + l−2∂2
Z T + PrEc

[
(𝒽∂X u)2 + (∂Y u)2

+
(

l−1∂Z u
)2 +

(
𝒽2∂Xv

)2 + (𝒽∂Y v)2 +
(

l−1𝒽∂Zv
)2

+ (𝒽𝓁∂Xw)2 + (𝓁∂Y w)2 + (𝒽∂Zw)2
]
, (2.3e)

St
𝒽(A −𝒽)Peρ

∂Y T (X, h) = ∂tΔ, (2.3f )

where Δ is the remaining height of the solid to be melted and ∂tΔ represents the
melting rate.

In accordance with previous experimental and theoretical results (Moallemi, Webb &
Viskanta 1986; Hu & Fan 2023), the following well-validated assumptions are adopted: (i)
the lubrication approximation is valid due to 𝒽2 � 1; (ii) the flow is quasisteady, ∂/∂t = 0,
as a consequence of a low effective Reynolds number, Re𝒽2 � 1; (iii) thermophysical
properties are constant; (iv) the solid–liquid interface is flat, i.e. h = h(t); (v) the
hydrostatic pressure in the liquid film is neglected (ph � 1); (vi) heat convection is
negligible Pe𝒽2 � 1 when St � 0.1 for CCM (Hu & Fan 2023; Ezra & Kozak 2024); (vii)
viscous dissipation is negligible due to PrEc � 1 for most PCMs and thermal conditions;
(viii) the initial temperature of the PCM solid remains Tm ; (ix) the heat flux across the gas–
liquid interface is negligible due to the much low thermal conductivity of the gas compared
with the liquid. Additionally, we consider (x) the initial geometrical conditions 𝓁2 � 1 and
𝒽� A. Consequently, with l = l∗/h∗

0 providing the corresponding transverse dimensions
of the liquid flow channel, the governing equations can be simplified considerably to
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∂X u + ∂Y v = 0, (2.4a)

0 = −∂X P + ∂2
Y u + l−2∂2

Z u, (2.4b)

0 = ∂Y P, (2.4c)

0 = ∂Z P, (2.4d)

0 = ∂2
Y T + l−2∂2

Z T, (2.4e)

∂Y T (X, h) = d


dτ
, (2.4f )

where τ ≡ tSt/[ρPe𝒽(A −𝒽)] is a rescaled time, which recognises that a balance of heat
conduction and the heat of fusion control the dynamics. Additionally, the force balance on
the remaining solid is satisfied as ∫ 1/2

−1/2
PdX = Δ𝒸, (2.5)

where 𝒸= 0 represents the constant-pressure CCM mode and 𝒸= 1 represents a gravity-
driven configuration. Then, the boundary conditions for the velocity and temperature fields
within a single periodic unit cell are given as

u(Y = h) = 0, ∂Y u(Z = ±1/2) = 0, n · ∇u(Y = 0, |Z | < φ/2) = 0, u(Y = 0,

|Z | > φ/2) = 0, (2.6a)

v(Y = 0) = 0, v(Y = h) = ρ A𝒽−1∂t H − ∂t h, (2.6b)
T (Y = h) = 0, ∂Y T (Z = ±1/2) = 0, n · ∇T (Y = 0, |Z | < φ/2) = 0, T (Y = 0,

|Z | > φ/2) = 1. (2.6c)
The goal of the subsequent parts of § 2 is to determine the flow and temperature fields
so as to find how the PCM height changes with time, i.e. Δ(τ) or H(τ ). A significant
computational difficulty is to do this calculation for different groove configurations, i.e.
gas–liquid fractions φ and dimensionless periodic lengths l and liquid film thicknesses Λ.
The specific results are given in § 3.

2.2. Average heat flux and effective thermal slip length
In this section, a dual-series approach similar to previous work (Lauga & Stone 2003;
Sbragaglia & Prosperetti 2007; Kirk et al. 2017) was adopted to give exact solutions for an
effective thermal slip length λ∗t in the two-dimensional configuration. For convenience and
consistency with previous work, the characteristic length l∗ of the periodic topography of
the substrate is used for the length scale throughout this section, leading to dimensionless
coordinates (x, y, z) ≡ (x∗, y∗, z∗)/ l∗ and channel height Λ ≡ h∗/ l∗. Consequently, the
schematic diagram of the configuration is depicted in figure 1(b). The dimensionless
variables X and Y introduced in the previous subsection will return when we obtain a
one-dimensional model of the problem in § 2.4.

In addition to the temperature distribution, our primary interest lies in the average
heat flux

〈
q ′′〉≡ ∫ 1/2

−1/2 −∂yT (Λ, z)dz through the upper boundary of the liquid film,
as this parameter determines the melting rate as indicated by (2.4f ). Consequently, the
introduction of an effective thermal slip length λt ≡ λ∗t / l∗ can reduce the two-dimensional
problem T (y, z) in the y − z plane to a one-dimensional problem T̄ (y) in the y direction,
as illustrated in the schematic of the thermal transport in figure 1(b). In the following, λt, f
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and λt,c represent, respectively, the thermal slip lengths of a flat and curved gas–liquid
interface.

2.2.1. On the flat interface, λt, f
Based on (2.4e), the dimensionless form of the energy equation is rewritten as

∂yyT + ∂zzT = 0. (2.7)

As depicted in figure 1(b), the boundary conditions are

T (Λ, z) = 0, (2.8a){
T (0, z) = 1, φ/2 < |z|� 1/2
∂yT (0, z) = 0, |z|� φ/2

(2.8b)

∂zT (y, −1/2) = ∂zT (y, 1/2) = 0, (2.8c)
we assume that the heat flux vanishes at the gas–liquid boundary owing to the smallness
of the ratio of the gas and liquid thermal conductivities. We can observe that the boundary
conditions for this two-dimensional problem introduce the fraction of the boundary that
involves the gas–liquid fraction φ. Due to the linearity of the boundary-value problem, the
temperature T can be divided into two components Tb and Ts , namely T (y, z) = Tb(y) +
Ts(y, z), where Tb(y) = 1 − y/Λ satisfies the boundary conditions on temperature in the y
direction, and Ts(y, z) = T̃ (y, z)/Λ accounts for the influence of the hydrophobic surface.
Hence, T̃ also satisfies the Laplace equation as

∂yy T̃ + ∂zz T̃ = 0. (2.9)

The boundary conditions for T̃ are

T̃ (Λ, z) = 0, (2.10){
T̃ (0, z) = 0, φ/2 < |z|� 1/2;
−1 + ∂y T̃ (0, z) = 0, |z|� φ/2.

(2.11)

The general solution T̃ , accounting for condition (2.8c), is

T̃ (y, z) = c0
y

Λ
+ d0 +

∞∑
n=1

[
cn cosh (2πny) + dn sinh (2πny)

]
cos (2πnz) , (2.12)

where cn and dn for n ∈ [0, ∞) are constants to be determined for given φ and Λ.
Following the standard procedure of a dual-series method to numerically solve (2.12) as
detailed in Appendix A, cn and dn for n ∈ [0, N − 1] can be obtained with a numerical
truncation for large enough N . The choice of N should be chosen to ensure convergence
of the numerical results (Teo & Khoo 2008). Here, we adopt N = 500 as there is no
significant deviation with N = 1000, which is also consistent with Landel et al. (2020).
Therefore, the average heat flux

〈
q ′′〉 can be calculated by substituting c0 as

〈
q ′′〉= −

∫ 1/2

−1/2
∂yT (Λ, z)dz = 1

Λ
− c0

Λ2 . (2.13)

The definition of an effective thermal slip length λt representative of the composite flat
liquid–gas surface and solid–liquid surface (Enright et al. 2014) is

λt ≡ Tb(y = 0) − 〈T (y = 0)〉〈
∂yT (y = 0)

〉 =
1 − ∫ 1/2

−1/2

(
1 + T̃ (y = 0)/Λ

)
dz∫ 1/2

−1/2 ∂yT (0, z)dz
. (2.14)

1010 A46-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

38
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.385


Journal of Fluid Mechanics

With the results of 1 − ∫ 1/2
−1/2(1 + T̃ (y = 0)/Λ)dz = c0/Λ due to c0 = −d0 from

Appendix A and
∫ 1/2
−1/2 ∂yT (0, z)dz = 〈q ′′〉, we find the effective thermal slip length λt, f

for a flat, composite gas–liquid interface:

λt, f = Λc0

Λ − c0
. (2.15)

2.2.2. On the curved interface, λt,c
We next consider how the deformation of the gas–liquid interface affects the thermal slip
length. A curved liquid–air interface is formed by the pressure difference between liquid
P∗

l and gas P∗
g , and described approximately by the radius of curvature R∗ = σ ∗/(P∗

l −
P∗

g ), where σ ∗ is the surface tension. Hence, the shape of the meniscus can be described
by the geometric relationship

y =
√

R2 − φ2/4 −
√

R2 − z2, (2.16)

where R = R∗/ l∗. For R � φ/2, this expression simplifies to

y = 1
8R

(
4z2 − φ2

)
+ O

(
1

R3

)
= −εη(z) for |z|� φ/2, (2.17)

after defining ε = 1/(8R), which will be assumed � 1, and η(z) = φ2 − 4z2. It should
be noted that the protrusion angle θ satisfies R sin θ = φ/2, which leads to a maximum
ε = sin θ/4φ = 0.217 for φ = 0.2 and θ = 10◦. Again, neglecting the influence of the
conductivity of the gas phase, then we have the condition of no heat flux across the
meniscus, and the temperature field should satisfy

n · ∇T = 0 at y = −εη(z), (2.18)

which is equivalent to

∂yT (−εη, z) + εη′∂zT (−εη, z) = 0, (2.19)

where η′ ≡ dη/dz = −8z. Since ε � 1, T (−εη, z) can be obtained from T (0, z) by Taylor
expansion as T (−εη, z) = T (0, z) − εη∂yT (0, z) + O(ε2), leading to

∂yT (−εη, z) = ∂yT (0, z) − εη∂yyT (0, z) + O(ε2),

∂zT (−εη, z) = ∂zT (0, z) + O(ε).
(2.20)

Then, substitution of (2.20) into (2.19) yields

∂yT (0, z) − εη∂yyT (0, z) + εη′∂zT (0, z) + O(ε2) = 0. (2.21)

Hence, the boundary conditions are

T (Λ, z) = 0{
T (0, z) = 0, φ/2 < |z|� 1/2;
∂yT (0, z) − εη∂yyT (0, z) + εη′∂zT (0, z) = 0, |z|� φ/2.

(2.22)

After a perturbation analysis by substituting T = T (0) + εT (1) + O(ε2) (details provided
in Appendix B), we find that the presence of a curved gas–liquid interface has no influence
on the average heat flux and thermal slip length, which means

λt, f = λt,c ≡ λt . (2.23)

We have now completed the necessary aspects of the thermal problem inside the thin film
to estimate the time variations of the PCM, which will be described in § 2.4.
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2.3. Flow rate – pressure gradient relationship and velocity slip length
We now consider the flow in the thin film since we need the pressure distribution to
complete the force balance on the PCM. Based on (2.4b)–(2.4d), the main liquid flow is
along the x direction as indicated in figure 1(d). Similar to § 2.2, in addition to obtaining
the velocity field u, we also focus on the variation of the flow rate-pressure gradient
relationship Q − ∂x P due to the presence of trapped gas, which will influence the pressure
distribution within the liquid film and the liquid film thickness during the CCM process.
By introducing the velocity slip length λ≡ λ∗/ l∗ to enable an equivalent flow rate Q̄ = Q
as demonstrated in figure 1(e), these steps allow a dimensional reduction from u(y, z) to
ū(y). In the following, λ‖, f and λ‖,c represent the velocity slip lengths by flat and curved
gas–liquid interfaces, respectively, while the main liquid flow is parallel to the orientation
of the grooves.

2.3.1. Velocity slip length on the flat interface, λ‖, f
With the definition of variables introduced in the previous section, the dimensionless form
of the momentum equation is

∂yyu + ∂zzu = ∂x P, (2.24)

where u = u∗μ∗L∗/(l∗2 p∗
c ). Due to linearity, the velocity u(y, z) can be divided into two

components ub(y) and us(y, z), where ub(y) = −∂x P(Λy − y2)/2 accounts for the flow
without slip and us(y, z) = −∂x PΛũ/2 accounts for slip along the hydrophobic surface.
Hence, substituting u(y, z) = −∂x P(Λy − y2 + Λũ(y, z))/2 leads to a boundary-value
problem

∂yyũ + ∂zz ũ = 0, (2.25)

with corresponding homogeneous boundary conditions

ũ(Λ, z) = 0, (2.26){
ũ(0, z) = 0, φ/2 < |z|� 1/2;
1 + ∂yũ(0, z) = 0, |z|� φ/2.

(2.27)

This problem is effectively identical to the thermal problem in § 2.2.1. The general solution
of ũ(y, z) with periodic boundary conditions at z = ±1/2 is

ũ(y, z) = r0 + q0
y

Λ
+

∞∑
n=1

[
rn cosh (2πny) + qn sinh (2πny)

]
cos (2πnz) , (2.28)

where constants rn and qn (n ∈ [0, N − 1]), dependent on φ and Λ, also can be numerically
determined similar to the dual-series approach in Appendix C. Consequently, the increased
flow rate Qd due to the presence of slip can be obtained via

Qd =
∫ Λ

0

∫ 1/2

−1/2
usdzdy =

∫ Λ

0

∫ 1/2

−1/2
−dP

dx

Λũ

2
dzdy = −dP

dx

Λ2r0

4
. (2.29)

On the other hand, for a model pressure-driven channel flow with one boundary of slip
length λ, the increased flow rate Qd can be written as

Qd = −dP

dx

Λ3λ

4Λ + 4λ
. (2.30)
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Comparing the last two expressions, the effective velocity slip length λ‖, f on the
longitudinal grooves for a flat liquid–gas interface is

λ‖, f = Λr0

Λ − r0
. (2.31)

A reader should notice that the detailed boundary value problems for the thermal and
velocity fields, and corresponding dual integral equations solutions, show that the two
problems are identical, rn = −cn and r0 = c0. Thus, λ‖, f = λt, f as evident from (2.31)
and (2.15).

2.3.2. Velocity slip length on the curved interface, λ‖,c
To account for a curved gas–liquid interface, we consider the configuration similar to
§ 2.2.2. In order to satisfy the condition of zero shear stress at the steady-state gas–liquid
interface, the velocity should satisfy

n · ∇u = 0 at y = −εη, (2.32)

which is equivalent to

εη′∂zu(−εη, z) + ∂yu(−εη, z) = 0. (2.33)

Since ε � 1, u(−εη, z) can be obtained from u(y, z) by Taylor expansion as u(−εη, z) =
u(0, z) − εη∂yu(0, z) + O(ε2) as

∂yu(−εη, z) = ∂yu(0, z) − εη∂yyu(0, z) + O(ε2), (2.34a)
∂zu(−εη, z) = ∂zu(0, z) + O(ε). (2.34b)

Then, substitution of (2.34a) and (2.34b) into (2.33) yields

∂yu(0, z) − εη∂yyu(0, z) + εη′∂zu(0, z) + O(ε2) = 0. (2.35)

Hence, the boundary conditions are

u = 0 at y = Λ{
u = 0, φ/2 < |z|� 1/2
∂yu − ε

(
η∂yyu + η′∂zu

)= 0, |z|� φ/2,
at y = 0 .

(2.36)

After substituting the perturbation expansion for the velocity field, u = u(0) + εu(1) +
O(ε2), we solve for the first-order velocity ũ(1) (see Appendix D) as

ũ(1) = r (1)
0 + q(1)

0
y

Λ
+

∞∑
n=1

[
r (1)

n cosh (2πny) + q(1)
n sinh (2πny)

]
cos (2πnz); (2.37)

the coefficients r (0)
0 , r (0)

n , r (1)
0 , and r (1)

n can be obtained numerically. Consequently, the
total flow rate Q can be calculated as

Q =
∫ 1/2

−1/2

∫ Λ

0
u(0)dy dz + ε

(∫ 1/2

−1/2

∫ Λ

0
u(1)dy dz +

∫ φ/2

−φ/2
u(0)(0, z)η dz

)
+ O(ε2)

= Q(0) + εQ(1) + O(ε2),
(2.38)
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where

Q(0) = −d P

dx

[
Λ3

12
+ Λ2r (0)

0
4

]
, (2.39a)

Q(1) = −d P

dx

[
Λ2r (1)

0
4

+ φ3Λ

3
r (0)

0 + Λ

∞∑
n=1

r (0)
n

sin(nπφ) − nπφ cos(nπφ)

n3π3

]
. (2.39b)

Based on Q = −∂x PΛ3/12 + Qd = −∂x PΛ3/12 − ∂x PΛ3λ/(4Λ + 4λ), the slip length
λ‖,c along the curved interface is

λ‖,c = λ(0)
‖ + ελ

(1)
‖ = r (0)

0 Λ

Λ − r (0)
0

+ ε
4
(
Λ + λ(0)

‖
)2

Λ4
Q(1)

−∂X P
= r (0)

0 Λ

Λ − r (0)
0

+ ε
4
(
Λ + λ(0)

‖
)2

Λ4

[
Λ2r (1)

0
4

+ φ3Λ

3
r (0)

0 + Λ

∞∑
n=1

r (0)
n

sin(nπφ) − nπφ cos(nπφ)

n3π3

]
.

(2.40)

2.4. A one-dimensional description of CCM with slip
The velocity slip length λ≡ λ∗/ l∗ and temperature slip length λt ≡ λ∗t / l∗, describing
average effects from the mixed boundary conditions of the two-dimensional problem,
enable us to simplify the CCM problem into an effective one-dimensional problem
describing flow and heat exchange along the direction of liquid flow, shown in the
schematic diagram in figure 1(f ), where the notation (̄) implies that the variables are
averaged in the z direction. The corresponding governing equations (2.4a), (2.4b), (2.4e)
and (2.4f ) can be replaced, respectively, by

∂X ū + ∂Y v̄ = 0, (2.41a)

0 = −∂X P̄ + ∂2
Y ū, (2.41b)

0 = ∂2
Y T̄ , (2.41c)

∂Y T̄ (X, h) = d


dτ
. (2.41d)

Hence, the corresponding boundary conditions in figure 1(f ) are

ū(X, 0) = lλ∂Y ū(X, 0), ū(X, h) = 0, (2.42a)

1 − T̄ (X, 0) = −lλt∂Y T̄ (X, 0), T̄ (X, h) = 0, (2.42b)

v̄(X, 0) = 0, v̄(X, h) =
[
(A −𝒽)

ρ

𝒽
d


dτ
+ (ρ − 1)

dh

dτ

]
St

ρPe𝒽 (A −𝒽)
, (2.42c)

∂X P̄(0, Y ) = 0, P̄(1/2, Y ) = 0. (2.42d)

It is worth noting that the upper velocity boundary v̄(X, h) is derived from v̄∗(x∗, h∗) =
ρ∂t∗ H∗ − ∂t∗h∗ based on mass conservation at the melting front.

The velocity profile ū(X, Y ) can be obtained by integrating (2.41b) twice with respect
to Y and applying boundary conditions (2.42a), yielding

ū = h2

2
∂ P̄

∂ X

(
Y 2

h2 − Y/ l + λ
Λ + λ

)
, (2.43)
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where h/ l = Λ. Then, substituting (2.43) into the continuity equation (2.41a) and
integrating along y from 0 to h leads to

h2

2
∂2 P̄

∂ X2

∫ h

0

(
Y 2

h2 − Y/ l + λ
Λ + λ

)
dY +

∫ h

0

∂v

∂Y
dY︸ ︷︷ ︸

v̄|Y=h−v̄|Y=0

= 0. (2.44)

Noting that v̄(X, h) ≈ St∂τΔ/(Pe𝒽2) due to the typical property ρ − 1 < O(10−1), then
substituting (2.42c) into (2.44) leads to

∂2 P̄

∂ X2 = d


dτ

St
Pe𝒽2

6
h3

Λ + λ
Λ + 4λ

. (2.45)

The pressure distribution can be obtained by integrating (2.45) twice with respect to x ,
and using conditions (2.42d), to obtain

P̄ = d


dτ

St
Pe𝒽2

12
h3

Λ + λ
Λ + 4λ

(
X2 − 1

4

)
. (2.46)

Then, we can substitute (2.46) into the force balance (2.5) to obtain a relationship between
Δ and h:

d


dτ
= −Pe𝒽2

St
h3 Λ + 4λ

Λ + λ Δ𝒸. (2.47)

The temperature profile can be obtained by substituting (2.42b) into (2.41c), yielding

T̄ = Λ − Y/ l

Λ + λt
. (2.48)

Substitution of (2.48) into (2.41d) gives
d


dτ
= − 1

l(Λ + λt )
. (2.49)

The combination of (2.47) and (2.49) leads to

h4 Λ + 4λ
Λ + λ

(
1 + λt

Λ

)
= St

Pe𝒽2
1

Δ𝒸 . (2.50)

Equations (2.49) and (2.50) are coupled expressions between the solid height Δ(τ) that
remains and the film thickness h. Note that because of the definition Λ = h/ l where l is
fixed, h varies with τ .

Recalling 𝒽= h∗
0/L∗ and h = h∗/h∗

0 in (2.1) indicates that h∗
0 has not been specified.

Usually, the initial height satisfies H∗
0 � h∗ (i.e. Δ ≈ H ) and we can further find a

characteristic initial film thickness h∗
0 that satisfies the St/Pe𝒽2 = 1, corresponding to the

initial solid height H = 1 and no-slip surface λ= λt = 0. This enables us to define h∗
0 as

h∗
0 =

[
(T ∗

w − T ∗
m)k∗

l L∗2μ∗

H∗ρ∗
l p∗

c

] 1
4

, (2.51)

from which (2.50) and (2.49) are transformed into the equations (Λ = h/ l)

h4 Λ + 4λ
Λ + λ

(
1 + λt

Λ

)
= 1

H𝒸 , (2.52a)

dH

dτ
= − 1

l(Λ + λt )
. (2.52b)
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Based on (2.52a), we can conclude that a constant film thickness h is maintained for the
constant-pressure mode (𝒸= 0) though λ and λt are dependent on h. On the other hand,
for the gravity-driven mode (𝒸= 1) there is a coupling between h and H , making the
solutions of H(τ ) and h(τ ) complicated.

Furthermore, we introduce the Nusselt number, Nu, based on the instantaneous height
of the liquid film h∗(t∗), to demonstrate the heat transfer capability under different
conditions. Nu is defined as

Nu ≡ −k∗
l ∂y∗ T̄ ∗(0, h∗)(

T ∗
w − T ∗

m

) h∗

k∗
l

= 1
l(Λ + λt )

. (2.53)

At this stage, we have completed all of the analysis of the thin-film flow and heat transfer
necessary for modelling CCM processes, which may be enhanced using a corrugated
substrate. The main variables that dictate performance are the slip lengths λ and λt ,
geometric ratios l and Λ, the latter which changes in time, and the resulting Nu, which
determines the melting rate, i.e. the power density of the CCM.

3. Results and discussions
The goal of this section is to calculate the melting rate (i.e. Nu) or the instantaneous
solid height (i.e. H(τ )), which is a complicated function of geometric parameters (l) and
slip lengths (λ, λt ). It also depends on the operation controlled by hydrostatic pressure or
a constant applied pressure. The subsections that follow summarise the main results for
different cases.

3.1. Confinement and meniscus effects on the slip length

3.1.1. Velocity slip length λ and temperature slip length λt at a flat interface
The temperature λt (§ 2.2.1) and velocity λ‖, f slip lengths (§ 2.3.1) as a function of the
aspect ratio Λ = h∗(t∗)/ l∗ (see figure 1a), for a given gas–liquid fraction φ, are presented
as solid lines in figures 2(a) and 2(b), respectively. For comparison, we also calculate the
slip length λ⊥, f variation on a surface of transverse grooves in Appendix F, and present it
in figure 2(c). It can be observed that across a wide range of gas–liquid fractions φ, each
slip length of λt , λ‖, f and λ⊥, f maintains a specific fixed value for Λ � 1, and exhibits a
scaling law of ∼ Λ when Λ � 1.

Asymptotic solutions for these slip lengths are readily available. These solutions are also
provided in figure 2 where they are drawn as dashed lines for Λ � 1 and dot–dash lines for
Λ � 1. In the limit of Λ � 1, the asymptotic solutions of λ‖, f and λ⊥, f are well known
(Lauga & Stone 2003; Teo & Khoo 2008) as

λ‖, f = 1
π

ln
(

sec
(

φπ

2

))
, Λ � 1, (3.1a)

λ⊥, f = 1
2π

ln
(

sec
(

φπ

2

))
, Λ � 1. (3.1b)

In the limit of Λ � 1, we found the asymptotic solutions proposed by Teo & Khoo (2008)
are incorrect due to mistakes in calculating Qd . The velocity slip length λ f should be

λ‖, f = φ

1 − φ
Λ, Λ � 1, (3.2a)

λ⊥, f = φ

4 (1 − φ)
Λ, Λ � 1, (3.2b)
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Figure 2. Slip lengths as a function of Λ. (a) Temperature slip length λt , (b) velocity slip length λ‖, f on
longitudinal grooves and (c) λ⊥, f on transverse grooves versus the aspect ratio Λ = h∗/ l∗ when the liquid–
gas interface is flat. (d) Comparison of the ratio of the velocity to temperature slip lengths, λ, f /λt , between
longitudinal and transverse grooves. In figures (a)–(c) the solid lines are numerical results. Dashed lines and
dot–dash lines are asymptotic solutions.

which is consistent with the other related results (Lauga & Stone 2003; Landel et al. 2020).
Furthermore, asymptotic solutions for the temperature slip length are obtained as

λt = 1
π

ln
(

sec
(

φπ

2

))
, Λ � 1, (3.3a)

λt = φ

1 − φ
Λ, Λ � 1. (3.3b)

As already highlighted at the end of § 2.3.1, based on the results reported in figures 2(a)
and 2(b), it is observed that λ‖, f = λt , while λ⊥, f remains a constant value proportional
to them in both asymptotic ranges. As shown in figure 2(d), the ratio λ⊥, f /λt varies
between 0.25 and 0.5 depending on φ and Λ, consistent with λ‖, f = λt = 2λ⊥, f =
ln(sec(φπ/2))/π for Λ � 1, and λ‖, f = λt = 4λ⊥, f = φΛ/(1 − φ) for Λ � 1.

3.1.2. Velocity slip length λ‖,c at a curved gas–liquid interface
We next consider the velocity slip length λ‖,c at a curved gas–liquid interface as a function
of Λ and φ. The semilog and log–log results of the first-order slip length λ(1), computed as
described in § 2.3.2, are shown in figures 3(a) and 3(b), respectively. For different φ, λ(1)

exhibits two plateau intervals as Λ � 1 and Λ � 1, with a decreasing trend as Λ increases.
Notably, when Λ� 2, λ(1) becomes negative. This occurs because the increased area for
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Figure 3. Slip lengths at a curved interface. (a–b) Variation of the first-order velocity slip length λ(1) for
different Λ, where a dotted line denotes (3.4), a dashed line (3.9) and a dot–dash line (3.10). (c) Total velocity
slip length λ‖,c = λ(0) + ελ(1) versus Λ, with a dashed line denoting (3.12) and a dot–dash line (3.11). (d) The
ratio of the total velocity and temperature slip lengths, λ‖,c/λt , versus Λ.

flow caused by the meniscus is negligible, while there is a reduced velocity gradient at the
boundary y = 0 due to the meniscus.

The asymptotic solution of the first-order slip length λ(1), with O(Λ−1) error, has
already been proposed (Sbragaglia & Prosperetti 2007; Kirk et al. 2017),

λ
(1)
‖ = −φ3

∫ 1

0

[1 − cos (φπs)]
(
1 − s2)

cos (φπs) − cos (φπ)
ds + O(Λ−1), Λ � 1, (3.4)

which only accounts for the changed velocity profile and neglects effects of increased flow
rate associated with an expanded area, corresponding to the slip length

λ‖,c = ln(sec(φπ/2))/π − εφ3F(φ), Λ � 1; (3.5)

the function F(φ) is defined shortly. Based on (2.39b) in the limit of Λ � 1, we can give
the flow rate Q(1) as

Q(1) = −φ3Λ2l

4
F(φ) + πφ4Λl2G(φ), Λ � 1, (3.6)

where F(φ) and G(φ) are

F(φ) =
∫ 1

0

[1 − cos (φπs)]
(
1 − s2)

cos (φπs) − cos (φπ)
ds (3.7)
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and

G(φ) =
∫ 1

0

s
(
1 − s2/3

)
sin (φπs/2)√

cos (φπs) − cos (φπ)
ds. (3.8)

These two integral functions can be referred to in previous work (Sneddon 1966;
Sbragaglia & Prosperetti 2007). Hence, a modified asymptotic solution of λ(1)

‖ for Λ� 0.2
is proposed as

λ
(1)
‖ =

(
−φ3F(φ) + 4

Λ
φ4G(φ)

)(
1 + 1

4Λπ
ln
(

sec
(

φπ

2

)))2

, Λ� 0.2. (3.9)

In the limit of Λ � 1, an asymptotic solution can be derived by substituting λ(0)
‖ =

lφΛ/(1 − φ) and Q(1) = 2φ3Λ2l/3 into the second term of (2.40), leading to

λ
(1)
‖ = 8φ3

3 (1 − φ)2 , Λ � 1. (3.10)

As depicted in figures 3(a) and 3(b), the asymptotic solutions (3.4) and (3.10) for the
plateaus can accurately predict the first-order velocity slip length λ(1) for different φ.
However, their applicability is limited (Λ� 0.01 or Λ� 102 ), while the newly proposed
modified asymptotic solution (3.9) can accurately predict the first-order velocity slip for
Λ� 0.2.

Based on the velocity slip length of zeroth-order λ(0) and first-order λ(1), the slip
length for a curved liquid surface, λ‖,c, can be finally obtained according to the equation
λ‖,c = λ(0) + ελ(1), which is plotted for different φ as solid lines in figure 3(c). The
corresponding asymptotic solutions of λ‖,c are also drawn as dot–dash and dashed lines,
corresponding, respectively, to the equations

λ‖,c = φ

1 − φ
Λ + ε

8φ3

3 (1 − φ)2 , Λ� 0.01, (3.11)

λ‖,c = 1
π

ln
(

sec
(

φπ

2

))

+ ε

(
−φ3F(φ) + 4

Λ
φ4G(φ)

)(
1 + 1

4Λπ
ln
(

sec
(

φπ

2

)))2

, Λ� 0.2.

(3.12)

The presence of a meniscus leads to a constant value of λ‖,c when Λ � 1. Hence,
the results for λ‖,c/λt indicate potentially large values up to O(102) compared with
λ‖, f /λt = 1, when Λ � 1 for arbitrary φ, as plotted in figure 3(d). The results imply that
the existence of a meniscus may enhance CCM due to a significant effect of velocity slip
compared with thermal slip.

The asymptotic solutions obtained in this section (§ 3.1) are summarised in table 1
for convenient comparison. The effects of gas–liquid fraction φ, aspect ratio Λ and the
presence of a meniscus on the velocity slip length λ and temperature slip length λt can be
summarized as follows. (i) Increasing φ always leads to an increase in both λ and λt , as
the proportion of the gas–liquid interfaces φ that allows slip increases. (ii) In the absence
of deformation of the meniscus, when Λ � 1, the slip lengths become independent of
Λ because for such aspect ratios there is no change on the local velocity or temperature
distribution near the gas–liquid interface (figure 8g–i); under such conditions, a no-slip top
boundary is effectively equivalent to a free-shear or thermally insulating one. In contrast,
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Figure 4. Variation of Nu f along with (a) aspect ratio Λ by numerical results and (b) liquid–gas fraction φ by
asymptotic formula for flat gas–liquid interface. Here ‖ and ⊥ represent longitudinal and transverse grooves,
respectively.

when Λ � 1, the no-slip condition at the top boundary significantly affects the flow or
thermal field near the gas–liquid interface (figure 8a–f ), causing both λ and λt to decrease
and approach zero as Λ → 0. (iii) When deformation of the meniscus is included, the
temperature distribution is modified, but since the meniscus is assumed to be adiabatic, it
does not contribute to the net heat flux, and the effective temperature slip length λt remains
unchanged. (iv) However, for velocity slip, the meniscus provides an additional flow area,
and this contribution becomes more pronounced as Λ decreases. Consequently, λ does not
vanish as Λ → 0 but instead approaches a finite value that depends solely on φ.

3.2. Characterizing constant-pressure CCM
We now use the main results of § 3.1 to calculate the melting rate. Recalling (2.52a) with
𝒸= 0, we observe that a constant dimensionless liquid film thickness h = h∗/h∗

0 can be
determined due to a constant exerted pressure, yielding

h =
[

1 + λ/Λ
(1 + 4λ/Λ) (1 + λt/Λ)

] 1
4
. (3.13)

Substitution of (3.13) into the definition of Nu (2.53) leads to a prediction for the melting
rate

Nu =
[

1 + 4λ/Λ

(1 + λ/Λ) (1 + λt/Λ)3

] 1
4
. (3.14)

Note that Nu = 1 represents the heat transfer performance of a smooth, unstructured
surface (λ= λt = 0). Therefore, Nu > 1 indicates that the effects of velocity slip and
temperature slip enhance heat transfer. Conversely, Nu < 1 implies a reduction in heat
transfer.

3.2.1. Flat liquid–gas interface
Substituting the numerical results of λ‖, f and λ⊥, f , respectively, obtained from § 2.2.1
and Appendix F into (3.14) yields the results of Nu f versus Λ for a flat interface shown
in figure 4(a). For both longitudinal and transverse groove structures, the existence of slip
always reduces heat transfer. When Λ � 1, Nu f asymptotically equals 1 due to negligible
slip effect. For the case of Λ � 1, Nu f decreases and then asymptotically equals a constant
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Figure 5. Variation of (a) λ/Λ and (b) λt/Λ versus Λ, where solid lines represent numerical results and dot–
dash lines represent asymptotic solutions listed in table 1. (c) Variation of Nu versus Λ for curved gas–liquid
interface, dot–dash lines are asymptotic solutions (3.17). (d) Map of Nu at the various combinations of Λ, φ and
transverse/longitudinal surface structures for constant-pressure mode. Symbols denote , φ = 0.2 and Λ � 1;

, φ = 0.9 and Λ � 1; , φ = 0.2 and Λ � 1; , φ = 0.9 and Λ � 1.

value for either the longitudinal or transverse grooves. It is obvious that Nu‖, f > Nu⊥, f is
valid for any φ. Therefore, we can determine that Nu f varies only as a function of φ within
the asymptotic region (Λ � 1 as indicated in figure 2). By substituting the asymptotic
solutions from § 3.1.1, we find

Nu‖, f =
[
(1 + 3φ) (1 − φ)3

] 1
4
, Λ � 1; (3.15)

Nu⊥, f =
[

4 (1 − φ)3

4 − 3φ

] 1
4

, Λ � 1, (3.16)

which are plotted in figure 4(b). All curves generally show a decreasing trend of Nu as φ

increases. For Λ � 1, the parallel and perpendicular values of Nu start at 1 and decrease
with increasing liquid–gas fraction φ. For larger values of Λ = 0.2 and 1, the curves for
both Nu‖, f and Nu⊥, f exhibit more pronounced decreases and diverge more significantly
as φ approaches 1. The curves suggest that the parameter Λ significantly impacts Nu f ,
with higher values of Λ leading to more rapid decreases in Nu f .

3.2.2. A curved liquid–gas interface on longitudinal grooves
For a curved liquid–gas interface on longitudinal grooves, first we observe that λ‖,c/Λ
and λt/Λ can be considered as the functions of Λ as shown in figures 5(a) and 5(b),
respectively. Similarly, by substituting the numerical solutions for λ‖,c and λt into (3.14),
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we can obtain the numerical results of Nuc for considering a meniscus on longitudinal
grooves, as plotted in figure 5(c). Compared with the flat interface, Nuc is also close to 1
for Λ � 1. However, as Λ → 0, there exists a critical φ at which Nuc can be larger than 1
and heat transfer is enhanced. By substituting the asymptotic slip length solution (3.11) at
Λ � 1 into (3.14), we find

Nuc =
(

(1 − φ)3 (3Λ
(
1 + 2φ − 3φ2)+ 8φ2 sin θ

)
3Λ(1 − φ) + 2φ2 sin θ

) 1
4

Λ→0=
[
4(1 − φ)3

] 1
4
, (3.17)

which is plotted as dot–dash lines for different φ in figure 5(c). Then, by setting Nuc = 1,
we can obtain the critical fraction φcr = 1 − 2−2/3 ≈ 0.37. Therefore, we infer that when
φ > 0.37, heat transfer will be reduced regardless of the value of Λ. However, when φ <

0.37, heat transfer can be enhanced to accelerate melting, with Nuc approaching a constant
value of 41/4(1 − φ)3/4 as Λ decreases.

In order to visually compare the effects of surface structure, a meniscus, aspect ratio
(Λ) and gas–liquid ratio (φ) on Nu, a two-dimensional phase diagram is presented in
figure 5(d). In this diagram, the contours correspond to varying Nu, with white dashed
lines representing Nu isoclines and other lines indicating results derived from asymptotic
solutions. It can be observed that for a flat interface, Nu < 1 always remains for surfaces
with transverse groove structures, indicating a reduction in heat transfer effectiveness. In
contrast, surfaces with longitudinal grooves maintain Nu → 1 for small φ values, but Nu
decreases monotonically as φ increases. When a meniscus (curved interface) is introduced,
Nu > 1 can be achieved for longitudinal grooves initially at small φ and Λ < 1, while
Nu shows a non-monotonic trend versus φ. The enhancement of Nu at φ < 0.37 is more
pronounced as Λ decreases.

Overall, under the condition of constant pressure, longitudinal grooves (‖) exhibit the
best heat transfer performance among all surfaces. Furthermore, only with the presence of
a meniscus and significant confinement effects (Λ � 1), can one achieve an enhancement
in heat transfer at an appropriate gas–liquid fraction (φ < 0.37).

3.3. Gravity-driven CCM
In contrast with the constant pressure mode just discussed, when the PCM is supported
only by hydrostatic pressure, i.e. the gravity-driven mode (i.e. 𝒸= 1), the film thickness
h∗(t∗) changes in time due to the continuously decreasing size of the PCM solid.

3.3.1. Numerical results of solid height H(τ ) and film thickness h(τ )

Recalling (2.52a) and (2.52b) with 𝒸= 1, we can rewrite them by using h(τ ) = lΛ(τ)

from (2.1), yielding

Λ4 1 + 4λ/Λ
1 + λ/Λ

(
1 + λt

Λ

)
= 1

Hl4 , (3.18a)

dH

dτ
= − 1

l(Λ + λt )
. (3.18b)

This set of equations consists of a first-order ordinary differential equation and an algebraic
equation, which can be numerically solved as detailed in Appendix G. For comparison, the
analytical solution for a no-slip condition can be obtained by substituting λ= λt = 0 into
the above equations, yielding
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Figure 6. Variation of H and h versus τ for different conditions of (a) l = 103, (b) l = 102 and (c) l = 1. In all
figures, the black line represents the remaining height H , the blue line represents the film thickness h, the red
dotted line ( ) represents the magnitude of l, red dashed line ( ) and green dot–dash line( ) represent
the no-slip solution of H(τ ) (3.19a) and h(τ ) (3.19b), respectively. Four values of φ = {0.1, 0.2, 0.3, 0.5} are
chosen for calculating each case. Experimental data (black squares) are replotted (Moallemi et al. 1986) for
comparison with the case φ = 0.

Hno−sli p =
(

1 − 3
4
τ

) 4
3
, (3.19b)

hno−sli p =
(

1 − 3
4
τ

)− 1
3
. (3.19b)

We estimated that the magnitude of l ranges from 10−1 to 103, based on the representative
values of the following dimensionless parameters: St = 0.01 − 0.1 and A2 = 0.1 − 10,
while H∗

0 varies from 0.01 m to 1 m and l∗ varies from 10 µm to 1 mm, with
representative PCMs chosen as water and tetradecanol (Moallemi et al. 1986; Feuillebois
et al. 2009); by examining their thermophysical properties, liquid metals such as
gallium or caesium are inadequate due to Re𝒽2 � 1. It is worth noting that l =
l∗/h∗

0 = l∗[(T ∗
w − T ∗

m)k∗
l L∗2μ∗]−1/4(H∗ρ∗

l p∗
c )1/4 includes the information of the heating

condition, thermophysical properties of materials and sizes of grooves and the PCM solid,
which are convenient indicators. Hence, varying φ and l allows us to investigate the
influences of various materials and surface structures.

The representative results for l ∈ {103, 102, 100} are drawn in figure 6 from figures 6(a)
to 6(c), respectively. Since we have shown in § 3.2 that a flat interface (‖, f ) always
reduces the melting rate and similar results occur for the gravity-driven CCM here, only
results considering a meniscus (‖, c) are discussed in the following. For large l = 103 and
102, the results show that the melting rate dH/dτ decreases with increased φ (black line)
as illustrated in figures 6(a) and 6(b), though the film thickness h also decreases along
with larger φ (blue line). This indicates that the temperature slip is more pronounced
than the velocity slip. Compared with the case of no-slip (red dashed line), φ � 0.3
exhibits an accelerated melting rate due to slip, similar to the pressure-driven CCM in
figure 5(c). When l = 1 in figure 6(c), it can be demonstrated that all slip cases gradually
approach those of no-slip (figure 6d and 6e). Although no experimental data are currently
available to validate the model predictions of H(τ ) or h(τ ) under varying gas–liquid
fraction φ and structure parameter l, experimental data for the limiting case of φ = 0 were
reported in two-dimensional rectangular CCMs by Moallemi et al. (1986), allowing for
direct comparison. As shown in figure 6(c), the model prediction agrees well with the
experimental results, confirming the validity of the limiting solution (i.e. the no-slip case)
presented in this study.
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Figure 7. Phase diagram of melting time ratio τr of gravity-driven CCM with various combinations of gas–
liquid fraction φ and periodic length l on longitudinal grooves, where white dotted lines are contour lines
for various τr : black solid line, φ = 1 − 2−2/3; black dashed line, the asymptotic limit of l � 0.1 for no-slip
solutions (3.20); black dot–dash line, the asymptotic limits of (3.22a) and (3.22b) for solution (3.21).

In general, an increase in the value of φ will invariably result in a reduction in
the thickness of the liquid film h. However, the melting rate is decreased due to the
more pronounced effect of temperature slip. The potential for slip to accelerate the
melting process depends on the specific combination of l and φ. When l is sufficiently
large (e.g. 102 or 103), even a modest increase in φ can enhance heat transfer, thereby
accelerating the melting process. Conversely, as l diminishes, the influence of slip
decreases correspondingly, ultimately becoming negligible.

3.3.2. Phase diagram and asymptotic solution
To illustrate the effects of φ and l, we selected 288 and 110 values from the ranges φ

from 0.1–0.9 and l from 10−2–103, respectively. These values were used to construct the
parameter matrix (log10l, φ), which was then substituted into the numerical solution calcu-
lations to obtain the total melting time τend defined as H(τend) = 0 for each case of (log10l,
φ). The resulting phase diagram is shown in figure 7, where the colour code represents
τr = τend/τno−sli p = 3τend/4, meaning the melting time ratio of slip surface to no-slip
surface. τno−sli p = 4/3 is obtained from (3.19a), which corresponds to τr = 1. Therefore,
τr < 1 means heat transfer enhancement, while τr > 1 means heat transfer reduction.

It can be observed that the region where enhancement effects can be achieved exists
only in the lower right-hand corner of the phase diagram. The upper limit boundary is at
φ = 1 − 2−2/3, which is consistent with the conclusions drawn from the constant pressure
CCM in § 3.2.2. The left-hand critical point of the region of heat transfer enhancement
is approximately located at (1.17, 0.125). Unlike the region of heat transfer reduction,
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where τr changes monotonically with φ when l is fixed, in the enhancement region, τr first
decreases and then increases as φ decreases. This behaviour indicates that for a given l,
there is always a specific value of φ that maximises heat transfer enhancement, which is
plotted as yellow scatters in figure 7.

Based on this phase diagram, we can further find two regions corresponding to two
asymptotes (see details in Appendix H). One approximation is related to the no-slip
solution for Λ� 10, as

H(τ ) =
(

1 − 3
4
τ

) 4
3
, l � 0.1. (3.20)

Another approximate solution satisfies Λ� 0.01, as

H(τ ; φ) =
(

1 − 3
√

2
4

τ(1 − φ)
3
4

) 4
3

, (3.21)

whose approximate limit conditions should be satisfied as

100
(

1 − φ

4

) 1
5
� l, (3.22a)

l

[
4
3

sin θ
φ2

(1 − φ)(1 − 2φ)

]
� 10. (3.22b)

Therefore, the upper right-hand region enclosed by the two dash–dotted lines in figure 7
represents the parameter range where asymptotic solution (3.21) is valid.

Comparison of numerical and asymptotic results from l = 1 − 103 are conducted in
Appendix H. It shows a good agreement with predictions in the phase diagram by selecting
φ = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6} for cases.

4. Conclusions
In this work, we established a theoretical framework to investigate the dynamics of CCM
on gas-trapped hydrophobic surfaces, with a particular focus on the effects of liquid
film confinement and the meniscus at the gas–liquid interface. Utilizing dual-series and
perturbation methods under the assumption of small meniscus deflections, we obtained
numerical results for the velocity slip length λ and temperature slip length λt across
various aspect ratios Λ and gas fraction φ, representative of the liquid film thickness h
relative to the period l of the microstructure. For Λ � 1, the scaling laws are λ‖, f = λt =
2λ⊥, f = ln(sec(φπ/2))/π , while for Λ � 1, they are λ‖, f = λt = 4λ⊥, f = φΛ/(1 − φ),
where f , ‖ and ⊥ denote a flat interface, longitudinal grooves and transverse grooves,
respectively. Accounting for the meniscus at the gas–liquid interface, the velocity slip
length changes to (3.5) and (3.11), showing a slight decrease for Λ � 1 and a significant
increase for Λ � 1 compared with the flat interface. This behaviour results from the larger
area fraction and pronounced slip effects induced by the meniscus at Λ � 1, whereas
at Λ � 1, the meniscus contributes negligible additional area, and the velocity gradient
is reduced at the bottom. Additionally, a modified asymptotic solution for λ‖,c (3.12) is
proposed, which is broadly applicable in the range Λ� 0.2.

For constant-pressure CCM, the dimensionless film thickness h remains constant for
a specific pressure P and both slip lengths, λ and λt , lead to a slip-effective Nu that

1010 A46-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

38
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.385


N. Hu, L.-W. Fan, X. Gao and H.A. Stone

determines whether heat transfer is enhanced (Nu > 1) or decreased (Nu < 1). When the
gas–liquid interface is flat, we found that transverse grooves surfaces always deteriorate
heat transfer regardless of Λ and φ, while longitudinal grooves exhibit behaviour identical
to a smooth surface at small φ but show deteriorated performance at large φ. In the
presence of a meniscus at the gas–liquid interface, we observed an enhanced melting rate
when Λ� 0.1 and φ < 1 − 3√2/2 ≈ 0.37. It is important to note that Nu does not vary
monotonically with φ; instead, maximum values of Nu occur under specific conditions
within the range φ < 0.37 seen in figure 5(c).

In gravity-driven CCM, the film thickness h increases monotonically in time. Slip effects
have a minor influence on h and become negligible when Λ� 10 or when there is a
combination of small φ and Λ ∼ 10−1–10. Conversely, significant slip effects are observed
for smaller Λ, particularly for Λ� 10−2. We developed a two-dimensional phase diagram
based on (log10 l, φ) to identify regions of enhancement, reduction, or negligible impact of
the gas–liquid boundaries (the generator of slip) relative to the no-slip case. Additionally,
we derived asymptotic solutions and their limiting conditions.

The results reveal enhanced heat transfer and accelerated melting power in CCM are
achievable only when a meniscus is present and there are significant confinement effects.
The critical conditions depend on the gas–liquid interface fraction being less than 0.37.
It should be noted that the quantitative evaluation of heat transfer enhancement or
reduction presented in this study is valid primarily for small meniscus deflections.
However, we believe that our conclusions regarding the critical conditions for heat transfer
enhancement or reduction remain applicable even for large meniscus deformations. This
is because, under the assumed boundary conditions, a highly curved interface at small
Λ increases the meniscus area ratio, which is expected to further amplify the observed
trends. Nonetheless, a dedicated quantitative analysis is required in future work to confirm
this effect.

From a practical perspective, this work has indicated that the conditions for utilizing
gas-trapped hydrophobic surfaces to enhance CCM melting rates are quite stringent.
Future work may explore the potential for heat transfer enhancement using liquid-infused
slippery surfaces (Hardt & McHale 2022) or polymer brush surfaces (Chen et al. 2023) to
significantly reduce the impact of effective thermal slip while maintaining velocity slip.

Acknowledgements. We thank F. Temprano-Coleto for helpful discussions on numerical approaches to the
slip length.

Funding. L.-W. F. acknowledges grant no. 52276088 from the National Natural Science Foundation of China.
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Appendix A. Procedure for solving for the thermal slip length λt,f

The general solution T̃ with condition (2.8c) is

T̃ (y, z) = c0
y

Λ
+ d0 +

∞∑
n=1

[
cn cosh (2πny) + dn sinh (2πny)

]
cos (2πnz) , (A1)

where cn and dn are constants to be determined. Equation (2.10) results in

d0 = −c0, dn = −cn coth (2πnΛ), (A2)
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while (2.11) yields

c0 +
∞∑

n=1

cnα
T
n cos (2πnz) = 0, φ/2 < |z|� 1/2, (A3)

c0 +
∞∑

n=1

cnβ
T
n cos (2πnz) = Λ, |z|� φ/2, (A4)

where αT
n = −1 and βT

n = −2πnΛ coth(2πnΛ).
Next, we multiply both (A3) and (A4) by cos(2mπ z) for m ∈ [0, N ], where N is

chosen to numerically truncate the summation. We then integrate the equations after
multiplication over the interval φ/2 < z � 1/2 and the interval 0 � z � φ/2, respectively.
Finally, we sum the results to obtain dual-series algebraic equations as

c0 +
N∑

n=1

cn
βT

n − αT
n

πn
sin (nπφ) = Λφ for m = 0, (A5a)

N∑
n=1,�=m

cn

[(
βT

n − αT
n

) m cos(πnφ) sin(πmφ) − n cos(πmφ) sin(πnφ)

(m − n)(m + n)π

]

+ cm

[
αT

m

2
+
(
βT

m − αT
m

) (φ

2
+ sin(2πmφ)

4πm

)]
= Λ sin(πmφ)

πm
for m > 0.

(A5b)
Then we can write the equations in matrix form as⎡

⎢⎢⎣
1 A0,1 · · · A0,N
0 A1,1 · · · A1,N
...

...
. . .

...

0 AN ,1 · · · AN ,N

⎤
⎥⎥⎦
⎡
⎢⎢⎣

c0
c1
...

cN

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

Λφ

Λ sin(πφ)/π
...

Λ sin(π Nφ)/π N

⎤
⎥⎥⎦ , (A6)

where Am,n is defined for m = 0, m = n or m �= n:

A0,n = βT
n − αT

n

πn
sin(nπφ),

An,n = αT
n

2
+
(
βT

n − αT
n

) (φ

2
+ sin(2πnφ)

4πn

))
,

Am,n =
(
βT

n − αT
n

) m cos(πnφ) sin(πmφ) − n cos(πmφ) sin(πnφ)

(m − n)(m + n)π
.

(A7)

Appendix B. Thermal slip length λt,c on curved gas–liquid interface

Substituting the perturbation expansion for temperature T = T (0) + εT (1) + O(ε2) into
(2.22) we obtain a series of equations at different orders of ε. At O(ε0), we have

∂yyT (0) + ∂zzT (0) = 0, (B1)
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with the boundary conditions as

T (0)(Λ, z) = 0{
T (0)(0, z) = 0, φ/2 < |z|� 1/2
∂yT (0)(0, z) = 0, |z|� φ/2,

(B2)

which is exactly the case of the flat interface and has been solved in § 2.2.1 and
Appendix A, namely T (0) = Tp + Ts .

At O(ε1), the problem is formulated as

∂yyT (1) + ∂zzT (1) = 0, (B3)

with the boundary conditions

T (1)(Λ, z) = 0, (B4){
T (1)(0, z) = 0, φ/2 < |z|� 1/2,

∂yT (1)(0, z) = η∂yyT (0)(0, z) − η′∂zT (0)(0, z), |z|� φ/2.
(B5)

The general solution of the first-order temperature T (1) = T̃ (1)/Λ, where T̃ (1) has the same
form as (2.12), i.e.

T̃ (1)(y, z) = c(1)
0

y

Λ
+ d(1)

0 +
∞∑

n=1

[
c(1)

n cosh (2πny) + d(1)
n sinh (2πny)

]
cos (2πnz) .

(B6)
Applying boundary condition (B4) gives

T (1) = c(1)
0 (y − Λ) +

∞∑
n=1

c(1)
n

sinh
[
2πn(Λ − y)

]
sinh (2πnΛ)

cos (2πnz) . (B7)

Then, applying conditions (B5) in (B7) yields

c(1)
0 +

∞∑
n=1

c(1)
n αT

n cos (2πnz) = 0, φ/2 < |z|� 1/2,

c(1)
0 +

∞∑
n=1

c(1)
n βT

n cos (2πnz) = −Λ∂z

(
η∂z T̃ (0)(0, z)

)
, |z|� φ/2,

(B8)

where

− Λ∂z

(
η∂z T̃ (0)(0, z)

)
=

∞∑
n=1

Λcn

[
2πn sin (2πnz) η′ + (2πn)2 cos (2πnz) η

]
. (B9)

Similarly, dual series equations can be obtained by multiplying these equations by
cos(2πmz), integrating over the corresponding domain and summing them. The dual
series equations also can be solved numerically by the same procedure as in Appendix A.
Nevertheless, we can immediately find

c(1)
0 = 0, (B10)
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because every term equals 0 for m = 0. Now, we can notice that mean heat flux
〈
q ′′〉

c across
y = Λ is

〈
q ′′〉

c =
∫ 1/2

−1/2
−∂yT (Λ, z)dz = 1

Λ
− c0

Λ2 − ε
c(1)

0
Λ2 = 1

Λ
− c0

Λ2 , (B11)

which reveals that the presence of the meniscus has no influence on the average heat flux,
i.e. λt,c = λt, f .

Appendix C. Procedure for solving for the longitudinal slip length λ‖,f

The general solution of ũ along the parallel grooves is

ũ(y, z) = r0 + q0
y

Λ
+

∞∑
n=1

[
rn cosh (2πny) + qn sinh (2πny)

]
cos (2πnz) , (C1)

where rn and qn are constants to be determined. Substitution of (2.26) results in

q0 = −r0, qn = −rn coth (2πnΛ) . (C2)

Then (2.27) results in

r0 +
∞∑

n=1

rnα
‖
n cos (2πnz) = 0, φ/2 < |z|� 1/2, (C3a)

r0 +
∞∑

rnβ
‖
n cos (2πnz) = Λ, |z|� φ/2. (C3b)

The coefficients of α
‖
n and β

‖
n are

α‖
n = 1,

β‖
n = 2πnΛ coth(2πnΛ).

(C4)

Following what are now standard steps, we also can obtain the dual-series algebraic
equations as

r0 +
∞∑

n=1

rn
β

‖
n − α

‖
n

πn
sin (nπφ) = Λφ for m = 0, (C5a)

∞∑
n=1,�=m

rn

[(
β‖

n − α‖
n

) m cos(πnφ) sin(πmφ) − n cos(πmφ) sin(πnφ)

(m − n)(m + n)π

]

+ rm

[
α

‖
m

2
+
(
β‖

m − α‖
m

) (φ

2
+ sin(2πmφ)

4πm

)]
= Λ sin(πmφ)

πm
for m > 0. (C5b)

Equations (C5a)–(C5b) can be numerically solved for r0 and rn for m ∈ [0, N ] and
n ∈ [0, N ].

Appendix D. Procedure for solving λ‖.c

Substituting the perturbation velocity u = u(0) + εu(1) + O(ε2) into (2.36) we obtain a
series of equations at different orders of ε. At O(ε0), we have

∂zzu(0) + ∂yyu(0) = −∂x P, (D1)
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u(0)(Λ, z) = 0{
u(0)(0, z) = 0, φ/2 < |z|� 1/2
∂yu(0)(0, z) = 0, |z|� φ/2

,
(D2)

which is the case of the flat meniscus and has been treated in Appendix C. Hence
r (0)

n = rn and

λ
(0)
‖,c = λ‖, f = Λr0

Λ − r0
, (D3)

where r0 is the coefficient determined by numerically solving (C5a)–(C5b).
At O(ε1), the equations are

∂zzu(1) + ∂yyu(1) = 0, (D4)

u(1)(Λ, z) = 0, (D5)

{
u(1)(0, z) = 0, φ/2 < |z|� 1/2,

∂yu(1)(0, z) = η∂yyu(0)(0, z) − η′∂zu(0)(0, z), |z|� φ/2.
(D6)

The general solution of the first-order velocity u(1) = −∂x PΛũ(1)/2, where ũ(1) has the
same form as (C1), i.e.

ũ(1) = r (1)
0 + q(1)

0
y

Λ
+

∞∑
n=1

[
r (1)

n cosh (2πny) + q(1)
n sinh (2πny)

]
cos (2πnz) . (D7)

Applying the boundary condition (D5) leads to

ũ(1)(y, z) = r (1)
0 (1 − y

Λ
) +

∞∑
n=1

r (1)
n

sinh
[
2πn(Λ − y)

]
sinh (2πnΛ)

cos (2πnz) . (D8)

Then applying condition (D6) in (D8) yields

r (1)
0 +

∞∑
n=1

r (1)
n α‖

n cos (2πnz) = 0, φ/2 < |z|� 1/2,

r (1)
0 +

∞∑
r (1)

n β‖
n cos (2πnz) = Λ∂z

(
η∂z ũ(0)(0, z)

)
+ 2η, |z|� φ/2,

(D9)

where

∂z

(
η∂z ũ(0)(0, z)

)
=

∞∑
n=1

rn

[
−2πn sin (2πnz) η′ − (2πn)2 cos (2πnz) η

]
. (D10)

Similarly, dual series equations can be obtained by multiplying by cos(2πmz) and
integrating. The dual series equations also can be solved numerically using the same
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procedure as in Appendix A,

r (1)
0 +

∞∑
n=1

r (1)
n

β
‖
n − α

‖
n

πn
sin (nπφ) = 4φ3

3
for m = 0, (D11a)

∞∑
n=1,�=m

r (1)
n

[(
β‖

n − α‖
n

) 1
2π

(
sin(π(m + n)φ)

m + n
+ sin(π(m − n)φ)

m − n

)]

+ r (1)
m

[
α

‖
m

2
+
(
β‖

m − α‖
m

) (φ

2
+ sin(2πmφ)

4πm

)]
= M (n, m, Λ, φ) for m > 0,

(D11b)

where the function M(n, m, Λ, φ) is

M (n, m, Λ, φ) = 4 sin(πφm) − 4πφm cos(πφm)

π3m3 +
∞∑

n=1,�=m

4rnΛmn

(m − n)3(m + n)3π{
m cos(mπφ)

[
2n
(

m2 − n2
)

πφ cos(nπφ) +
(

m2 + 3n2
)

sin(nπφ)
]

+ sin(mπφ)
[
−n

(
3m2 + n2

)
cos(nπφ) +

(
m4 − n4

)
πφ sin(nπφ)

]}
+ rmΛ

(
3 sin(2mπφ) − 8m3π3φ3 − 6mπφ cos(2mπφ)

12mπ

)
.

(D12a)

Appendix E. Representative temperature and velocity fields above longitudinal
grooves
Taking the gas–liquid ratio φ = 0.3 as an example, we examine the variation in aspect
ratio Λ = 0.1, 0.5 and 2.5. The corresponding temperature and velocity field visualizations
are shown in figure 8. Here, the normalised quantity u(0)/(−∂x P) represents the velocity
field assuming a flat gas–liquid interface, whereas the total velocity u/(−∂x P) accounts
for the influence of the curved meniscus. From figure 8, it is evident that decreasing Λ

significantly amplifies the effect of slip. In contrast, for Λ = 2.5, the influence of slip in
both the temperature and velocity fields appears negligible. Moreover, when the curved
meniscus is considered, the velocity distribution remains largely unchanged in terms
of spatial variation, but its absolute magnitude is noticeably enhanced. However, it is
challenging to directly infer the variation of the corresponding effective slip length with
Λ from the changes in the temperature and velocity fields.

Appendix F. Slip length λ⊥,f on transverse grooves with a flat liquid–gas interface

The general solution of the deviation component of the stream function Ψ̃ between two
parallel plates with transverse grooves, is well known as (Lauga & Stone 2003; Teo &
Khoo 2008)

Ψ̃ = C0 y + D0 y2

2Λ
+

∞∑
n=1

{
Cn
[
cosh (2πny) − coth (2πn) y sinh (2πny)

]
+ Dn

[
sinh (2πny) − tanh (2πn) y cosh (2πny)

]}
cos (2πnz) , (F1)
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Figure 8. Representative (a,d,g) temperature field T (y, z), (b,e,f ) normalised leading-order velocity
u(0)(y, z)/(−∂x P) distribution considering the flat gas–liquid interface and (c,f,g) total normalised velocity
u(y, z)/(−∂x P) considering the curved interface. Panels (a–c), (d–e) and (g–f ) correspond to Λ = 0.1, 0.5
and 2.5, respectively, while φ = 0.3 is fixed.

where x and y are, respectively, the coordinates along width and height in the cross-section
of flow, and C0, D0, Cn and Dn are unknown coefficients determined by specific boundary
conditions; 2πn represents the wavenumber. The boundary conditions for grooves on a
single channel wall are

∂yΨ̃ |y=Λ = 0, (F2){
∂yΨ̃ (x, 0) = 0, φ/2 < |z|� 1/2,

1 + ∂yyΨ̃ (x, 0) = 0, |z|� φ/2.
(F3)

Equation (F2) leads to

C0 = −D0, Cn = Dnγ, (F4)

where

γ = −2πn cosh (2πnΛ) − tanh (2πn) cosh (2πnΛ) − 2πnΛ tanh (2πn) sinh (2πnΛ)

2πn sinh (2πnΛ) − coth (2πn) sinh (2πnΛ) − 2πnΛ coth (2πn) cosh (2πnΛ)
.

(F5)
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Also, (F3) leads to

C0 +
∞∑

n=1

Cnα
⊥
n cos (2πnz) = 0, (F6)

for φ/2 < |z|� 1/2 and

C0 +
∞∑

n=1

Cnβ
⊥
n cos (2πnz) = Λ, (F7)

for |z|� φ/2. The coefficient α⊥
n and β⊥

n are

α⊥
n = [2nπ − tanh (2nπ)] /γ (F8)

and

β⊥
n =

[
4nπ coth (2nπ) − 4n2π2

]
Λ. (F9)

Finally,

λ⊥ = ΛC0

Λ − C0
. (F10)

Similar to the approach in the last section, values of C0 and Cn can be numerically
solved by replacing α‖ and β‖ with α⊥ and β⊥, respectively.

Appendix G. Numerical approach for solving for the solid height H(τ) and film
thickness h(τ) of gravity-driven CCM
Recalling (2.52a) and (2.52b) with 𝒸= 1, we can rewrite them by defining the functions
f (Λ) and g(Λ), respectively, as

Λ4 1 + 4λ/Λ
1 + λ/Λ

(
1 + λt

Λ

)
≡ f (Λ) = 1

Hl4 , (G1a)

dH

dτ
= − 1

l(Λ + λt )
≡ −l−1g(Λ). (G1b)

Using (G1a) and (G1b) and the initial condition H(τ = 0) = 1, we can numerically
compute H through the following discrete iterative equations:

f (Λi ) = l−4 1
Hi

, (G2a)

Hi+1 = −l−1g(Λi )τδ + Hi , (G2b)

where the superscript i represents the time step, and τδ denotes the time increment.
This implies that Λi can be determined using Hi at the current time step i via (G2a).
Subsequently, Hi+1 can be calculated by substituting Λi into (G2b). However, since the
functions f (Λ) and g(Λ) do not have analytical expressions, it is necessary to precompute
a sufficient number of discrete values for these functions for a specific φ. During the
iteration process, interpolation is used to obtain f (Λ) and g(Λ) for any given Λ based on
discrete results. The functions f‖,c(Λ) and g(Λ) for longitudinal grooves, considering the
meniscus interface, are plotted in figures 9(a) and 9(b), respectively. Since the f‖, f (Λ) for
flat interfaces is very similar to that for meniscus interfaces, figure 9(c) presents the ratio
of f‖, f (Λ) for flat interfaces to f‖,c(Λ) for meniscus interfaces.
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Figure 9. Functions of (a) f‖,c(Λ) and (b) g(Λ) for the meniscus interface on longitudinal grooves for iterative
numerical approaches, and (c) the ratio f‖, f (Λ)/ f‖,c(Λ) of flat to curved interface. Dotted line represents
no-slip.

Appendix H. Asymptotic solutions of H(τ) and corresponding conditions for the
gravity-driven mode
With the given asymptotic formulae of slip lengths in table 1, we can derive the asymptotic
solutions and their conditions for H − τ . Considering the range of Λ� 0.2, substitution
of (3.12) into (3.18a) yields

h = k1 H− 1
4 , Λ� 0.2, (H1)

where k1 is given as

k1 =⎛
⎜⎝1 + 1

Λπ
ln
(

sec
(

φπ
2

))
+ ε

Λ

(
−φ3F(φ) + 4

Λ
φ4G(φ)

) (
1 + 1

4Λπ
ln
(

sec
(

φπ
2

)))2

1 + 4
Λπ

ln
(

sec
(

φπ
2

))
+ 4ε

Λ

(
−φ3F(φ) + 4

Λ
φ4G(φ)

) (
1 + 1

4Λπ
ln
(

sec
(

φπ
2

)))2

⎞
⎟⎠

1
4

(
1 + 4

Λπ
ln
(

sec
(

φπ

2

)))− 1
4
, (H2)

and is plotted in figure 10(a). It demonstrated that only for Λ = 1 − 10 and small φ, k1
can be considered as approximately equal to 1, which is consistent with the results in
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Figure 10. Variations of coefficients (a)k1, (b)k2 and (c)k3 versus aspect ratio Λ.

figures 6(c) and 6(d). Especially, when Λ� 10, we can further simplify (H2) as follows:

h =
(

1 + 4
Λπ

ln(sec
φπ

2
)

)− 1
4

H− 1
4 ≡ k2 H− 1

4 , Λ� 10. (H3)

By numerically analysing the order of kΛ�10, it is found to have a magnitude of ∼ 1 within
the range Λ = 10 − 103, as depicted in figure 10(b), although with a smaller deviation for
large φ. Therefore, it is reasonable to approximate the above equation as

h ≈ H− 1
4 , (H4)

which is exactly equivalent to (3.19a) and (3.19b) for the no-slip condition. To satisfy the
condition Λ� 10, it follows that

l � 0.1, (H5)

due to the necessary condition h(τ = 0)/ l � 10.
As for the range of Λ� 0.01, we can substitute (3.11) into (G1a), yielding

h =

⎡
⎢⎢⎣1 + 1

1
3

+ 4
3

φ

1 − φ
+ 8 sin θ

9Λ

φ2

(1 − φ)2

⎤
⎥⎥⎦

1
4 (

1 − φ

4

) 1
4

H− 1
4 ≡ k3 H− 1

4 , Λ� 0.01.

(H6)
By plotting k3 along with Λ in figure 10(c), it demonstrates that k3 remains constant
for φ = 0.5 − 0.9 while deviates greater for smaller φ � 0.4. We can easily obtain the
asymptotic profile for φ = 0.5−0.9 is (1 − φ)0.25/40.25 as plotted as a dashed line in
figure 7(d). Therefore, the maximum film thickness at the end hend is

hend =
(

1 − φ

4

) 1
5

(H7)

by letting H = hend . Then one limit condition for hend/ l � 0.01 is

1 �
(

l

100

)5 4
1 − φ

, (H8)

which is plotted as black dot–dash lines in figure 7(a). Another limit condition lies in

1
3

+ 4
3

φ

1 − φ
+ 8 sin θ

9Λ

φ2

(1 − φ)2 � 1, (H9)
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Figure 11. Non-dimensional height H(τ ) of solid PCM, comparing numerical results with asymptotic
solutions (3.21), i.e. (H11), at l = (a) 103, (b) 102, (c) 101 and (d) 100 for φ values ranging from 0.2 to 0.6.
Solid lines represent numerical results, while dot–dash lines indicate asymptotic solutions.

which can be derived to give

log10 l � log10 h − log10

[
4
3

sin θ
φ2

(1 − φ)(1 − 2φ)

]
. (H10)

By adopting h = hmax = 10 from the no-slip condition, this condition is plotted as white
dot–dashed lines in figure 7(a). Therefore, the upper right-hand region enclosed by the two
dash–dotted lines represents the parameter range where the following asymptotic solution
is valid:

H(τ ; φ) =
(

1 − 3
√

2
4

τ(1 − φ)
3
4

) 4
3

, Λ� 0.01. (H11)
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