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THE DIFFRACTION OF LONG ELASTIC WAVES
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Abstract

The method of asymptotic matching introduced by Buchwald (1] is adapted to the case of
the diffraction of plane longitudinal and shear waves by cylindrical cavities with elliptic
cross-sections. It is assumed that the dimensions of the cross section are small compared
with the wavelength of the incident waves. Asymptotic formulae for the scattered wave
potentials are obtained.

The method is valid when the cavity reduces to a two-dimensional stress free crack
whose length is small compared with the wavelength. Formulae for the scattered waves,
and for the stress-concentrations at the crack tips are obtained.

1. Introduction

A previous paper (Buchwald [1]) established a relationship between the equations
of plane elastodynamics and elastostatics which is a suitable basis for using an
aysmptotic matching technique to solve low frequency diffraction problems. The
scattering of plane P waves by a circular cylindrical cavity of small radius was
used as an example of the method.

In this paper we undertake an extension of the method to low frequency
scattering by an elliptic cylindrical hole. Muskhelishvili’s [5] conformal mapping
method is used to solve the appropriate elastostatic boundary value problem, and
asymptotic formulae giving the scattered field for both P and S waves are
obtained.
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(2] Diffraction of elastic waves 109

The method is valid when the minor axis of the ellipse becomes zero, and the
scattering is by a stress-free crack. Asymptotic formulae for the stress-concentra-
tions at the crack tips are easily determined by considering the results of the
elastostatic problem.

2. Summary of basic results

Following [1], the displacement u, v referred to axes 0x’, 0y’, in the plane strain
of an elastic body may be expressed in the form

— 0 3
bu = p ax’ ayf ’ (213)

99 Y
o =g +a5 (2.1b)
where x’, y’ are Cartesian coordinates; ¢(x’, y'), Y(x’, ") are displacement

functions and A, p are the Lamé coefficients of the material. The constant A’, p’
are defined by

p=p/(A+2u), M=2/(A+2p). (2.2)
Let L be a typical length and x = x'/L, y = y’/L. The equations of a
harmonically vibrating elastic body may then be expressed as

vz(g—‘i—g—t) +k2(p'g—z—g—t) =0, (2.3a)
vz(g—$+—g}"i) +k2(p'g—i’+g—f) =0. (2.3b)
In these equations we assume an implicit time factor exp(—io?), and
k%= polll/p, (2.4)
where p is the density. We assume the perturbation expansions for small k,
¢=¢y+ k¢, + k¢, + -, (2.5a)
v=yy+ kg, + k2, + - (2.5b)

Substitution in (2.3) yields, after equating powers of k,
Vi = -V, Vi = -V 1=0,1,2,..., (2.6)

with the convention that ¢,_, and v,_, are zero for / = 0 and / = 1. In particular,
b0, Yo, D1, ¥, satisfy the biharmonic equation, solutions of which may be obtained
using Muskhelishvili’s techniques as follows. Let

w, = ¢(x, y) + i(x, y). 2.7)
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It is shown in [1] that for / = 0, 1, a general expression for w, is given by
w, = zQ,(z) + fw,(z) dz; 1=0,1, (2.8)

where ©,(z), w,(z) are functions of the complex variable z = x + iy which are
analytic in the appropriate domain, and z = x — jy. Substitution in (2.1) and the
stress-strain relations yields, forboth /= 0and / = 1,

O=r,+1,= 21 - p)vie=4(1— p.’)[SZ'(z) + ﬁ'(f)], (2.9

=1, — T,y T 2i'rxy
= -8(1 — u’)% = -4(1 — p’)[zﬁ"(i) + 5’(2)], (2.10)
and
plu+iv)/(1 —p)=«(z) — 22(z) — &(z), (2.11)

where '(z), ”(z) are the first and second derivatives of Q with respect to z, 7.,
Teys T,y are the stresses and k = (1 + p")/(1 — ). It may then be shown that in
the rotated system of coordinates n + is = ze™'®,

Ton tiT,s =30 + $@e2, (2.12)
where a is the angle of rotation. It should also be noted that for constant C, E,
Q(z) = Eiz, wg(z)=C, wgp= Eizz+ Cz, (2.13)

correspond to a rigid body displacement with zero stresses. Also note that, given
any analytic function x(z), substitution in (2.1) shows that

w* = ¢* + iy* = «kx(z) + x(2) (2.14)
corresponds to zero displacements and stresses.

Equations (2.7) to (2.14) define, effectively, the plane elastostatic problem,
whose solution is obtained by using boundary values of the stresses and displace-
ments to determine £(z), w(z) in the domain being considered.

Returning to the original dynamic problem, it may be shown that when & # 0,
and ¢, ¢ satisfy the Helmholtz equations

(vi+pkt)eo=0; (V2+k2)y=0, (2.15)
then ¢, Y are also solutions of (2.3).

A general representation of waves scattered by a finite obstacle is given by the
solution of (2.15)

¢, = 3 (A;cos jO + Ajsin jO)H(k,r), (2.16a)
j=0
o0

¥ = 2 (B;sin j + Bjcos j ) H("(kr), (2.16b)
j=0
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where k? = p'k?, z = re®, and the Hj“) are Hankel functions of the first kind, so
that the expressions represent outward travelling cylindrical waves.

The remainder of this paper is concerned with the determination of the
constants A;, B; by asymptotically matching solutions ¢,, ¢, ¥y, ¥, of the
biharmonic equation for the given boundary value problems with ¢, ¥, in (2.16),
as kr - 0.

3. Diffraction of a P wave by an elliptic hole

Let the hole have as boundary the ellipse

’ 2 ’ 2
X Yy
+ =1 =m< 3.1
[(l+m)R} [(l—m)R] » Osm<l, @.1)
and assume an incident P wave of the form
¢; = exp[i(Kx" —ot)]; ¢, =0; (3.2)

where K2 = po?/(A + 2p), which leaves the boundary of the hole stress free. In
this case the appropriate scale transformation

z=re®=x+iy, x=x'/R, y=y'/R, k,=k/i’ =RK, (3.3)
reduces the problem to the format of Section 2. When a is the angle the normal to
the ellipse makes with the x axis, we find, in (2.12), that
2mz — (1 + m?)z
2mi — (1 + m?)z’

whence it may be shown from (2.9) that the incident wave in (3.2) gives rise to
boundary stress on the ellipse given by

-2ia —

e (3.9)

K (1, +ir,) =7,=19+ ik;7f) + 0(k?), (3.5)

where
O =1/x=-(1 - p.')[l + yle'Zi“], (3.6)
W=/ —w)=p/(A+p), (3.7)

and e~2/* is given in (3.4).
In order to solve the static problem we use the conformal transformation
z=¢{+m/¢ (3.8)
which maps the exterior of the ellipse on to the exterior of the circle [{|= 1 in the

{ plane. The actual determination of the appropriate functions £(z), w(z), may
be performed by using the methods of either Muskhelishvili [5] or Green and
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Zerna [3]. It is then straightforward to confirm that

Qo(2) = B,/%, (3.9)
wo(2) = (1 + m*)Q(2)/ (§> — m) + By/%, (3.10)
with
By =4i(m—v)k} By =31+ m? = 2my,)ki, (3.11)
are analytic for | {|> 1, and satisfy
T + i1, = -K27[0 (3.12)
on|{|=1.
Similarly,
2,(z) = 8,log¢ + 8,872, (3.13)
w,(z) = 8;log¢ + 8, + 852+ &(¢2 — m)™!
+8,82(32 - m)", (3.14)
where

8, =4ki(1—m?); &= %(1' +m)By; 8 =-(1+2v,)8;
8, =-md;; & =1}k¥H1+m)(1+2m?—3my,); (3.15)
&=-(1+m*s; & =201+ m?)s,;
are also analytic for | {|> 1, and yield the solution to the problem for which
Ty + iT,, = -K 21V, (3.16)

on | {|= 1, and for which the displacement u + iv, given in (2.10), is single valued.
We now substitute the expressions for §(z), w(z), determined in (3.9), (3.10),
(3.13) and (3.14) into (2.7) and (2.8). Noting that the inverse of (3.7) is

20=z+ (22— 4m)"? (3.17)
it is found that, as z — oo,
{=z—mz7' —m?%z73 + 0(z7%),
'=z7 v mz 3+ 2mP2 + 0(277),
(2= m)" =224 3mz™4 + 0(z79).
Whence, on replacing z by re’®, we obtain, for r >> 1,
¢ = Cylogr = (C, + Cyr72) cos28 + C,r2cos4d + O(r~*), (3.18)
Yo =C0— (G, + Gr?)sin20 — C,r2sindf + O(r*),  (3.19)
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where
C\ =B, C=mC=mp,, C=-i[mp,+(1+m?)B], (3.20)
and
¢, = D,r@sind + (p'D,rlogr + Dyr + Dyr™") cos 8
+(Dsr~" + Dgr~3) cos 30 + Dyr3cos 560 + O(r~°), (3.21)
¢, = -w'Dyrfcos8 + (D,rlogr + Dyr — Dyr™') sin
— (Dsr~' + Dgr=3) sin36 — D,r3sin 560 + O(r~%), (3.22)
where

D, = -D, =2(1 + v,)8,; Dy =(1+ 2y, —m)é,;
D, = t(3m?8, — 4mds — 6mds — 28,); D, = im(48, — 3m8d,).

Comparison of these results with the expressions for the scattered field in (2.16)
indicates that, to this approximation, we may express the scattered field as

3
= Y A;H"V(k,r) cos jb,
=

; (3.24)
2 . HV(kr) sin j8,

where the asymptotic values of the Hankel function are, for small §,
Ho(g) =1+ 2y + log(¢/2)] + O(7l0g ), (3.252)
H\(¢) = ~E +[27 —wi— 1+ 210g(§/2)] i€ + O(¢%log ), (3.25b)

. . 2 ! J 2 B )

H,-<s>=—if,,—)—(§) (j-1+&) +oe), =25,

(3.25¢)

where y is Euler’s constant, and £ is the argument of the Hankel functions in
(3.24). In (3.24) we take advantage of the symmetry of the problem, and note that
for j = 4 the terms are small in this approximation.

Following [1], we match the expressions in (3.24), as kr — 0, with the corre-
sponding expressions in (3.18) to (3.22), with the result that, approximately,

& = &g + ikip) + o* + Pg; ¥ = Yo T ik Y gy (3-26)
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where ¢*, ¥*, ¢, Yr, give zero stresses, as in (2.13) and (2.14), and are given by
¢* = Xylogr + X,(rcos@logr — rfsin@)
+ (Y, r '+ Z;r) cos 8 + X,r-2cos26 + Xyr3cos38,  (3.27)
Y* = p,'[XOG + X,(rsin@log r + rdcos )
—(Y,r' — Z,r) sind — X,r2sin20 — X;r3sin36], (3.28)
¢r = Circosl,  Yp = Crsiné, (3.29)

where the constants X,, X|, X,, Xj, Y, Z,, C,, are arbitrary. The matching
procedures provide enough equations to determine these constants, and the 4,
B;, in (3.24), in order that (3.26) is satisfied. The result is:

114 = $mik(1 + m* — 2my,), (3.30)
Ak, = -B\k = i7ki(1 — m?), (3.31)
Ay = -By = {miki(m — v,), (3.32)
Ay = -Byk,/k = 7k (1 + m)[y, — m?] /16, (3.33)
with
7(l — )X, =2idy; w(1 — W)X, = ik, A,;
X,=2(m—v,); wkiX, = -16id,;
Y, =3ik(m?*—1); 41— p)Z = iki(1 — m*)(log kk, — b);
and

C, = 3ik3(1 — m2)[(1 + v){b(1 + w) — 2logk — 2p’log k,}
—(1+2y,—m)]. (3.34)

We note that 4, B; are O(k*), and are, therefore, to be neglected, to the order of
approximations that have been made. The result is that, to the smallest order, the
scattered wave is

2 2
¢, = 3 Ajcos jo HV(kyr); ¢, = 2 Bysin jO HV (kr);  (3.35)
j=0 =1

where the constants A,, 4,, 4,, B,, B, are O(k?), and are given in (3.30) to (3.32).

There are two special cases. Firstly, the ellipse is a circle when m = 0, and
(3.35) then reduces to the scattered field determined in [1] for a circular cavity.
The second case m = 1 is more interesting, since the obstacle becomes a stress
free crack of length 4 in the nondimensional coordinates, the orientation of the
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crack being parallel to the wave direction. Note that when m = 1, in (3.30)-(3.32),
A =B, =0, y,4,=A4,=-B,=17ik}(1—v,), (3.36)

where 1 — vy, = A/(A + p).
Calculation of the stress singularities at z = *+2 proceeds as follows. We let
m = 1in (3.9), (3.10), (3.13), (3.14), whereupon the substitution (3.17) yields

20(z) = [z - (2= 9], a2) =2 -2 22— 9",
(3.37)
wo(z) = 2v(2% — 4)'l/2,
w)(z) = dp[dz(z2 — 42 + 2(22 - )2 - 2 - 27, (3.38)

where

v =3(1 — v)k{,
and we take a branch cut on | x|< 2, y = 0, such that (z2 — 4)!/2 ~ z, as | z|> .
Note that £(z), w(z) have singularities at the crack tips z = *2. Substitution in
(2.11) shows, however, that the displacement is finite at z = 2. Suppose also
that near the crack tips

z= *2 *+ge'

where 0 < e << 1, and |a|< 7. It may then be shown that the singular parts of
the stresses near the crack tips are given by

=2y, ¢ ?sinasin(3a/2),
(3.39)

— “1/2 00g L _
Tox T T,y = —4v.e"/“cosza, T, —7,

Y

Ty = ¥+ €/ ?sinacos(3a,/2),
where
v = k}1 = ik,)(1 - 2)/2,

and the signs refer to the cases z = *2, respectively.

4. Additional diffraction problems

In this section we consider examples of other orientations of the ellipse, and
diffraction of shear waves. We first consider the problem of the diffraction of the
P wave

4’1 = exp[i(Ky, - Gt)], 4’1 = 0’ (41)
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travelling in the positive y direction, with the elliptic obstacle as in (3.1). We
follow the analysis of the previous section, but now, in (3.5),

70 =10y = (1 - p) (e - 1), (4.2)
with y, and e =2/ given in (3.4) and (3.7). The subsequent calculation is similar to

that in Section 3, with a number of minor algebraic changes. The final results are
that the scattered wave is given by

o, = A H{"(k,r) + A\ H(k,r) sin8 + A, H{"(k,r)cos 26, 4.3)

Y, = B{H(kr) cos 8 + B, H{"(kr) sin 29, (4.4)
where
1,4 = tmik?(1 + m? + 2my,), (4.5)
Ak, = Bik = iaki(1 — m?), (4.6)
A, =-B, = jmiki(m + v,), (4.7)

and terms of O(k*log k) are neglected.
When m = 1 there is a crack at right angles to the direction of wave propaga-
tion. It may be shown that in this case £,(z), @ ,(z) vanish, and

(1= )0(2) = 4z = (= 9)7], (1= w)al2) = k32— 477
(4.8)

Substitution of these expressions in (2.9), (2.10) and (2.11) again yields the
necessary result, that the displacements at the crack tips z = *2 are finite. The
stress concentration at z = 2 is given by

n,. 1, =-2k¥%V2cosda, 1, —1, = +kle/?sinasin(3a,2),
7., = —3kie/?sinacos(3a,2), (4.9)

when z = 2 + ee’®, and 0 < ¢ << 1. Equivalent formulae for the stress singular-
ity at z = -2 are obtained by noting the symmetry about the y axis.
The second example is the propagation of the shear wave

¢; = 0,4y, = exp[i(K'x’ — at)], (4.10)

parallel to the x axis. Noting that in this case K’ = po?/p, 7, = 7,, = 0, and
7., = -K 2expli(K’x’ — ot)], the analysis follows the previous examples, with
some algebraic differences. The results are that the scattered wave is given by
(2.16), the only non-zero coefficients being

A, = B, = ~Lmik*(1 — )", (4.11)
Ak, = Bik = nk3(m? — 1), (4.12)
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and A}, B} are O(k*). When m = 1 it may be shown that
20(8) = 2v/8, .(5) = /8%, (4.13)
w(8) = 482 = 1), o (§) = w1+ 42— 1), (4.19)
where
v, = —4ik?/(1 — ).

It may then be shown from these expressions that the singular parts of the
stresses at the crack tips z = =2 are given by

Tox + 1, = 2k%(1 = ik)e /% sin(a,/2),
1 — 1, = 3k3(1 = ik)e/[sin(Sa/2) + 3sin(a/2)],
Ty = —3k%(1 £ ik)e™/*[cos(5a/2) + 3 cos(a/2)].

Finally, in the case where the direction of the incident shear wave is perpendicular
to the crack, we take

¢, =0, ¥ =expli(K'y’ —ot)], (4.15)

when the scattered wave is given by (2.16), with all coefficients zero except
A, = B, = 3mik?/ (1 — p'), (4.16)
Ak, = =Bk = ink*(m? — 1). (4.17)

When m = 1, the stress field near z = 2 is

T, = -3k /*(7sin (a/2) + sin(5a,/2)),
= 1k %(sin(5a/2) — sin(a/2)),

Tyy

Ty = 1k2e71/2(3 cos(a/2) + cos(5a/2)).

5. Conclusion

Other methods of using asymptotic matching techniques for elastic wave
scattering are described by Datta {2], as well as by Gautesen [3] and Viswanathan
and Chandra [6]. The main point of the work described in this paper is that it
allows the use of Muskhelishvili’s complex variable and conformal mapping
techniques for low frequency two-dimensional applications. For a finite, stress
free crack, the determination of the leading singular terms in the stresses is a
particular feature of the method.
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