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Fourier transforms and p-adic ‘Weil II’

Kiran S. Kedlaya

Abstract

We give a purity theorem in the manner of Deligne’s ‘Weil II’ theorem for rigid cohomology
with coefficients in an overconvergent F -isocrystal; the proof mostly follows Laumon’s
Fourier-theoretic approach, transposed into the setting of arithmetic D-modules.
This yields in particular a complete, purely p-adic proof of the Weil conjectures when
combined with recent results on p-adic differential equations by André, Christol, Crew,
Kedlaya, Matsuda, Mebkhout and Tsuzuki.

1. Introduction

1.1 About this paper

The purpose of this paper is to establish a weak analogue, in Berthelot’s rigid (p-adic) cohomology,
of Deligne’s ‘Weil II’ theorem [Del80, Théorème 3.3.1] on purity of higher direct images between
two schemes of finite type over a finite field. The theorem we establish here (Theorem 5.3.2) asserts
that given an overconvergent F -isocrystal on a variety over a finite field which is pure of some
weight i (relative to some embedding of the relevant p-adic field into the complex numbers), the
jth compactly supported rigid cohomology with coefficients in that isocrystal is mixed of weights
no greater than i+ j.

The basis for the argument is some recent progress in rigid cohomology, notably the finite
dimensionality of rigid cohomology with coefficients in an overconvergent F -isocrystal, proved by
the present author in [Ked05b]. Indeed, this paper may be most easily read as (and was, in fact,
written as) a companion to [Ked05b], since the two papers involve a shared set of ideas, including
construction of some higher direct images; here, such arguments are augmented by what amounts
to an analysis of nearby cycles.

On this foundation, we prove our Weil II analogue by combining ideas from several sources for
the étale case. The first of these is of course Deligne’s original argument, whose basic framework
(the theory of global monodromy and determinantal weights) was imported into rigid cohomology
by Crew [Cre92, Cre98]. To this we add the ‘principle of stationary phase’ introduced by Laumon
[Lau87] (and redescribed in [KW01]) and incarnated in a geometric Fourier transform, which in the
rigid cohomology setting is quite natural from the point of view of D-modules (as was first noted by
Mebkhout [Meb97], who indeed suggested using it to prove a p-adic Weil II theorem) and has been
described in detail by Noot-Huyghe [Huy04]. We also mix in some variations described by Katz in
his lectures at the 2000 Arizona Winter School [Kat01] (although not Katz’s general approach of
short-cutting the study of global monodromy using explicit families with big monodromy).

Received 6 April 2004, accepted in final form 10 May 2006.
2000 Mathematics Subject Classification 14F30, 14G10.
Keywords: rigid cohomology, Fourier transform, Weil conjectures.

The author was partially supported by a National Science Foundation postdoctoral fellowship and by NSF grant
DMS-0400727.
This journal is c© Foundation Compositio Mathematica 2006.

https://doi.org/10.1112/S0010437X06002338 Published online by Cambridge University Press

http://www.compositio.nl
http://www.ams.org/msc/
http://www.compositio.nl
https://doi.org/10.1112/S0010437X06002338


Fourier transforms and p-adic ‘Weil II’

1.2 Beyond this paper

Note that our analogue of Weil II is ‘pointwise’ in that it only applies to morphisms to a point. That is
partly because the ‘lisse’ coefficients in rigid cohomology, namely the overconvergent
F -isocrystals, are well understood, whereas the theory of the corresponding ‘constructible’ objects,
which would be certain arithmetic D-modules, is somewhat less complete (see Berthelot’s survey
[Ber02] for an overview). This is partly circumvented by Caro [Car05], who obtains an extension
of our main theorem with more general coefficient objects on the source, but still a point as the
base. Even with a fully functorial set of coefficient objects, though, some technical issues remain:
see Remark 5.3.3 for more on these.

However, already pointwise Weil II in rigid cohomology is of some significance. It demonstrates
that one can recover a proof of the Weil conjectures purely within the framework of a Weil co-
homology theory which is ‘explicitly constructible’. (This is not demonstrated by two earlier forms
of p-adic Weil II: the sketch given by Faltings [Fal90], which relies on unverified properties of
relative crystalline cohomology, or the theorem of Chiarellotto [Chi98] using Katz and Messing’s
crystalline version of the Weil conjectures [KM74], which ultimately relies on Deligne’s original
theorem.) It should also suggest techniques for further extending the analogy between rigid co-
homology and étale cohomology, which may ultimately lead to finding some provable statements
in rigid cohomology where only conjectural analogues exist in étale cohomology (one promising
candidate seems to be the weight-monodromy conjecture). We leave additional thoughts on this to
the imagination of the interested reader.

We also note that Olsson [Ols05a, Ols05b] has incorporated the purity theorem of this paper
into a program for building a p-adic version of nonabelian Hodge theory.

1.3 Structure of the paper

We conclude this introduction by describing the contents of the various sections of the paper.
In § 2, we set notation concerning rigid cohomology and overconvergent F -isocrystals.
In § 3, we recall the results of [Ked05b] on higher direct images in rigid cohomology, along

some simple morphisms of relative dimension 1. We then work out some more precise results
along these lines, particularly concerning degeneration in families. That is, we must understand
how the cohomology of a single member of a family is controlled by the cohomology of the other
members of the family.

In § 4, we introduce, in a limited context, the geometric Fourier transform in the p-adic set-
ting and its D-module interpretation. We also formulate an analogue of the Grothendieck–Ogg–
Shafarevich formula, which constrains the Euler–Poincaré characteristic of (the cohomology of) an
overconvergent F -isocrystal in terms of local monodromy. This formula is needed to show that the
Fourier transform of certain overconvergent F -isocrystals are again isocrystals.

In § 5, we assemble the proof of p-adic Weil II. We also give an estimate in the same spirit for
the p-adic valuations of eigenvalues in cohomology.

2. Rigid cohomology

We start by setting notation regarding rigid cohomology. Our notation follows [Ked05b], to which
we defer for additional details and further references.

Let q be a fixed power of the prime p. Let k be a perfect field of characteristic p containing Fq,
let o be a finite totally ramified extension of the ring of Witt vectors W (k), let m be the maximal
ideal of o, and let K be the fraction field of o. We will assume throughout that o is equipped with
an automorphism σK lifting the qth power map. For instance, if o = W (k), then there is a unique
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choice of σK ; it coincides with a power of the Witt vector Frobenius. Also, if k = Fq, we may of
course take σK to be the identity map whatever o happens to be.

We will frequently consider modules over various rings equipped with a linear or semilinear
endomorphism. If M is such a module equipped with F , we write M(−i) to denote M equipped
with qiF , and call this the (−i)th Tate twist of M .

2.1 The formalism of rigid cohomology
We first recall some of the formalism of rigid cohomology, following [Ber86] and [Ked05b, § 4]
(which serve as blanket references except when other references are specified); we postpone defining
anything until the next section. For shorthand, we abbreviate ‘reduced separated scheme of finite
type over (the field) k’ to ‘variety over k’.

The coefficient objects in rigid cohomology are called overconvergent F -isocrystals (with respect
to K); they form a category fibred in symmetric tensor categories over the category of k-varieties.
In other words:

• the fibre over each variety X admits direct sums, tensor products (which commute), duals,
internal Homs, and an identity object OX for tensoring (the ‘constant sheaf’);

• to each morphism f : X → Y of k-varieties is associated a pullback functor f∗ that com-
mutes with the aforementioned operations; these pullback functors compose up to natural
isomorphism.

This particular category has the following additional properties.

• One also has pullback functors associated to automorphisms of K.

• The category carries a natural isomorphism F (‘Frobenius’) between the identity functor
and the composition of the pullback functor associated to σK with the relative Frobenius.
(By definition, the action of F on the dual of an overconvergent F -isocrystal is the inverse
transpose of its action on the original.)

• The fibre over Speck′, for k′ a finite extension of k, is equivalent to the category of finite-
dimensional K ′-vector spaces, for K ′ the unramified extension of K with residue field k′,
equipped with a bijective σK ′-linear transformation F . (Here σK ′ is the unique extension of
σK to an automorphism of K ′ lifting the q-power Frobenius.)

• There are Tate twist functors which pointwise multiply F by the appropriate power of q.

Associated to a k-variety X and an overconvergent F -isocrystal E over X are its rigid cohomology
spaces H i

rig(X/K, E) and its rigid cohomology spaces with compact supports H i
c,rig(X/K, E).

These are vector spaces over K equipped with Frobenius actions, which coincide if X is proper; they
vanish for i < 0 and for i > 2 dimX and are finite dimensional in general by [Ked05b, Theorems 1.1
and 1.2]. If X is smooth of pure dimension n, by [Ked05b, Theorem 1.3] there is a canonical perfect
pairing (Poincaré duality)

H i
rig(X/K, E) ×H2n−i

c,rig (X/K, E∨) → OX(−n).

The cohomology spaces are functorial in the following senses. Given overconvergent F -isocrystals
E1, E2 on X and a morphism h : E1 → E2, we obtain morphisms

H i
rig(X/K, E1) → H i

rig(X/K, E2), H i
c,rig(X/K, E1) → H i

c,rig(X/K, E2)

which compose as expected. Given a morphism f : X → Y of varieties and an overconvergent
F -isocrystal E on Y , we obtain morphisms

H i
rig(Y/K, E) → H i

rig(X/K, f
∗E)
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which again compose as expected; the same is true if we allow f to lie over a nontrivial power
of Frobenius, using the lift σK of Frobenius to K. If f : X → Y is finite étale, there is a push-
forward functor f∗ from overconvergent F -isocrystals on X to those on Y , and we have canonical
isomorphisms

H i
rig(X/K, E) ∼= H i

rig(Y/K, f∗E), H i
c,rig(X/K, E) ∼= H i

c,rig(Y/K, f∗E).

In cohomology with compact supports, for Z ↪→ X a closed immersion, we have an excision
exact sequence

· · · → H i
c,rig(X \Z/K, E) → H i

c,rig(X/K, E) → H i
c,rig(Z/K, E) → H i+1

c,rig(X \Z/K, E) → · · · , (2.1.1)

where the maps ‘at one level’ (i.e. from one H i to another) are Frobenius-equivariant. There is also
an excision sequence in ordinary cohomology, but it involves relative cohomology which we will not
discuss here.

For any closed point x of a variety X, we can pull back an overconvergent F -isocrystal E along
the embedding x ↪→ X to obtain an object we denote as Ex. As noted above, the data of Ex amounts
to a vector space over the unramified extension K ′ of K with residue field κ(x), equipped with a
σK ′-linear bijection induced by F . We call either object the fibre of E at x.

Now suppose k = Fq and that σK is the identity morphism. Then F deg(x) induces a linear
transformation Fx on Ex. (However, the natural action of F deg(x) on Ex⊗K ′L, for L a finite extension
of K ′, is typically not linear.) By a theorem of Étesse and le Stum [EL93, Théorème 6.3], we have
a Lefschetz trace formula for Frobenius, given by the following equality of formal power series:∏

x∈X

det(1 − Fxt
deg(x), Ex)−1 =

∏
i

det(1 − Ft,H i
c,rig(X/K, E))(−1)i+1

. (2.1.2)

Note that in (2.1.2), the determinant of 1 − Fxt
deg(x) is being taken over K ′, but actually has

coefficients in K. If one prefers to work exclusively over K, one may write (2.1.2) in the form given
in [EL93]: ∏

x∈X

det
K

(1 − Fxt
deg(x), Ex)−1/ deg(x) =

∏
i

det(1 − Ft,H i
c,rig(X/K, E))(−1)i+1

.

2.2 Affinoid and dagger algebras

We compute in rigid cohomology not using its general definition, but using a construction special
to the smooth affine case, due to Monsky and Washnitzer. This theory looks like algebraic de Rham
cohomology except that the coordinate ring of the original affine scheme is replaced by a ‘dagger
algebra’. In this section, we recall the construction and properties of dagger algebras, following
[Ked05b, § 2] (which again we treat as a blanket reference).

We first recall the notion of an affinoid algebra. Define the ring

Tn = K〈x1, . . . , xn〉 =
{∑

I

aIx
I : aI ∈ K, lim∑

I→∞
|aI | = 0

}
.

Here I = (i1, . . . , in) denotes an n-tuple of nonnegative integers, xI = xi1
1 · · · xin

n , and
∑
I =

i1 + · · ·+ in. An affinoid algebra over K is any K-algebra isomorphic to a quotient of Tn for some n.
If A is a reduced affinoid algebra, there is a canonical power-multiplicative norm | · |sup,A on A,
called the spectral norm, with respect to which A is complete. We also define the spectral valuation
vA by

vA(x) = −logp|x|sup,A.
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We now proceed to dagger algebras. Let Γ∗ be the (multiplicative) value group of Kalg. For ρ > 1
in Γ∗, define the ring

Tn,ρ =
{∑

I

aIx
I : aI ∈ K, lim∑

I→∞
|aI |ρ

∑
I = 0

}
;

it is a reduced affinoid algebra with spectral norm given by |∑ aIx
I |ρ = maxI{|aI |ρ

∑
I}. Define the

ring of overconvergent power series in x1, . . . , xn by

Wn = K〈x1, . . . , xn〉† =
⋃
ρ>1

Tn,ρ.

We note in passing that any finite projective module over Tn or Wn is free, by an analogue of
the Quillen–Suslin theorem; see [Ked04b, Theorem 6.7]. A dagger algebra over K is any K-algebra
isomorphic to a quotient of Wn for some n. Topologizing Wn as a subspace of Tn, we induce a
topology on any dagger algebra, called the affinoid topology.

If A is a dagger algebra, we define a fringe algebra of A as a subalgebra of the form f(Tn,ρ)
for some surjection f : Wn → A and some ρ > 1 in Γ∗; note that any fringe algebra is an affinoid
algebra, and so has a natural topology under which it is complete. We can retopologize A as the
direct limit of its fringe algebras (i.e. a sequence converges to a limit if and only if it does so in
some fringe algebra); we call this topology the fringe topology. The fringe topology is crucial for
constructing Robba rings over dagger algebras in § 3.1.

Let T int
n or W int

n be the subring of Tn or Wn, respectively, consisting of series with integral
coefficients. Then the image of T int

n or W int
n under a surjection f : Tn → A or f : Wn → A is

independent of f , because the elements of this image can be characterized topologically (as those
x ∈ A such that cxd is topologically nilpotent for any positive integer d and any c ∈ m). We call
this image the integral subring of A, denoted Aint. More generally, any homomorphism g : A → B
of affinoid or dagger algebras carries Aint into Bint.

In the same vein, it turns out that the image under a surjection f : Wn → A of the ideal of W int
n

consisting of series whose coefficients all lie in m is independent of f . The elements of this ideal
are the topologically nilpotent elements of Aint; the quotient of Aint by this ideal, which is finitely
generated as a k-algebra, is called the reduction of A. If R is the reduction of A, we call SpecR the
special fibre of A.

Given a dagger algebra A = Wn/a, write

A〈t〉† = Wn+1/aWn+1,

identifying t with xn+1. This construction does not depend on the presentation of A. For f ∈ A
with |f |sup,A = 1, write

A〈f−1〉† = A〈t〉†/(tf − 1);
this is called the localization of A at f .

2.3 Cohomology of affine schemes
We now construct Monsky–Washnitzer cohomology, our main computational tool in studying rigid
cohomology on smooth affine varieties. Our blanket reference now is [Ked05b, § 3].

The module of continuous differentials Ω1
A/K of a dagger algebra can be constructed as follows.

For A = Wn, take it to be the free module generated by dx1, . . . , dxn equipped with the K-linear
derivation d : Wn → Ω1

Wn/K given by

∑
I

cIx
I �→

∑
I

n∑
j=1

ijcI(xI/xj) dxj .
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For A ∼= Wn/a, let Ω1
A/K be the quotient of Ω1

Wn/K ⊗Wn A by the submodule generated by dr for
r ∈ a. This construction ends up being universal for A-linear derivations into finitely generated
A-modules; in particular, it yields a well-defined A-module Ω1

A/K and K-linear derivation d : A →
Ω1

A/K . If A is a subring of the dagger algebra B, we define the relative module of differentials Ω1
B/A

as the quotient of Ω1
B/K by the images of da for a ∈ A. We also put Ωi

B/A = ∧i
AΩ1

B/A.
At this point, we restrict to a special class of dagger algebras. We say that a dagger algebra A

is of MW type if the ideal of topologically nilpotent elements of Aint is generated by a uniformizer
of o and the special fibre of A is smooth. In the terminology of [MW68], B is a formally smooth,
weakly complete, weakly finitely generated algebra over (o,m).

A Frobenius lift on a dagger algebra A of MW type is a ring endomorphism σ : A → A acting
on K via σK and acting on Aint ⊗o k as the qth power map x �→ xq. Such a map exists for any A;
for example, if A = Wn, we can define a standard Frobenius σ by the formula(∑

I

cIt
I

)σ

=
∑

I

cσK
I tqI .

Given a dagger algebra A equipped with a Frobenius lift σ, we define a σ-module over A as a
finite locally free A-module equipped with:

(a) a Frobenius structure, an additive, σ-linear map F : M → M (that is, F (av) = aσF (v) for
a ∈ A and v ∈M) which induces an isomorphism σ∗M →M .

We define a (σ,∇)-module over A as a σ-module additionally equipped with:

(b) an integrable connection, an additive, K-linear map ∇ : M → M ⊗A Ω1
A/K satisfying the

Leibniz rule ∇(av) = a∇(v) + v⊗ da for a ∈ A and v ∈M , and such that, if we write ∇n for
the induced map M ⊗A Ωn

A/K →M ⊗A Ωn+1
A/K , we have ∇n+1 ◦ ∇n = 0 for all n � 0;

subject to the compatibility condition:

(c) the isomorphism σ∗M → M induced by F is horizontal for the corresponding connections,
in other words, the following diagram commutes.

M

F

��

∇ �� M ⊗A Ω1
A/K

F⊗dσ
��

M
∇ �� M ⊗A Ω1

A/K

For example, the module M = A, with F acting by σ and ∇ acting by d, is a (σ,∇)-module,
called the trivial (σ,∇)-module. More generally, if M is spanned over A by the kernel of ∇, we say
that M is constant.

Given a (σ,∇)-module M over A, we define the cohomology spaces as the cohomology of the
de Rham complex tensored with M . That is,

H i(M) =
ker(∇i : M ⊗A Ωi

A/K →M ⊗A Ωi+1
A/K)

im(∇i−1 : M ⊗A Ωi−1
A/K →M ⊗A Ωi

A/K)
.

If M is a (σ,∇)-module over A, we call an A-submodule N of M a (σ,∇)-submodule if it is closed
under F and ∇ (the latter meaning that ∇(N) ⊆ N ⊗ Ω1

A/K); it turns out [Ked05b, Lemma 3.3.4]
that this forces N to be a direct summand of M as an A-module, so the quotient M/N is also a
(σ,∇)-module. (Note that N need not be a direct summand of M in the category of (σ,∇)-modules
over A, because the exact sequence 0 → N →M →M/N → 0 may not have a horizontal splitting.)
This gives us a notion of irreducibility of a (σ,∇)-module.
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We now summarize the relationship of this construction to rigid cohomology; for more details,
see [Ber97, Proposition 1.10] in the constant coefficient case, or [EL93, § 3]. If X is a smooth
affine k-variety, there exists a dagger algebra A of MW type with special fibre X (unique up
to noncanonical isomorphism). Given the choice of A and a Frobenius lift σ on A, the category
of overconvergent F -isocrystals on X is canonically equivalent to the category of (σ,∇)-modules
over A (in particular, the latter category is independent of the choice of σ). If E is an overconvergent
F -isocrystal corresponding to a (σ,∇)-module M , there is a canonical isomorphism

H i
rig(X/K, E) ∼= H i(M),

which matches up the Frobenius actions. Moreover, this isomorphism is compatible with maps of
k-varieties on the left and corresponding lifts (not necessarily Frobenius-equivariant) to maps
of dagger algebras on the right.

2.4 The Robba ring and p-adic local monodromy
We next want to make the cohomology of curves more explicit, but first we need to introduce an
auxiliary ring from the theory of p-adic differential equations.

The Robba ring RK = Rt
K (the latter notation being used when we need to name the series

parameter) is defined as the ring of formal Laurent series
∑∞

n=−∞ cnt
n, with cn ∈ K, such that for

all sufficiently small r > 0 (where the meaning of ‘sufficiently small’ depends on the series),

lim
n→±∞(vp(cn) + rn) = ∞.

That is, such a series converges for t ∈ Kalg satisfying η < |t| < 1, for some η depending on the
series.

We denote by Rint
K the subring of RK of series with vp(cn) � 0 for all n, and by R+

K the subring of
series with cn = 0 for n < 0. We denote by R+,int

K the intersection of these two subrings; it coincides
with o[[t]].

Given r > 0 rational, for those elements x =
∑
cnt

n ∈ RK for which vp(cn) + rn → ∞ as
n→ ±∞, we put

wr(x) = inf
n
{vp(cn) + rn};

this function is a discrete valuation on the subring where it is defined, and in fact it is the valuation
corresponding to the supremum norm on the circle vp(t) = r. Note that for any fixed x ∈ RK , wr(x)
is defined for all sufficiently small r > 0.

We define (σ,∇)-modules over RK or R+
K as in the dagger algebra setting, taking Ω1 to be the free

module generated by dt. Note that finite locally free modules over RK or R+
K are automatically

free, because a theorem of Lazard [Laz62] implies that RK and R+
K are Bézout rings (rings in which

every finitely generated ideal is principal).
A technique due to Dwork (analytic continuation via Frobenius) leads to the following result;

see [Dej98, Lemma 6.3] for its proof, or see Proposition 3.1.1 below for a generalization.

Lemma 2.4.1. Let M be a (σ,∇)-module over R+
K . Then there exists a basis w1, . . . ,wn of M such

that ∇wi = 0 for each i. (Note that on any such basis, F acts via a matrix over K.)

A weaker form of Lemma 2.4.1 holds for M over RK , but is much deeper. It is the so-called
‘p-adic local monodromy theorem’, and underpins this entire article as well as [Ked05b]. Proofs have
been given by André [And02], Mebkhout [Meb02], and the present author [Ked04a].

Proposition 2.4.2. Let M be a (σ,∇)-module over RK . Then there exist a finite étale extension
R′ of Rint

K and a basis w1, . . . ,wn of M⊗Rint
K
R′ such that for i = 1, . . . , n, the span Mi of w1, . . . ,wi

is carried into Mi ⊗ dt by ∇ and the image of wi in Mi/Mi−1 is killed by ∇.
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We say that M is unipotent if it satisfies the conclusion of the p-adic local monodromy theorem
with R′ = Rint

K . In that case, one can find a basis v1, . . . ,vn of M whose K-span is preserved by
the operator E : M →M defined by ∇(v) = E(v) ⊗ dt/t (see [Ked05b, Proposition 5.2.6]).

2.5 Cohomology of curves
A detailed study of the cohomology of overconvergent F -isocrystals on curves has been made by
Crew [Cre98]; we summarize his results in this section. Note that Crew’s hypothesis that the con-
nection is strict is superfluous in this setting: it follows from the p-adic local monodromy theorem
thanks to [Cre98, Proposition 10.2].

Let X be a smooth irreducible affine curve, let X be its smooth compactification, and let A be
a dagger algebra of MW type with special fibre X. Then for each closed point x ∈ X, one gets a
(noncanonical) embedding A ↪→ Rx, where Rx is a copy of the Robba ring over the unramified
extension K ′ of K with residue field κ(x); we can and will take this embedding to map into R+

x if
x ∈ X. Observe that given such an embedding, any Frobenius lift on A can be extended compatibly
to Rx.

Define

Aloc =
⊕

x∈X\X
Rx, Ω1

loc = Ω1
A/K ⊗A Aloc

Aqu = Aloc/A, Ω1
qu = Ω1

A/K ⊗A Aqu = Ω1
loc/Ω

1
A/K ,

where the last equality holds because Ω1
A/K is a flat A-module. (Note that Aloc is a ring but Aqu is

only an A-module.) For M a (σ,∇)-module over A corresponding to an overconvergent F -isocrystal
E on X, we have already defined

H0(M) = ker(∇ : M →M ⊗A Ω1
A/K)

H1(M) = coker(∇ : M →M ⊗A Ω1
A/K),

and observed that H i(M) ∼= H i
rig(X/K, E). We now define

H0
loc(M) = ker(∇ : M ⊗A Aloc →M ⊗A Ω1

loc)

H1
loc(M) = coker(∇ : M ⊗A Aloc →M ⊗A Ω1

loc)

H1
c (M) = ker(∇ : M ⊗A Aqu →M ⊗A Ω1

qu)

H2
c (M) = coker(∇ : M ⊗A Aqu →M ⊗A Ω1

qu);

Crew [Cre98] has shown that H i
c(M) ∼= H i

c,rig(X/K, E). (This identification and the previous one
become F -equivariant once we specify that F acts on Ω1 via the linearization dσ of the Frobenius
lift.) For x ∈ X \X, we write H0

loc,x(M) for the kernel of ∇ : M ⊗A Rx → M ⊗A Ω1
Rx/K , so that

H0
loc(M) =

⊕
xH

0
loc,x(M); we also write H i

loc(X/K, E) for H i
loc(M).

All of the H i(M), H i
loc(M), and H i

c(M) are finite-dimensional vector spaces over K, by [Cre98,
Theorem 9.5 and Proposition 10.2] and the p-adic local monodromy theorem. Because the rows of
the diagram

0 �� M ��

��

M ⊗A Aloc
��

��

M ⊗A Aqu ��

��

0

0 �� M ⊗A Ω1
A/K

�� M ⊗A Ω1
loc

�� M ⊗A Ω1
qu

�� 0

are exact, the snake lemma produces the canonical exact sequence

0 → H0(M) → H0
loc(M) → H1

c (M) → H1(M) → H1
loc(M) → H2

c (M) → 0. (2.5.1)
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Moreover, there are F -equivariant perfect pairings

H i(M) ×H2−i
c (M∨) → H2

c (K) = K(−1)

which correspond to Poincaré duality of overconvergent F -isocrystals; there is also an F -equivariant
perfect pairing

H0
loc(M) ×H1

loc(M
∨) → K(−1).

We will consider these further in § 3.2.

3. Higher direct images in rigid cohomology

The notion of a higher direct image is the relative version of the notion of the cohomology of a
single space. Picking up a thread from [Ked05b, § 7], we consider some simple higher direct images
in relative dimension 1.

3.1 Robba rings over dagger algebras

For the calculations in this chapter, we need to extend the definition of the Robba ring by allowing
coefficients not just in K, but in a more general dagger algebra. The correct procedure for doing
this is given in [Ked05b, § 2.5]; we quickly review it here.

For A a reduced dagger algebra, the Robba ring RA = Rt
A is defined as the ring of formal

Laurent series
∑∞

n=−∞ cnt
n, with cn ∈ A, such that for all sufficiently small r > 0 (depending on

the series), cnp	rn
 → 0 as n→ ±∞ in the fringe topology of A (that is, within some fringe algebra
depending on r). By [Ked05b, Corollary 2.5.5], it is equivalent to require that

lim
n→±∞(vA(cn) + rn) = ∞

for all sufficiently small r > 0 and that cnp	rn
 → 0 in the fringe topology of A for one value of r.
We define Ω1

RA/A as the free module over RA generated by dt, equipped with the derivation

d : RA → Ω1
RA/A,

∑
i

cit
i �→

∑
i

icit
i−1 dt.

A quick calculation [Ked05b, Proposition 3.1.4] shows that the kernel and cokernel of this deriva-
tion are isomorphic to A in the expected manner. In particular, we define the residue map Res :
Ω1
RA/A → A by sending

∑
i cit

i dt to c−1; then ω ∈ Ω1
RA/A is in the image of d if and only if

Res(ω) = 0.
We define (σ,∇)-modules over RA (or R+

A) relative to A as expected, using the relative module
of differentials Ω1

RA/A and requiring that the connection ∇ be A-linear. Then the Dwork trick admits
the following relative version.

Proposition 3.1.1. Let M be a free (σ,∇)-module over R+
A relative to A. Then there exists a basis

v1, . . . ,vn of M such that ∇vi = 0 for i = 1, . . . , n. (Note that on any such basis, F acts via a
matrix over A.)

Proof. Choose any basis e1, . . . , en of M , and define the n× n matrix N over R+
A by

∇ej =
∑

i

Nijei ⊗ dt.
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Write N =
∑∞

l=0Nlt
l; then a straightforward induction shows that there is a unique invertible n×n

matrix U = I +
∑∞

l=1 Ult
l over A[[t]] such that NU + dU/dt = 0. Namely, for each l > 0, we have

lUl +
l−1∑
i=0

NiUl−1−i = 0 (3.1.2)

and this lets us solve for Ul in terms of the Ui for i < l.
Since N has entries in R+

A, for some s > 0 we can choose a fringe algebra B such that vB(Nl) +
sl → ∞ as l → ∞. By taking s large enough, we can ensure that in fact vB(Nl) + s(l + 1) > 0
for all l. Then (3.1.2) implies easily that vB(l!Ul) + sl > 0 for all l, and so vB(Ul) + rl → ∞ for
r > s+ 1/(p − 1).

Define the invertible n× n matrix C over R+
A by

Fej =
∑

i

Cijei.

Then the condition that NU + dU/dt = 0 forces the matrix D = U−1CUσ to have entries in A.
Writing U = CUσD−1, we deduce by induction on h that for each nonnegative integer h, there is a
fringe algebra Bh such that vBh

(Ul) + rl → ∞ for r > q−h(s+ 1/(p − 1)). Therefore, U indeed has
entries in R+

A.
The same argument applied to the basis ofM∨ dual to e1, . . . , en shows that the inverse transpose

of U has entries in R+
A. Consequently the elements v1, . . . ,vn of M defined by

vj =
∑

i

Uijei

form a basis with the desired property.

There is also a relative version of the p-adic local monodromy theorem [Ked05b, Theorem 5.1.3],
which underlies the pushforward construction of the next section; however, we will not use it
explicitly.

3.2 Direct images with and without supports
Let X be a smooth irreducible k-variety, let E be an overconvergent F -isocrystal on A

1 ×X, and
let f : A

1 ×X → X denote the implicit projection. In [Ked05b, § 7], ‘generic’ higher direct images
Rif∗E and Rif!E of f are constructed over an open dense subscheme of X; this is the best one can
do within a category of locally free modules, since the rank of the corresponding cohomology space
may jump at particular fibres. We now review this construction, which follows the setup of [Cre98]
as presented earlier in § 2.5.

Let A be a dagger algebra of MW type with special fibre X, and let M be a (σ,∇)-module over
A〈x〉† corresponding to E . Then we get a map

∇v : M →M ⊗ Ω1
A〈x〉†/K →M ⊗ Ω1

A〈x〉†/A

from the projection Ω1
A〈x〉†/K

→ Ω1
A〈x〉†/A.

Embed A〈x〉† into RA = Rt
A by mapping

∑
cix

i to
∑
cit

−i. By analogy with the notations of
§ 2.5, we put

M loc = M ⊗A〈x〉† RA, Mqu = M loc/M

and let

∇loc
v : M loc →M loc ⊗RA

Ω1
RA/A

∇qu
v : Mqu → (M loc ⊗RA

Ω1
RA/A)/(M ⊗A〈x〉† Ω1

A〈x〉†/A)
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be the maps induced by ∇v. We then define

R0f∗E = ker(∇v), R1f∗E = coker(∇v)

R0
locf∗E = ker(∇loc

v ), R1
locf∗E = coker(∇loc

v )

R1f!E = ker(∇qu
v ), R2f!E = coker(∇qu

v );

we take Rif∗E , Ri
locf∗E , Rif!E to be zero for values of i not covered by the above list. We also

sometimes write M in place of E in this notation.
By the snake lemma, we have an F -equivariant exact sequence of A-modules

0 → R0f∗E → R0
locf∗E → R1f!E → R1f∗E → R1

locf∗E → R2f!E → 0. (3.2.1)

Moreover, there are canonical A-linear, F -equivariant Poincaré duality pairings

Rif∗E ×R2−if!E∨ → A(−1) (3.2.2)

Ri
locf∗E ×R1−i

loc f∗E∨ → A(−1) (3.2.3)

obtained from the canonical pairing [· , ·] : E × E∨ → A〈x〉† and the residue map Res : Ω1
RA/A → A.

By [Ked05b, Theorem 7.3.2, Proposition 7.5.2, and Proposition 8.6.1], we have the following
result.

Theorem 3.2.4. There exists a localization B of A in the category of dagger algebras of MW type,
such that Rif∗MB , Ri

locf∗MB , Rif!MB are overconvergent F -isocrystals for all i (where MB =
M ⊗B〈x〉†), and the Poincaré duality pairings are perfect. Moreover, the formation of these objects
commutes with a subsequent flat base change (e.g., further localization).

One can relate the cohomology of an overconvergent F -isocrystal to that of its direct images
(by a Leray spectral sequence); the particular instance of this relationship that we need is precisely
[Ked05b, Proposition 7.4.1].

Proposition 3.2.5. Let X be a smooth irreducible affine k-variety, let f : A
1 × X → X be the

canonical projection and let E be an overconvergent F -isocrystal on A
1×X for which R0f∗E , R1f∗E

are overconvergent F -isocrystals. Then there are canonical, F -equivariant exact sequences

H i
rig(X/K,R

0f∗E) → H i
rig(A

1 ×X/K, E) → H i−1
rig (X/K,R1f∗E)

for each i.

These short exact sequences actually come from a long exact sequence, but the connecting maps
are not F -equivariant (they are off by a Tate twist).

3.3 Degeneration in families
Our strategy for studying the cohomology of an isocrystal on a curve is to embed that isocrystal
into a family, most of whose fibres are easy to control. For this to return a result on the original
isocrystal, we need a theorem that specifies how the cohomology of an isocrystal behaves under
specialization. A corresponding statement in [Kat01] is the ‘degeneration lemma’.

We will need to work over a certain auxiliary ring. Let S denote the ring of formal double
Laurent series

∑
i,j∈Z cijs

itj over K in two variables s and t with the following property: for each
δ ∈ (0, 1) sufficiently close to 1, there exists ε ∈ (0, 1) such that the series converges for s, t ∈ Kalg

with |s| = δ and |t| ∈ (ε, 1). We use the superscripts s+ and t− to denote the subrings of S where
s occurs only with positive powers and where t occurs only with negative powers, respectively.

The value of the ring S is that it is defined using a very mild convergence restriction on series, so
many other rings naturally embed into it. Specifically, we can and will identify Rs,+

K〈x〉† and Rs
K〈x〉†
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with subrings of Ss+,t− and St−, respectively, by identifying x with t−1. In particular, this gives an
embedding of A〈x〉† into S for any localization A of K〈s〉†, since A〈x〉† ⊂ Rs

K〈x〉† .

Given a (σ,∇)-module M (which by definition is finite, hence free) over K〈s, x〉†, for any local-
ization A of K〈s〉†, we write MA for M ⊗A〈x〉†. We also write ∇s and ∇x = ∇t for the components
of ∇ mapping to M ⊗ ds and M ⊗ dx, respectively.

Theorem 3.3.1. Let M be a (σ,∇)-module over K〈s, x〉†, and let f : K〈s〉† → K〈s, x〉† denote
the canonical inclusion. Let A be a localization of K〈s〉† such that the conclusion of Theorem 3.2.4
holds for MA and M∨

A . Then there is a canonical F -equivariant injection

H1
c (M/sM) ↪→ H0

loc,s=0(R
1f!MA).

Proof. By Poincaré duality, it is equivalent to exhibiting a canonical F -equivariant pairing

H1
c (M/sM) ×H1

loc,s=0(R
1f∗M∨

A) → K(−2) (3.3.2)

which is nondegenerate on the left. Using the relative Dwork’s trick (Proposition 3.1.1), we get a
K-linear map g : M/sM →M ⊗Rs,+

K〈x〉† such that for all v ∈M/sM , g(v) reduces to v modulo s,
∇sg(v) = 0 and ∇tg(v) = g(∇tv). In particular, g induces an F -equivariant inclusion

H1
c (M/sM) ↪→ {v ∈M ⊗ S : ∇sv = 0,∇tv ∈M ⊗ St− ⊗ dx}

{v ∈M ⊗ St− : ∇sv = 0} . (3.3.3)

Note that the initial hypothesis on A (that the conclusion of Theorem 3.2.4 holds for MA

and M∨
A) is preserved by further localization of A, whereas the conclusion is insensitive to a local-

ization on A since it only concerns H0
loc,s=0(R

1f!MA). Hence, we may as well assume that s−1 ∈ A.
Then we have a natural F -equivariant nondegenerate pairing

M ⊗ S
M ⊗ St− × (M∨

A ⊗ (ds ∧ dx)) → K(−2)

given by the residue map on S ⊗ (ds ∧ dt) (i.e. extracting the coefficient of (ds/s) ∧ (dt/t)). If we
restrict on the left to the classes of those v with ∇tv ∈ M ⊗ St− ⊗ dx, then the pairing vanishes
when the right member is in (∇tM

∨
A) ⊗ ds. We thus obtain a second pairing

{v ∈M ⊗ S : ∇tv ∈M ⊗ St− ⊗ dx}
M ⊗ St− × ((R1f∗M∨

A) ⊗ ds) → K(−2)

which is again nondegenerate on the left, and remains so after tensoring the right member over A
with Rs

K . If we restrict further on the left to the classes of those v ∈M ⊗S with ∇sv = 0, then the
pairing vanishes when the right member is in ∇s(Rs

K ⊗AR
1f∗M∨

A). We thus obtain a third pairing

{v ∈M ⊗ S : ∇sv = 0,∇tv ∈M ⊗ St− ⊗ dx}
{v ∈M ⊗ St− : ∇sv = 0} ×H1

loc,s=0(R
1f∗M∨

A) → K(−2) (3.3.4)

which is again nondegenerate on the left. Combining this pairing with the inclusion (3.3.3) yields
the desired result.

Remark 3.3.5. In an earlier version of this paper, we attempted to construct the embedding of
Theorem 3.3.1 more directly, rather than deduce it from Poincaré duality. This ran into trouble
because the convergence regions defining the rings Rx

A, for A a localization of K〈s〉†, and Rs
K〈x〉†

do not share any common territory. Thus, we must avoid R1f!MA and work with its dual instead,
which can be computed in the context of dagger algebras.

3.4 More degeneration in families
We continue to consider the situation of the previous section, particularly in the case when the
injection of Theorem 3.3.1 is actually a bijection. We retain all notation from the previous section.

1437

https://doi.org/10.1112/S0010437X06002338 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X06002338


K. S. Kedlaya

In addition, for K ′ a finite extension of K, we write M ′ = M⊗KK
′, and for µ in the ring of integers

o′ of K ′ fixed by a power of σK , we write Mµ = M ′/(s − µ)M ′.

Lemma 3.4.1. Let W be an n×n invertible matrix over Rs
K . Then there exist n×n matrices U and

V such that U is invertible over Rs,+
K , V is invertible over a localization of K〈s−1〉† and W = UV .

Proof. Choose r > 0 such that wr(W ) is defined. (Note that, in this argument, applying wr to a
matrix means taking its minimum over entries, i.e. the L∞ operator norm.) Choose a matrix X over
K[s, s−1] with nonzero determinant such that wr(X −W−1) > −wr(W ); then wr(WX − I) > 0.
By [Ked04a, Proposition 6.5], we can factor WX as Y Z, with Y invertible over Rs,+

K and Z invertible
over K〈s−1〉†. Since det(X) ∈ K[s, s−1], det(X) is a unit in some localization A of K〈s−1〉†. Thus,
we may put U = Y and V = ZX−1.

Lemma 3.4.2. Let M be a (σ,∇)-module over K〈s, x〉† such that H0(M ′
µ) = 0 for all K ′ and µ.

Let A ⊆ B be localizations ofK〈s〉†, and suppose that v ∈M⊗B〈x〉† satisfies ∇tv ∈M⊗A〈x〉†⊗dx.
Then v ∈M ⊗A〈x〉†.
Proof. Put C = B ∩Rs,+

K ; it suffices to check that if s is not invertible in A, then v ∈M ⊗ C〈x〉†.
Namely, once this is done, we can repeat the argument after translating (and enlarging K as needed)
to deduce that v ∈M ⊗A〈x〉†.

By Proposition 3.1.1, we can find a basis v1, . . . ,vn of M ⊗ Rs,+
K〈x〉† such that ∇svi = 0 for

i = 1, . . . , n. From the integrability of ∇, if we write ∇tvj =
∑

iDijvi ⊗ dx, then Dij ∈ K〈x〉†
for all i, j.

Write v =
∑

i aivi with ai ∈ Rs
K〈x〉† (that is possible because v ∈ M ⊗ B〈x〉† and B〈x〉† ⊂

Rs
K〈x〉†), write formally ai =

∑
l bils

l with each bil ∈ K〈x〉†, and put wl =
∑

i bilvi. Then the

series
∑

l s
l∇twl converges (in the fringe topology of M ⊗A〈x〉†) to ∇tv, and the fact that ∇tv ∈

M ⊗Rs,+
K〈x〉† ⊗ dx implies that ∇twl = 0 for l < 0.

However, theK〈x〉†-span of the vi is a (σ,∇)-module isomorphic toM/sM , which by assumption
has no horizontal sections. Hence, ∇twl = 0 if and only if wl = 0. We conclude that wl = 0 for
l < 0, and so

v ∈M ⊗ (B〈x〉† ∩Rs,+
K〈x〉†) = M ⊗ C〈x〉†,

which, as noted above, suffices to yield the desired result.

Proposition 3.4.3. Let M be a free (σ,∇)-module over K〈s, x〉†, and let f : K〈s〉† → K〈s, x〉†
denote the canonical inclusion. Suppose that for some nonnegative integer m,

dimK ′ H0(Mµ) = dimK ′ H0(M∨
µ ) = 0, dimK ′ H1(Mµ) = dimK ′ H1(M∨

µ ) = m

for all K ′ and µ. Then R1f∗M , R1f∗M∨, R1f!M , R1f!M
∨ are free of rank m over K〈s〉†.

Proof. It is enough to show that R1f∗M and R1f!M are locally free of rankm over K〈s〉†, or likewise
after replacing K by a finite extension; by translation, it suffices to check in a neighborhood of s = 0.
Let A be a localization of K〈s〉† such that the conclusion of Theorem 3.2.4 holds for MA and M∨

A ;
we may as well assume that s is invertible in A, else we are already done.

We first treat R1f∗M and R1f∗M∨. Under our hypothesis, the pairing (3.3.2) must be perfect,
as must be (3.3.4). In fact, the pairing

[· , ·] :
{v ∈M ⊗ Ss+ : ∇sv = 0,∇tv ∈M ⊗ Ss+,t− ⊗ dx}

{v ∈M ⊗ Ss+,t− : ∇sv = 0} ×H1
loc,s=0(R

1f∗M∨
A) → K(−2)

must then also be perfect: it is nondegenerate on the left, and the left factor has K-dimension at
least as large as does the second factor.
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Choose a basis v1, . . . ,vm of H1
c (M/sM). Then the map h : (R1f∗M∨

A)⊗ARs
K → (Rs

K)m defined
by

w �→
(∑

l∈Z
sl[g(vi), s−lw ⊗ ds]

)
1�i�m

with g and [· , ·] as in Theorem 3.3.1, is an isomorphism of Rs
K -modules. By Lemma 3.4.1, for

some localization B of A, we can find elements w1, . . . ,wm of R1f∗M∨
B such that the images

h(w1), . . . , h(wm) lie in (Rs,+
K )m and freely generate (Rs,+

K )m over Rs,+
K . Choose xj ∈ M∨

B ⊗ dx
whose image in R1f∗M∨

B is equal to wj. Then [g(vi), s−lxj ⊗ ds] = 0 for l < 0, so each xj lies in

M∨ ⊗ (B〈x〉† ∩ Ss+) ⊗ dx = M∨ ⊗C〈x〉† ⊗ dx,

where we write C = B ∩Rs,+
K ; this is a localization of K〈s〉† in which s is not invertible.

Now given any w ∈ R1f∗M∨
C which is the image of some x ∈ M∨

C ⊗ dx, we can uniquely write
w =

∑
j bjwj with bj ∈ B. On the other hand, in the equality h(w) =

∑
j bjh(wj), h(w) belongs

to (Rs,+
K )m, and the h(wj) generate (Rs,+

K )m freely over Rs,+
K . Therefore, each bj in fact belongs to

B ∩Rs,+
K = C.

That is, given x ∈M∨
C ⊗ dx, x−∑

j bjxj is an element of M∨
C ⊗ dx which vanishes in R1f∗M∨

B .
By Lemma 3.4.2 (and using the hypothesis on the vanishing of H0), x − ∑

j bjxj already vanishes
in R1f∗M∨

C . Hence, R1f∗M∨
C is freely generated by the wj. As noted above, this suffices to imply

that R1f∗M∨ is free of rank m; by the same argument, R1f∗M is free of rank m.

We next consider R1f!M . Choose a basis of R1f∗M∨, and let v1, . . . ,vm be the dual basis of
R1f!MA. Then under the residue pairing

M ⊗Rt
A

M ⊗A〈x〉† × (M∨ ⊗ dx) → A,

each vi always pairs into K〈s〉†. Hence, vi is represented by an element of M ⊗ Rt
K〈s〉† , and so

belongs to R1f!M . Similarly, given any element of R1f!M , we can write it uniquely as an A-linear
combination of the vi and then observe that the coefficients actually lie in K〈s〉†. Thus, R1f!M
(and likewise R1f!M

∨) is also free of rank m, as desired.

4. A p-adic Fourier transform

Laumon’s ‘principle of stationary phase’ asserts that one can gain information about a single coeffi-
cient object by putting it into a family with twists by certain characters, i.e. by applying a Fourier
transform. The p-adic Fourier transform was first constructed algebraically by Mebkhout [Meb97],
who originated the idea of using it to imitate Laumon’s proof of Weil II in p-adic cohomology; much
of its subsequent study is due to Huyghe [Huy95a, Huy95b, Huy95c, Huy04]. In particular, Huyghe
gave a geometric interpretation of this construction using a notion of a sheaf of overconvergent
differential operators, as proposed by Berthelot.

As one might expect from the 	-adic situation, the Fourier transform acts not on the class of
overconvergent F -isocrystals, but on a broader class of D†-modules. For our purposes, we will need
to know some conditions under which the Fourier transform of an overconvergent F -isocrystal is
again an overconvergent F -isocrystal; this is provided by an analogue of the Grothendieck–Ogg–
Shafarevich formula.

Throughout this section, we assume that K contains a primitive pth root of unity. It is equivalent
to assume that K contains a (p− 1)th root of −p, which we will call π.
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4.1 The algebraic Fourier transform
Let A(K) be the Weyl algebra in the variable x, whose elements we write as finite sums∑∞

i,j=0 aijx
i∂[j], with ∂[j] = 1

j!
∂j

∂xj . By virtue of the commutation relation ∂[j]x = x∂[j] + ∂[j−1],
we may form the weak completion A(K)†, consisting of those sums

∑∞
i,j=0 aijx

i∂[j] for which∑
aijx

iyj ∈ K〈x, y〉†, and this set will inherit a ring structure by continuity from A(K) (this is
worked out in detail in both [Meb97, § 2.2] and [Huy95a, Chapitre 1]). Similarly, A(K)† inherits
from A(K) an automorphism ρ sending x and ∂ to −∂/π and xπ, respectively; define the algebraic
Fourier transform of a left A(K)†-module M to be its pullback M̂ by this automorphism. We think
of M̂ as having the same underlying set as M but a different module structure.

Remark 4.1.1. Huyghe also defines an n-dimensional Weyl algebra An(K)†; our A(K)† is her
A1(K)†.

Let M be a (σ,∇)-module over K〈x〉†. Then M carries an action of A(K) in which ∇v =
(∂v) ⊗ dx. It is not immediately obvious that this extends to a left action of A(K)† by continuity,
but this was shown to be the case by Berthelot [Ber96, Théorème 4.4.5]. Thus, we may define the
Fourier transform of a (σ,∇)-module over K〈x〉†, but the result is only a priori a left A(K)†-module.
In order to again make it a (σ,∇)-module (i.e. to get it to be finitely generated over K〈x〉†) we
must impose further conditions, and use the geometric interpretation of the next section.

4.2 The geometric Fourier transform
The Dwork isocrystal on the x-line A

1 is the overconvergent F -isocrystal of rank one corresponding
to the (σ,∇)-module L over K〈x〉† with a generator e satisfying

Fe = exp(πx− πxσ)e, ∇e = πe ⊗ dx.

This isocrystal becomes trivial after adjoining u such that up − u = x; this implies that L⊗p is
trivial.

For any dagger algebra A and any f ∈ Aint, we identify f with the map K〈x〉† → A mapping
x to f , and write Lf for f∗L. Note that Lf+g = Lf ⊗ Lg and that the isomorphism class of Lf

depends only on f modulo π.
Let M be a (σ,∇)-module over K〈x〉†, and let f : K〈s〉† → K〈s, x〉† and g : K〈x〉† → K〈s, x〉†

be the canonical embeddings. Then g∗M and Lsx are (σ,∇)-modules over K〈s, x〉†, as is

N = g∗M ⊗K〈s,x〉† Lsx.

We can decompose Ω1
K〈s,x〉† into two rank-one submodules, generated by ds and dx. Let ∇s and ∇x

be the components of the connection on N mapping to these two submodules.
We define the geometric Fourier transform of M as M̂geom = coker∇x; it carries a natural left

A(K)†-module structure (inherited from the A2(K)†-module structure of N , where A2(K)† is as in
Remark 4.1.1).

Proposition 4.2.1. Let M be a (σ,∇)-module over K〈x〉†. Then there is a canonical isomorphism

M̂ → M̂geom of left A(K)†-modules.

Proof. The map in question is defined as follows. Remember that we are thinking of M and M̂
as having the same underlying set. We then identify M with a subset of g∗M via g, and in turn
identify g∗M with N by identifying w ∈ g∗M with w ⊗ e (where e is the distinguished generator
used in the definition of L or, more precisely, its image in Lsx). The desired map is now constructed
by tracing through these identifications, then composing with the map N → coker∇x induced by
v �→ v ⊗ dx. The fact that it is bijective follows from [Huy95c, Théorème 4].
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For our purposes, the main significance of this result is the following, which we state in the
notation of § 3.4.

Proposition 4.2.2. Let M be a (σ,∇)-module over K〈x〉†. Suppose that there exists a nonnegative
integer d such that for each K ′ and µ,

dimK ′ H0(M ⊗ Lµx) = dimK ′ H0(M∨ ⊗ Lµx) = 0,

dimK ′ H1(M ⊗ Lµx) = dimK ′ H1(M∨ ⊗ Lµx) = d.

Then M̂ is a free (σ,∇)-module of rank d over K〈s〉†. If, in addition, M is irreducible as a (σ,∇)-
module, then M̂ is irreducible as a (σ,∇)-module.

Proof. The first assertion follows immediately from Proposition 3.4.3 (which shows that M̂geom is
free of rank d) and Proposition 4.2.1 (which shows that M̂ ∼= M̂geom), so we focus on the second.
If M̂ is reducible as a (σ,∇)-module, it has a Frobenius-stable A(K)†-submodule N̂ such that N̂ and
M̂/N̂ are infinite-dimensional K-vector spaces. Undoing the Fourier transform gives a Frobenius-
stable A(K)†-submodule N of M such that N and M/N are infinite-dimensional K-vector spaces
(note that we are using the geometric interpretation to get the Frobenius stability). However, then
N is a (σ,∇)-submodule of M such that N and M/N are nontrivial, so M is reducible. Hence, if M
is irreducible, then so is M̂ .

4.3 An Euler characteristic formula
In order to apply the results of the previous section to a (σ,∇)-module M over K〈x〉†, we need to
establish conditions under which the dimension of H1(M⊗Lµx) does not depend on µ. This requires
a formula for this dimension; in this section, we establish such a formula using some recent results
in p-adic cohomology.

The 	-adic analogue of the formula we seek is the Grothendieck–Ogg–Shafarevich formula [Gro77]
(see also [Ray66]), which relates the Euler–Poincaré characteristic of a lisse sheaf on a curve to the
local monodromy at the missing points. Naturally, its p-adic analogue will also be given in terms
of local monodromy.

Let C be a smooth irreducible affine curve over k, let C be the smooth compactification of k, and
let E be an overconvergent F -isocrystal on C. Let x be a closed point of C \C, let E be the fraction
field of the completed local ring of C at x, and let F be a Galois extension of E over which the local
monodromy of E at x becomes unipotent (or, more precisely, over which the module obtained from a
(σ,∇)-module corresponding to E by tensoring up to a Robba ring Rx corresponding to x becomes
unipotent). Let f be the residue field degree of F/E, and let G be the Galois group Gal(F/E).

Let Swanx(E) denote the Swan conductor (see [Ser79] and/or [Kat88, ch. 1] for definitions and
properties) of the representation of G on the local monodromy of E at x, i.e. on the horizontal
sections of E over the extension of Rx corresponding to F (and the horizontal sections of the
quotient of E by the span of all horizontal sections, and so on).

In terms of the Swan conductor, the desired analogue of the Grothendieck–Ogg–Shafarevich
formula is as follows.

Theorem 4.3.1. Let E be an overconvergent F -isocrystal on a smooth irreducible affine curve C
over k, and write

χ(C/K, E) = dimK H0
rig(C/K, E) − dimK H1

rig(C/K, E).
Then

χ(C/K, E) = χ(C/K,OC ) rank(E) −
∑

x∈C\C
[κ(x) : k] Swanx(E). (4.3.2)
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Proof. Recall the following two results.

(a) A theorem of Christol and Mebkhout [CM01, Corollaire 5.0–12] states that

χ(C/K, E) = χ(C/K,OC ) rank(E) −
∑

x∈C\C
[κ(x) : k] Irrx(E),

where Irr is the ‘irregularity’ of E at x (a generalized form of a definition of Robba).

(b) A theorem of Crew [Cre00, Theorem 5.4], Matsuda [Mat02, Theorem 8.6], and Tsuzuki [Tsu98,
Theorem 7.2.2] states that

Irrx(E) = Swanx(E).

Combining these results yields the theorem.

Using Theorem 4.3.1, we obtain the following result.

Proposition 4.3.3. Let M be a (σ,∇)-module over K〈x〉†. Then there exists an integer N with
the following property: for any integer d > N not divisible by p, and for any monic polynomial
P ∈ o[x] of degree d, we have

dimK H0
loc(M ⊗ LP ) = dimK H1

loc(M ⊗ LP ) = 0,

dimK H0(M ⊗ LP ) = 0, dimK H1(M ⊗ LP ) = (d− 1) rank(M).

Proof. Let ρ : G → GL(V ) be the local monodromy representation of M at infinity; then the local
monodromy representation of M ⊗ LP at infinity is equal to ρ ⊗ ψP , for ψP a suitable nontrivial
character of the Galois group Gal(L/k((t−1))), with L = k((t−1))[u]/(up − u− P (t)). Let N be the
largest break of ρ; this will turn out to be a good choice.

Suppose d > N ; then ρ⊗ψP has all ramification breaks equal to d. That first implies that ρ⊗ψP

has no trivial subrepresentations, so dimH0
loc(M ⊗ LP ) = dimH0

loc(M
∨ ⊗ L−P ) = 0; by Poincaré

duality, we also have dimH1
loc(M ⊗ LP ) = 0. It next implies that Swan∞(ρ⊗ ψP ) = d rank(M), so

by Theorem 4.3.1 we compute

χ(M ⊗ LP ) = χ(A1) rank(M) − Swan∞(M)
= rank(M) − d rank(M) = (1 − d) rank(M).

Since H0(M ⊗ LP ) injects into H0
loc(M ⊗ LP ) by the exactness of (2.5.1), it also vanishes, and we

conclude that dimK H1(M ⊗LP ) = (d− 1) rank(M), as desired.

In particular, when n is sufficiently large and not divisible by p, for any r, s in the ring of
integers o′ of a finite extension K ′ of K, with r not in the maximal ideal of o′, we have that
dimK ′ H0(M ⊗ Lrxn+s) = dimK ′ H0(M∨ ⊗ R−rxn−s) = 0, while dimK ′ H1(M ⊗ Lrxn+s) and
dimK ′ H1(M∨ ⊗ L−rxn−s) are equal to each other and to a common value not depending on r
or s. Hence, we may apply Proposition 4.2.2 to deduce that the Fourier transform of M ⊗ Lrxn is
also a (σ,∇)-module over K〈s〉†, which is irreducible if and only if M ⊗ Lrxn is irreducible.

5. Cohomology over finite fields

With the geometric setup in place, we now introduce the archimedean considerations that will yield
our analogue of Weil II, following the trail blazed by Crew [Cre92, Cre98].

In this section, we again take k = Fq and σK to be the identity map. Also, unless otherwise
specified, all curves will be smooth, geometrically irreducible, affine, and defined over Fq.
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We will always let ι denote an embedding Kalg ↪→ C. As in [Del80], this contrivance is really
just a technical convenience, but one whose removal would make the exposition substantially more
awkward.

5.1 Weights
In this section, we introduce the notions of weights in rigid cohomology, following Crew [Cre98].

Suppose q′ = qa, and K ′ is the smallest unramified extension of K whose residue field con-
tains Fq′ . For T : V → V an endomorphism of a finite-dimensional K ′-vector space, we say that:

• T is ι-pure of weight w if for each eigenvalue α of T , we have |ι(α)| = q(w/2)a;
• T is ι-mixed of weight at least w (respectively at most w) if for each eigenvalue α of T , we have

|ι(α)| = q((w+i)/2)a for some integer i = i(α) � 0 (respectively i � 0);
• T is ι-real if the characteristic polynomial of T has coefficients which map under ι into R;

in other words, the eigenvalues of T : V ⊗ι C → V ⊗ι C occur in complex conjugate pairs.

If E is an overconvergent F -isocrystal on a smooth Fq-variety X, then we say that E has one of the
above properties pointwise (or punctually) if the linear transformation Fx on Ex has that property
for each closed point x of X, when we take Fq′ = κ(x). This immediately implies that H0

rig(X/K, E)
has the same property, since the action of Frobenius on its elements can be read off by restricting
them to any fibre of E .

We say that E is ι-realizable if E is a direct summand of a pointwise ι-real overconvergent
F -isocrystal. Note that if E is pointwise ι-pure of some weight w, then E is ι-realizable, since
E ⊕ E∨(−w) is pointwise ι-real.

Remark 5.1.1. It is conventional to omit the word ‘pointwise’ when referring to ι-purity or ι-reality.
However, one cannot do this with mixedness, as Deligne’s notion of ι-mixedness is genuinely global:
it requires that E have a filtration whose successive quotients are each ι-pure. (Over a point, this
coincides with our pointwise ι-mixedness.)

Theorem 5.1.2. The Jordan–Hölder constituents of an ι-real overconvergent F -isocrystal on a curve
X are all ι-pure. In particular, any irreducible ι-realizable overconvergent F -isocrystal X is ι-pure
of some weight.

Proof. The assertion, which parallels [Del80, Théorème 1.5.1], is [Cre98, Theorem 10.5] once one
verifies the hypothesis of quasi-unipotence. However, this follows from the p-adic local monodromy
theorem, as shown in [MT04, Corollaire 8].

Remark 5.1.3. In the 	-adic context, one can deduce the same result for more generalX by restricting
to a suitable curve; this amounts to an application of Bertini’s theorem. (See, for instance, [KW01,
Theorem I.4.3].) We expect a similar result to hold in the p-adic setting, but its proof will be a bit
more technical; in its absence, we will have to be a bit careful in order to work around it.

Proposition 5.1.4. Let E be an overconvergent F -isocrystal on a curve X which is ι-pure of
weight w. Then H0

loc(X/K, E) is ι-mixed of weight at most w.

Proof. We may replace X by a finite cover without loss of generality; in particular, by the p-adic
local monodromy theorem (Proposition 2.4.2), we may reduce to the case where E is unipotent at
each point x of X \X, for X a smooth compactification of X. The result, which parallels [Del80,
Théorème 1.8.4], now follows from [Cre98, Theorem 10.8].

As in the 	-adic situation, Proposition 5.1.4 can be viewed as affirming a form of the weight-
monodromy conjecture in equal characteristics; we omit further details. One may also deduce an
equidistribution theorem for Frobenius eigenvalues; see [Cre98, Theorem 10.11].
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5.2 Weil II on the affine line
We can now deduce our main result on the affine line. We first use the Fourier transform to derive
a key special case, in which one gets a stronger conclusion.

Theorem 5.2.1. Let M be an irreducible (σ,∇)-module over K〈x〉† which is ι-pure of weight w.
Suppose there is a nonnegative integer d with the following property: for any finite extension K ′

of K and any a in the ring of integers of K ′, if we put M ′ = M ⊗K K ′, we then have
dimK ′ H0

loc,∞(M ′⊗Lax) = dimK ′ H1
loc,∞(M ′⊗Lax) = 0 and dimK ′ H1(M ′⊗Lax) = d. Then H1(M)

and H1
c (M) are ι-pure of weight w + 1.

Proof. Without loss of generality, assume that K contains π such that πp−1 = −p, and that w = 0,
so that M and M∨ have complex conjugate trace functions; then the same is true of M ′ ⊗Lax and
(M ′)∨ ⊗ L−ax. By Poincaré duality, we have a perfect pairing for each a:

H1
c (M ′ ⊗ Lax) ×H1((M ′)∨ ⊗L−ax) → H2

c (K ′〈x〉†) ∼= K ′(−1).

Given the assumption dimK ′ H0
loc,∞(M ′ ⊗ Lax) = dimK ′ H1

loc,∞(M ′ ⊗ Lax) = 0, the ‘forget sup-
ports’ map H1

c (M ′ ⊗ Lax) → H1(M ′ ⊗ Lax) in (2.5.1) must be an isomorphism. We thus have an
F -equivariant perfect pairing

H1(M ′ ⊗ Lax) ×H1((M ′)∨ ⊗ L−ax) → K ′(−1). (5.2.2)

In particular, dimK ′ H1((M ′)∨ ⊗ L−ax) = d by duality.

By Proposition 3.4.3, M̂ and M̂∨ are (σ,∇)-modules over K〈x〉†. Moreover, M̂ and the pullback
of M̂∨ by the map x → −x have pointwise complex conjugate trace functions, so their direct sum
is ι-real. By Proposition 4.2.2, each of them is irreducible, and hence by Theorem 5.1.2 is ι-pure of
some weight j, necessarily the same for both (again since they have pointwise complex conjugate
traces).

In the pairing (5.2.2), each factor on the left is ι-pure of weight j, and the object on the right
is ι-pure of weight 2. This is only possible if j + j = 2, so j = 1. Thus, M̂ is ι-pure of weight 1, as
then is any fibre, including H1(M) ∼= H1

c (M).

By degenerating this purity result, we get the desired statement on A
1.

Theorem 5.2.3. Let E be an overconvergent F -isocrystal on A
1 which is ι-realizable and ι-mixed

of weight � w. Then H1
rig(A

1/K, E) is ι-mixed of weight at least w + 1.

Proof. Let M be a (σ,∇)-module over K〈x〉† corresponding to E . By a snake lemma argument,
there is no loss of generality in assuming that M is irreducible; in particular, by Theorem 5.1.2, M
is ι-pure of some weight, which we take to be w.

Choose an integer N satisfying the conclusion of Proposition 4.3.3 for M and for M∨.
Choose n > N not divisible by p, let f : K〈x〉† → K〈s, x〉† and g : K〈s〉† → K〈s, x〉† be the
canonical embeddings, and define a (σ,∇)-module on K〈s, x〉† by

Q = f∗M∨ ⊗K〈s,x〉† Lsxn .

(Geometrically, this corresponds to pulling back M∨ from A
1 to A

2 and twisting by a certain line
bundle, as in the Fourier transform.) By Theorem 3.2.4, there exists a localization A of K〈s, s−1〉†
over which R1g!QA and R1g∗QA are (σ,∇)-modules, where QA = Q ⊗ A〈x〉†. By Theorem 3.3.1,
we have an F -equivariant injection

H1
c,rig(M

∨) ↪→ H0
loc(R

1g!QA).
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By Proposition 4.3.3 and the choice of N , for K ′ a finite extension of K and a, c
integers in K ′ with a not reducing to zero in the residue field, dimK ′ H0

loc((M
′)∨ ⊗ Laxn+cx) =

dimK ′ H1
loc((M

′)∨ ⊗ Laxn+cx) = 0 and the K ′-dimension of H1((M ′)∨ ⊗ Laxn+cx) does not
depend on c. By Theorem 5.2.1, H1

c (M∨ ⊗ Laxn) is ι-pure of weight −w + 1; in other words,
R1g!QA is ι-pure of weight −w+1. By Proposition 5.1.4, H0

loc(R
1g!QA) is ι-mixed of weight at most

−w+ 1, so H1
c,rig(M

∨) is as well. By Poincaré duality, H1
rig(M) is ι-mixed of weight at least w + 1,

as desired.

5.3 Rigid Weil II and the Weil conjectures
To apply our results to arbitrary smooth varieties, we employ the formalism of rigid cohomology.
In so doing, we recover the Riemann hypothesis component of the Weil conjectures.

As in [Ked05b], we use the following geometric lemma proved in [Ked05a]. This allows us to
reduce consideration of a complicated isocrystal on a complicated variety to a more complicated
isocrystal on a less complicated variety, namely affine space.

Proposition 5.3.1. Let X be a smooth k-variety of dimension n, for k a field of characteristic
p > 0, and let S be a zero-dimensional closed subscheme of X. Then X contains an open dense
affine subvariety containing S and admitting a finite étale morphism to affine n-space.

Theorem 5.3.2 (Rigid Weil II over a point). Let X be a variety (reduced separated scheme of finite
type) over Fq, and let E be an ι-realizable overconvergent F -isocrystal on X.

(a) If E is ι-mixed of weight at most w, then for each i, H i
c,rig(X/K, E) is ι-mixed of weight at

most w + i.

(b) If X is smooth and E is ι-mixed of weight at least w, then for each i, H i
rig(X/K, E) is ι-mixed

of weight at least w + i.

Proof. We prove the result (for all q) by induction primarily on n = dimX and secondarily on
rank E . Before proceeding to the main argument, we give a number of preliminary reductions.

Note that part (b) follows from part (a) by Poincaré duality. On the other hand, using the
excision exact sequence (2.1.1) and the induction hypothesis, we may assume in part (a) that X is
affine and smooth of pure dimension n. By Poincaré duality again, we may now reduce to proving
just part (b) for X, or for any one open dense subset of X.

There is no loss of generality in enlarging K, so we assume w = 0 by twisting as necessary.
By Proposition 5.3.1, X admits an open dense affine subscheme U which in turn admits a finite étale
morphism f : U → A

n. As noted earlier, we may replace X by U by excision; since H i
rig(U/K, E) ∼=

H i
rig(A

n/K, f∗E), we may in turn reduce to the case X = A
n.

Finally, note that we may assume that E is irreducible: if 0 → E1 → E → E2 → 0 is a short exact
sequence of overconvergent F -isocrystals on X, then proving part (b) for E1 and E2 implies part (b)
for E by the evident long exact sequence in homology.

With these reductions in hand, we proceed to the main argument. Choose a decomposition
A

n ∼= A
1 ×A

n−1 and let f : A
n → A

n−1 be the associated projection. By Theorem 3.2.4, there is an
open dense subset W of A

n−1 on which the kernel F0 and cokernel F1 of the vertical connection ∇v

on E are overconvergent F -isocrystals (and similarly for E∨). By applying excision, we may reduce
to the case X = A

1 ×W .
Note that f∗F0 is canonically isomorphic to a sub-F -isocrystal of E . By the irreducibility hypo-

thesis on E , if F0 is nonzero, then E = f∗F0. In this case, H i
rig(X/K, E) ∼= H i

rig(W/K,F0) by the
Künneth decomposition [Ked05b, Theorem 1.2.4] and so the desired result follows by the induction
hypothesis. We may thus assume that F0 = 0.
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Since E is ι-realizable, we may choose an overconvergent F -isocrystal E ′ on X such that E ⊕E ′ is
ι-real; we may assume that E ′ is semisimple, since passing from E ′ to its semisimplification does not
change traces. By shrinking W if needed, we may ensure by Theorem 3.2.4 again that the kernel F ′

0

and cokernel F ′
1 of the vertical connection ∇v on E ′ are overconvergent F -isocrystals (and similarly

for (E ′)∨). Again, f∗F ′
0 is canonically isomorphic to a sub-F -isocrystal of E ′; in particular, it is

ι-realizable, as then is its restriction to {0} ×W . In other words, F ′
0 itself is ι-realizable.

The trace formula (2.1.2) shows that the trace of Frobenius on a fibre of F1, plus on that fibre of
F ′

1, minus on that fibre of F ′
0, is ι-real. Since F ′

0 is ι-realizable, we deduce that F1⊕F ′
1 is ι-realizable.

In particular, F1 is ι-realizable. By Theorem 5.2.3 applied to each fibre, F1 is ι-mixed of weight
at least 1. Thus by the induction hypothesis, H i

rig(W/K,F1) is ι-mixed of weight at least i+ 1 for
each i. By Proposition 3.2.5, we have an F -equivariant exact sequence

0 → H i
rig(X/K, E) → H i−1

rig (W/K,F1).

(In the application of Proposition 3.2.5, the space X there is our W , and the Rif∗E there are our Fi;
remember that F0 vanishes.) Hence, H i

rig(X/K, E) is ι-mixed of weight at least i for all i. That is,
part (b) holds on X, which, thanks to the reductions, completes the induction.

Remark 5.3.3. We describe Theorem 5.3.2 as rigid Weil II ‘over a point’ because Deligne’s
theorem also treats the relative case. We do not attempt to give a relative theorem here for two
reasons. The more serious reason is that we do not have a category containing the overconvergent
F -isocrystals admitting Grothendieck’s six operations, so we are unable to even formulate a proper
analogue. (As noted earlier, the correct setting is Berthelot’s theory of arithmetic D-modules; Caro’s
work [Car04] provides a potential shortcut around some technical difficulties in Berthelot’s theory.)
The other reason is that we are using a pointwise definition of ι-mixedness, whereas Deligne’s
theorem uses a global definition; see Remark 5.1.1. Remedying this discrepancy will require extend-
ing Theorem 5.1.2 to general varieties; see Remark 5.1.3.

For completeness, we point out how Theorem 5.3.2 plus the formalism of rigid cohomology imply
the Weil conjectures in the following form.

(a) Analytic continuation. For X a variety over Fq, the generating function

ζX(t) = exp
( ∞∑

n=1

#X(Fqn)
tn

n

)

can be written as a product
∏2 dim X

i=0 Pi(t)(−1)i+1
, where each Pi(t) is a polynomial with integer

coefficients and constant coefficient 1.
(b) Functional equation. If X is smooth, proper, and purely of dimension n, then the product

representation can be chosen so that

P2n−i(t) = ctjPi(t−1)

for some integer j and some nonzero rational number c.
(c) Riemann hypothesis. If X is smooth, proper, and purely of dimension n, then the product

representation can be chosen so that each complex root of Pi has reciprocal absolute value qi/2.

Part (a) follows from the Lefschetz trace formula (2.1.2) and the finite dimensionality of rigid
cohomology (with constant coefficients), taking Pi(t) = det(1 − Ft,H i

c,rig(X/K)). Part (b) follows
from Poincaré duality and the fact that H i

c,rig(X/K) ∼= H i
rig(X/K) when X is proper. Part (c)

follows from Theorem 5.3.2: it implies, on the one hand, that for any ι, H i
c,rig(X/K) is ι-mixed of

weight at most i and, on the other hand, that H i
c,rig(X/K)∨ ∼= H2n−i

rig (X/K)(n) ∼= H2n−i
c,rig (X/K)(n)

is ι-mixed of weight at most (2n − i) − 2n = −i. Hence, H i
c,rig(X/K) is ι-pure of weight i.
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5.4 The p-adic situation
In closing, it is worth pointing out that one can set up the same sort of framework using the p-adic
valuation on Kalg as the weight formalism using the archimedean valuation on C. This points
out one of the benefits of having p-adic Weil II at hand: one can treat both archimedean and
p-adic valuations within the same formalism. (The fact that Dwork-style techniques lead to con-
trol on p-adic valuations of coefficients of zeta functions is well known: only the cohomological
interpretation is novel.)

We say that an element α ∈ Kalg has slope s if |α| = |qs|; note that this means s can be any
rational number, not just an integer. (The term ‘slope’ derives from the fact that the valuations of
roots of polynomials are typically computed as slopes of certain Newton polygons.) An overconver-
gent F -isocrystal E on an Fq-scheme X is said to have slopes in the interval [r, s] if for each closed
point x of X of degree d over Fq, the eigenvalues of Fx on Ex have slopes in the interval [dr, ds].

One cannot expect to precisely determine the slopes of the cohomology of an overconvergent
F -isocrystal, nor to limit them to integral values; for instance, the cohomology of an elliptic curve
can have slopes 0 and 1 (in the ordinary case) or 1

2 and 1
2 (in the supersingular case). The best

we can do is limit the range of the variation as follows.

Theorem 5.4.1. Let X be an Fq-variety of dimension n, and let E be an overconvergent F -isocrystal
on X which has slopes in the interval [r, s]. Then for 0 � i � 2n, H i

c,rig(X/K, E) has slopes in the

interval [r + max{0, i − n}, s + min{i, n}]. If X is smooth, then H i
rig(X/K, E) also has slopes in

the interval [r + max{0, i − n}, s+ min{i, n}].

The key step in the proof of this theorem is the following innocuous-looking lemma.

Lemma 5.4.2. Let E be an overconvergent F -isocrystal on an affine curve C which has slopes in the
interval [0,∞). Then H1

c,rig(C/K, E) also has slopes in the interval [0,∞).

Proof. By excision, there is no harm in shrinking C; hence, by Proposition 5.3.1, we may assume
that C admits a finite étale map to A

1. By pushing forward, we may then assume that, in fact,
C = A

1. Then by the usual long exact sequence in homology, we may reduce to the case of E
irreducible; in particular, we may assume that H0

rig(A
1/K, E) = H0

rig(A
1/K, E∨) = 0, since there is

nothing to check whether E is spanned by horizontal sections (as H1
c,rig(A

1/K, E) vanishes in this
case).

It suffices to show that Trace(F i,H1
c,rig(A

1/K, E)) has nonnegative p-adic valuation. By the
Lefschetz trace formula (2.1.2), we have

Trace(F,H1
c,rig(A

1/K, E)) = Trace(F,H2
c,rig(A

1/K, E)) −
∑

x∈A1(Fq)

Trace(Fx, Ex).

By Poincaré duality, H2
c,rig(A

1/K, E) vanishes, while the trace of Fx on each Ex has nonnegative
p-adic valuation. This yields the desired integrality for i = 1; the general result follows by repeating
the argument over Fqi .

Proof of Theorem 5.4.1. We first verify the desired result for X = A
1; for brevity, let M be a

(σ,∇)-module over K〈x〉† corresponding to E . The case i = 0 is straightforward, again since H0(M)
embeds F -equivariantly into any fibre of M ; similarly for i = 2 via Poincaré duality. As for the case
i = 1, Lemma 5.4.2 (applied after a twist) implies that H1

c (M) has slopes in the interval [r,∞),
and that H1

c (M∨) has slopes in the interval [−s,∞). By Grothendieck’s specialization theorem
(see, e.g., [Ked04a, Proposition 5.14]), H0

loc(M) has slopes in the interval [r, s]; by Poincaré
duality, H1

loc(M
∨) has slopes in the interval [−s+ 1,−r + 1]. Since H1(M∨) sits between H1

c (M∨)
and H1

loc(M
∨) in the exact sequence (2.5.1), it has slopes in the interval [−s,∞). By Poincaré
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duality, H1
c (M) has slopes in the interval [r,∞) ∩ (−∞, s+ 1] = [r, s + 1]. Similarly for H1(M) by

the same arguments applied to M∨ plus Poincaré duality.
We now proceed to the general case, where we proceed by induction on n = dimX; we may

assume that X is irreducible. By Poincaré duality, it suffices to consider the case of cohomology
with compact supports. If U is an open subset of X and Z = X \ U , the excision sequence (2.1.1)
trapsH i

c,rig(X/K, E) between H i
c,rig(U/K, E) and H i

c,rig(Z/K, E). Assuming the induction hypothesis
and the fact that the claim holds over U , the terms surrounding H i

c,rig(X/K, E) have slopes in the
intervals

[r + max{0, i − n}, s+ min{i, n}] and [r + max{0, i− dim(Z)}, s + min{i,dim(Z)}].
Since dim(Z) � n and i − dim(Z) � i − n, the union of these intervals is [r + max{0, i − n},
s+ min{i, n}]. In other words, to prove the desired result over X, it suffices to prove it over U .

Now apply Proposition 5.3.1 and excision again, as in Theorem 5.3.2, to reduce consideration
to the case where X = A

1 ×W , f : X →W is the canonical projection, and Rjf∗E and Rjf∗E∨ are
overconvergent F -isocrystals on W for j = 0, 1. Now we switch to considering cohomology without
supports (since we no longer need excision). Applying the affine line case fibrewise, we see that Rjf∗E
has slopes in the interval [r, s+ j] for j = 0, 1. By the induction hypothesis, H i

rig(W/K,R0f∗E) has
slopes in the interval [r+ max{0, i−n+ 1}, s+ min{i, n− 1}] and H i−1

rig (W/K,R1f∗E) has slopes in
the interval [r + max{0, i − n}, s + min{i, n}]. By Proposition 3.2.5, H i

rig(X/K, E) thus has slopes
in the interval [r + max{0, i − n}, s+ min{i, n}], as desired.
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