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Abstract. We present a mechanism by which gas giants form efficiently around intermediate
mass stars. MRI-driven turbulence effectively drives angular momentum transport in regions
of the disk with sufficiently high ionization fraction. In the inner regions of the disk, where
the midplane temperature is above ∼1000 K, thermal ionization effectively couples the disk
to the magnetic field, providing a relatively large viscosity. A pressure maximum will develop
outside of this region as the gaseous disk approaches a steady-state surface density profile,
trapping migrating solid material. This rocky material will coagulate into planetesimals which
grow rapidly until they reach isolation mass. Around intermediate mass stars, viscous heating
will push the critical radius for thermal ionization of the midplane out to around 1 AU. This
will increase the isolation mass for solid cores. Planets formed here may migrate inwards due to
type II migration, but they will induce the formation of subsequent giant planets at the outer
edge of the gap they have opened. In this manner, gas giants can form around intermediate
mass stars at a few AU.
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1. Introduction
Most surveys to detect extrasolar planets using radial velocity (RV) techniques have focused

on solar type stars due to their favorable spectral characteristics. While on the main sequence,
intermediate mass stars (stars with 1.5M� � M∗ � 3M�) make poor RV candidates as they
only have a small number of spectral lines, and those tend to be relatively broad. However, once
these stars evolve off the main sequence their cooler, slower rotating outer layers make them
more suitable targets. Recent RV surveys targeting evolved intermediate mass stars suggest that
planets around these stars have interesting distinctions from those around solar type stars (Lovis
& Mayor 2007). The frequency of giant planets may be higher around intermediate mass stars.
Also, they apparently lack closer in planets, even when taking into account planets whose orbits
have been disrupted by stellar evolution. (Johnson 2007).

In order to understand these differences we look at the structure of the protoplanetary disk
from which the planets must have formed. In the core accretion gas-capture model of planet
formation (eg. Bodenheimer & Pollack 1986) gas giant formation requires a large ∼ 10M⊕ solid
core to form in the presence of the gaseous disk. Therefore the we must understand how solids
migrate and are retained in gaseous disks in order to understand the distribution of gas giant
planets.

In most regions of the disk, the midplane gas pressure, Pm id , decreases with r so that the
azimuthal velocity of the gas, Vφ , is sub-Keplerian. Grains larger than a few cm are decoupled
from the gas and move at Keplerian speeds so they experience head winds and undergo orbital
decay (Weidenschilling 1977). However if there are irregularities in the disk then the particles
will instead drift towards local pressure maxima (Haghighipour & Boss 2003).

The inner regions of typical protostellar disks are thermally ionized (Umebayashi 1983). This
ionization couples the disk gas to any existing magnetic field and, in a differentially rotating
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Figure 1. A comparison of this new more realistic parametrization of MRI vertical viscosity
(solid line) to a disk with constant viscosity as a function of height with two different “αs (dashed
and dotted lines). See text for details. The panel (a) shows the accretion stress, panel (b) the
viscosity, and panel (c) the temperature

disk, the magneto-rotational instability (MRI; Balbus & Hawley 1991) generates turbulence.
This turbulence provides a source of viscosity which transports angular momentum in the disk.
At greater distances from the star, thermal ionization is insufficient for MRI turbulence to
develop. Here stellar x-rays and diffuse cosmic rays may ionize the surface layers of the disk,
resulting in a viscously active turbulent surface sandwiching an inactive “dead zone” (Gammie
1996).

In section 2 we discuss the vertical structure of an MRI active disk using a more realistic
approximation of the disk viscosity as a function of height and use this parametrization to
calculate the location of the inner edge of the deadzone as a function of stellar mass and mass
accretion rate. In section 3 we estimate the amount of solid material which can accumulate in
this region and discuss the implications for the formation of gas giant cores.

2. Thermal Structure of MRI Active Disks
The standard Shakura & Syunyaev 1973 parametrization of the viscosity in geometrically

thin accretion disks (ν = αc2
s ΩK ) is sometimes extended into two dimensions by using the local

temperature and maintaining a constant α with height, which leads to a constant viscosity
with height in an isothermal disk (sometimes known as the “αP -formalism”; e.g. Cannizzo
1992). However, MHD simulations demonstrate that in MRI active regions the viscosity is not
constant with height. A better approximation is that the accretion stress w = (3/2)νρΩK is
constant with height for 2 disk scale heights, above which w decreases significantly (Miller &
Stone 2000). Therefore we parametrize the viscosity in an α-type manner as

ν(z) =
2
3

αPm id

ρ(z)ΩK
. (2.1)

using the midplane density instead of the more common 2D parametrization using the local
pressure and density. Figure 1 compares the usual assumption that viscosity is proportional to
the local sound-speed with the assumption that the accretion stress is constant. The solid curves
show the disk structure in the case of a constant w, while the dashed and dotted curves are for
v ∝ cs,loca l , but for two different values for the constant of proportionality α. The dashed curve
shows the structure for a disk with the same α as the constant w case, such that if the two disks
had the same midplane temperature then the viscosity at the midplane would be the same. The
dotted curve is scaled such that the mass accretion rate through the annulus is the same as the
constant w case.

In a disk with a steady-state mass accretion rate, the mass accretion rate through each radius
is

Ṁ = 2π

∫ ∞

−∞
ρνdz. (2.2)

If one uses the same α parameter in the constant w and standard local description of viscosity
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(Figure 1 dashed line), then the midplane temperature in the later case is significantly warmer
than in the more realistic approximation, in agreement with Hirose et al. 2006. However, we can
define a αeff based on the midplane temperature similar to the original Shakura & Syunyaev
model, then this can be related to the mass accretion rate as given by Pringle 1981

αeff =
ṀΩK

3πc2
s ,m idΣ

. (2.3)

Adjusting α so that the two different parameterizations of viscosity have the same αeff yields
a cooler midplane as the surface density is smaller for the same mass accretion rate (Figure 1
dotted line). The temperature differences are not as dramatic in this case, but the disk is still
less isothermal than the constant w situation.

2.1. Vertical Structure
We solve the disk structure of an optically thick, viscously heated disk with radiative energy
transport. Along with equations for continuity and hydrostatic equilibrium the disk structure is
describe by the following equations:

dFE

dσ
=

9
8
νΩ2

K (2.4)

dT

dσ
= − FE

2ρk
(2.5)

dz

dσ
=

1
2ρ

(2.6)

dP

dσ
= −1

2
Ω2

K z (2.7)

where FE is the radiative flux, σ(z) is the column depth of material between height z and −z,
and

k = krad =
4ac

3
T 3

κρ
. (2.8)

In the inner regions of a rapidly accreting disk the surface density and optical depth of the
disk is large enough that solving the disk structure below the photosphere (ze ) is sufficient for
studying most of the disk mass. We can then use photospheric boundary conditions T (ze ) =
Tir r +(FE /σsb )4 and P (ze ) = (2/3)ΩK ze /κ. We use a constant opacity κ = 1 cm2 g−1 consistent
with opacities from Ferguson et al. 2005.

For high mass accretion rates, the midplane temperatures at this region is dominated by
viscous heating. Therefore we use a simple prescription for stellar irradiation, simply assuming
a flat disk (see Chiang & Goldreich 1997)

Te =
(

2
3π

)1/4 (
R∗
a

)3/4

T∗. (2.9)

For the stellar parameters we use 1 Myr old stars with solar metallicity from D’Antona &
Mazzitelli 1997. The 2D structure of the disk may have interesting effects on the amount of
stellar light intercepted, for example a “wall” of material at the inner edge of the deadzone. But
as the 1+1D approximation cannot explicitly address this issue we leave this problem for future
studies.

2.2. Location of the inner edge of the Deadzone
Solving the equations for vertical structure we can calculate the location at which the midplane
just satisfies the ionization criteria of xe � 10−12 (which corresponds to T ∼ 1000 K) (see Klahr
et al. 2006) for different surface densities. We calculate the mass accretion rate through that
annulus using equation 2.2 with ν(z) from equation 2.1. In Figure 2 the curves show the location
of the inner edge of the deadzone as a function of stellar mass and accretion rate assuming that
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Figure 2. The curves show the position of the inner edge of the deadzone as a function of stellar
mass and mass accretion rates. Symbols represent observations of mass accretion rates for stars
of various masses (see text for details). The dashed line shows the best-fit for the ρ-Oph cluster
from Natta et al. 2006.

in the active region α = 10−2 . For most values of M∗ and Ṁ these theoretical curves can be
approximated by

acrit = 0.22AU

(
Ṁ

10−8M�year−1

)0 .42 (
M∗
M�

)0 .32

. (2.10)

The empirical relation between stellar mass and mass accretion rate is still rather uncertain
(and shows significant scatter), so for reference the symbols in Figure 2 indicate measurements
of mass accretion rates onto young stars. The solid points are from Natta et al. 2006 observations
of ρ-Oph and the dashed line shows the best fit to their data which is Ṁ ∝ M 1 .8

∗ . As the mass
accretion rate for the higher mass stars is dominated by a single object, we have also plotted as
open points from the older, heterogeneously distributed intermediate mass stars (Garcia Lopez
et al. 2006). The estimated ages on these stars range from 1-10 Myr, so they are systematically
older than ρ-Oph, and when they were younger they may have had higher mass accretion
rates consistent with the extrapolation from ρ-Oph (Garcia Lopez et al. 2006). Using the best
fit relationship from ρ-Oph implies that acrit ∝ M 1 .1

∗ . Clarke & Pringle 2006 suggest that
the correlation between stellar mass and mass accretion rate may not be this steep due to
observational biases. If instead we use their estimation that Ṁ ∝ M∗, acrit ∝ M 0 .74

∗ becomes
slightly less sensitive to M∗.

3. Planet Formation at the Inner Edge of the Deadzone
Few mechanisms for angular momentum transport in protoplanetary disks are as efficient

as MRI, therefore we expect the disk viscosity to decrease in the deadzone, which will cause
a corresponding increase in the surface density of the disk if the disk can reach a steady-state
surface density profile (Kretke & Lin 2007). This change in the surface density will create a local
pressure maximum capable of accumulating solids. The acrit calculated in the previous section
corresponds to the outermost thermally ionized location. The location of the pressure maxima
will be larger than acrit by at least one scale height and perhaps more depending on how the
details of the 2D structure which is neglected here.
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Figure 3. Panel (a) shows the of the solid surface density (solid curve) and the gas surface
density(dashed curve) at two different times. Panel (b) shows the evolution of the midplane
density of the two fluids at the pressure maximum. The vertical dotted line marks the time
when the midplane gas and solid densities are equal.

3.1. Accumulation of Solids
In order to estimate the amount of material which will accumulate at the inner edge of the
deadzone we use Garaud 2007 model (modified to have an αeff which varies with radius) to
estimate the migration of material in a gaseous disk. This model approximates the evolution
of solids in a disk by following the growth and migration of solids through an evolving gaseous
disk. Particles undergo radial migration due to gas drag, and the radial velocity of the solids
with respect to the gas is given by

vp = −h2

a2 vK
∂ ln(P )
∂ ln(a)

2πSt(s)
[4π2St2 (s) + 1]

(3.1)

where vK is the Keplerian velocity and the Stokes number St(s) is the ratio of the local stopping
time to the local orbital time for particles of radius s (See Garaud 2007 for more details). For
illustrative purposes, Figure 3 demonstrates the buildup of material in less than 105 years from
an initially well-mixed disk of micron sized grains. The initial gas profile is for a steady-state
mass accretion rate of Ṁ = 4 × 10−8M�year−1 with αeff = 10−2 in the active regions and
αeff = 10−3 in the MRI dead regions. At the pressure maximum at inner edge of the dead zone
material accumulates rapidly once the particles grow to meter-sized, mobile objects. Particles
will continue to accumulate until the midplane particle density (ρm id ,p ) becomes comparable
to the midplane gas surface density at the inner edge of the deadzone. At this point the solid
material will force a larger region of the gas to rotate at Keplerian velocity increasing the radial
extent of the gas moving at Keplerian speed and spreading out the location where particles
accumulate. This makes the accumulation of particles a self-limiting process, but only once the
solid surface density increases by an order of magnitude. This feedback of the particles on the
gas is neglected in this contribution but will be included in future work. For these calculations
we simply assume that the order-of-magnitude increase of solid surface density which should
accumulate without problem is a reasonable approximation for the amount of solid material
present at the inner edge of the deadzone.

3.2. Core Formation
In order to estimate the size of cores formed at the inner edge of the deadzone we use the
expression from Ida & Lin 2005 for core isolation mass.

Mc,iso � 0.16
(

Σd

10 g cm−2

)3/2 ( a

1AU

)3
(

M∗
M�

)−0 .5

M⊕ (3.2)

This expression assumes that the planetesimal surface density (Σd ) is uniform enough throughout
the embryo’s feeding zone to be approximated by a single value. By assuming the solids scale
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Figure 4. The core isolation mass at the inner edge of the deadzone assuming αeff = 10−4 (in
the deadzone) and f = 0.05 (black curves). The blue curves show how the core isolation mass
would change if either f is decreased or αeff increased by a factor of two. The long-dashed line
is the same as in Figure 2 for reference.

with a steady-state gas surface density in the deadzone

Σd = fΣg = f
ṀΩK

3παeff c2
s

. (3.3)

Here αeff includes a large contribution from the deadzone, so it will be significantly smaller than
in the thermally ionized regions. If a sufficient column of the surface layers of the disk is active
to sustain MRI turbulence then the deadzone will also sustain a small degree of accretion stress
even though it is laminar (Fleming & Stone 2003). We note that the total surface density at this
region is sensitive to the viscous parameters, therefore the normalization may be scaled, but the
trend in stellar mass should remain.

The time to reach this isolation mass is also given by Ida & Lin 2005 and is approximately

tcore = 0.26
(

Σd

10 g cm−2

)−1/2 (
Σg

3.4 × 103 g cm−2

)−1/2

( a

1AU

)8/5
(

M∗
M�

)1/3

Myr. (3.4)

This time is typically less than the viscous evolution time of the disk so cores should reach
isolation mass. By assuming that αeff is independent of stellar mass, the viscosity is the same
at acrit for all stellar masses. This implies that a higher Ṁ is due to a higher surface density.
The fact that typical disk mass accretion rates are higher for more massive stars and that the
location of the pressure inversion is farther out combine to make the core size rise steeply with
stellar mass. The isolation mass of the core at acrit goes as Mc,iso ∝ Ṁ 1 .8M 0 .5

∗ . Using the best
fit relationship for the relationship between stellar mass and mass accretion rate derived from
ρ-Oph fit, Mc,iso ∝ M 3 .7

∗ .
Using Lodders 2003 solar composition, most of the silicates and metals will still be in solid

phase at 1000 K. Therefore the mass of solids should be a little less than the 0.5% of gas at this
region. This implies that the base dust-to-gas ratio would be f = 0.005. However, if the solid
material accumulates in accordance with the results in Figure 3, f will increase by an order of
magnitude. Figure 4 shows the core isolation mass for f = 0.05 and αeff = 10−4 , for comparison,
the blue lines show the isolation mass for the equivalent situation of f decreased or αeff begin
increased by a factor of two.
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3.3. Gas Giant Formation
With this estimate of core isolation mass we can continue using the approximations of Ida &
Lin 2005 to look at further potential growth. Gas capture becomes important once the planet
has reached core isolation mass. The planet growth due to gas capture is

dMp

dt
≈ Mp

τ
(3.5)

and

τ ≈ τ0

(
Mp

M⊕

)−3

(3.6)

where τ0 ≈ 1010 years. As long at the final mass of the planet is much greater than the original
core mass, the timescale for planet formation is

tgiant ≈
τ0

3

(
Mc

M⊕

)−3

. (3.7)

This effectively means that in order for a gas giant to form within the lifetime of the evolving
disk, the core isolation mass must be on the order of 10 M⊕. Using the relationship derived
for the core mass this implies that tgiant ∝ Ṁ−5 .4M−1 .5

∗ . This implies tgiant ∝ M−11
∗ using the

ρ-Oph data. This very steep function demonstrates that giant planets will not form effectively
at the inner edge of the deadzone around less massive stars, but may form around higher mass
stars with higher accretion rates.

4. Summary and Discussion
Observations indicate that planets may form systematically more efficiently around interme-

diate mass stars and their semi-major axis appear to be systematically larger than those around
solar type stars to a degree which may not be completely explained by post-main sequence
evolution. In this paper we demonstrate a mechanism to form planets preferentially around in-
termediate mass stars. Solid material can collect at the pressure inversion at the inner edge of
the deadzone in protoplanetary disks. In order for the material accumulated to form gas giant
cores, the inner edge of the deadzone must be sufficiently far from the host stars. This condition
is only likely to be met around intermediate mass stars with high accretion rates.

This model does assume that the location of the inner edge of the deadzone is relatively
constant with time, and least until the solids grow in size large enough to be effectively decoupled
from the gas. Wünsch et al. 2006 use different parameterizations of vertical viscosity and find
that the inner edge of the deadzone may be unstable to oscillations under some conditions.
This may help explain why excess solids are not found at the inner edge of the deadzone in all
disks. Once the first planet has formed and grown large enough to open a gap, then the outer
edge of the gap provides another pressure maximum which may trap solids and encourage the
growth of the next planet (Bryden et al. 2000). Therefore some of the observed planets may be
subsequent planets formed in the systems, so they may be located farther out than the location
of the original pressure maximum at the inner edge of the deadzone.
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