
Adv. Appl. Prob. 45, 1011–1027 (2013)
Printed in Northern Ireland

© Applied Probability Trust 2013

MIXTURE REPRESENTATIONS FOR THE JOINT
DISTRIBUTION OF LIFETIMES OF TWO COHERENT
SYSTEMS WITH SHARED COMPONENTS

JORGE NAVARRO,∗ Universidad de Murcia

FRANCISCO J. SAMANIEGO,∗∗ University of California, Davis

N. BALAKRISHNAN,∗∗∗ McMaster University and King Abdulaziz University

Abstract

The signature of a system is defined as the vector whose ith element is the probability
that the system fails concurrently with the ith component failure. The signature vector
is known to be a distribution-free measure and a representation of the system’s survival
function has been developed in terms of the system’s signature. The present work is
devoted to the study of the joint distribution of lifetimes of pairs of systems with shared
components. Here, a new distribution-free measure, the ‘joint bivariate signature’, of a
pair of systems with shared components is defined, and a new representation theorem for
the joint survival function of the system lifetimes is established. The theorem is shown to
facilitate the study of the dependence between systems and the comparative performance
of two pairs of such systems.
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1. Introduction

The signature of a coherent system with n components having independent and identically
distributed (i.i.d.) lifetimes X1, . . . , Xn ∼ F, where F is the common continuous distribution
function, was introduced by Samaniego [30] as the n-dimensional vector p whose ith element
is given by

pi = P(T = Xi:n), i = 1, . . . , n,

where X1:n, . . . , Xn:n are the order statistics corresponding to the n component lifetimes and
T is the system lifetime. A k-out-of-n system (defined as the system which fails upon the kth
component failure) has the unit vector (0, . . . , 1, . . . , 0) as its signature vector, where the value
‘1’ occurs as the kth element.

If the component lifetimes have a common continuous distribution F then distribution FT of
the coherent system with signature vector p and lifetime T can be represented as a mixture of
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the distributions Fi:n of the ordered component lifetimes Xi:n, i = 1, . . . , n, with the weights
given in the signature vector, that is,

FT (t) =
n∑
i=1

piFi:n(t), t ≥ 0. (1.1)

The distribution-free signature vector can also be computed as

pi = |Ai |
n! , i = 1, . . . , n, (1.2)

where |Ai | is the size of the set Ai = {σ ∈ Pn : T = Xi:n when Xσ(1) < · · · < Xσ(n)} and Pn
is the set of permutations of the set {1, . . . , n}.

Kochar et al. [17] used representation (1.1) to compare systems with different structures by
comparing their signature vectors. They established several preservation theorems showing that
various types of stochastic relationship between system signatures are inherited by the system
lifetimes. For an introduction to system signatures and their applications, see the monograph
by Samaniego [31]. Recent developments in this area include [7], [14], [20], [21], [24], [25],
[27], [29], and [32].

A representation similar to (1.1) holds for the system’s reliability as well as for systems with
exchangeable components (see Theorem 3.2 of [29]). For any n > k, the distribution of a given
coherent system in k i.i.d. components (∼ F ) can be represented as (1.1) for some nonnegative
coefficients p1, . . . , pn (see Theorem 3.4 of [29]). The vector with those coefficients is said
to be its signature of order n. Samaniego [31, p. 32] presented an expression for the signature
of order k + 1 from the signature of order k. Navarro et al. [29] provided an explicit formula
for the signature of order n for arbitrary n > k. The signatures of order n are used in [29] to
compare systems of different sizes n and k, where n > k.

Systems with shared components arise in a variety of applications. Computer systems
consisting of slave computers sharing a common server is perhaps the quintessential example.
The present paper is intended as a contribution to the literature on such systems. The results
obtained here apply both to pairs of systems which share a common module (i.e. a specific
configuration of the common components) and to pairs of systems having different structures
but being dependent on one or more components which the two systems have in common. An
example of the latter situation is a pair of systems (say, buildings) supported by multiple power
generators, some of which serve both systems and some of which solely support one or the
other system but not both. The configuration of the generators serving each system may be
structured according to wholly different designs.

The present results will also be useful to study dependence between a system lifetime T =
ψ(X1, . . . , Xn), where ψ is the system’s structure function (see, for example, [5, p. 12]), and
the component lifetimes X1, . . . , Xn. For example, we might be interested in studying the
dependence between T and the earliest component failure time X1:n = min(X1, . . . , Xn) or a
specific component failure time Xi for i ∈ {1, . . . , n}.

Under the assumption that all components in two systems with shared components have
i.i.d. lifetimes with common continuous distribution F, Navarro et al. [26] established an
explicit representation of the joint distribution of the pair (T1, T2) of system lifetimes. The
representation in [26] displays the joint distributionG(t1, t2) = P(T1 ≤ t1, T2 ≤ t2) of system
lifetimes separately, for t1 ≤ t2 or for t1 > t2, as a function of distribution-free matrices of
coefficients S or S∗ and the marginal distributions of the order statistics of component lifetimes.
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Worthy of special mention is the fact that the representations in [26] do not involve the
joint behavior of these order statistics. As we will see, this is a key difference between this
representation and the main result in the present work. While the matrix pair (S, S∗) in [26]
depends solely on the two system designs, and the elements of each matrix must sum to 1,
the authors pointed out that they need not be nonnegative and, thus, do not have, in general, a
probabilistic interpretation. The representation in [26] has nonetheless been shown to be useful
in establishing sufficient conditions for the (bivariate) lower- or upper-orthant ordering between
the joint lifetimes of two pairs of systems with shared components. A challenge left for future
research is to identify sufficient conditions for the usual bivariate stochastic ordering between
competing pairs of systems, each having some extent of component sharing. A solution to this
challenge is provided in the present work, with the new representation theorem in Section 2
serving as the key tool for this specific application.

In Section 2 we establish a new representation theorem for the joint distribution of the
lifetimes (T1, T2) of two coherent systems with shared components. We will assume, as in
[26], that the components of two systems are overlapping subsets of a set of n components with
i.i.d. lifetimes having a common continuous distribution F ; we also assume, without loss of
generality, that the union of the sets of components utilized by each of the two systems is equal
to the set of n components alluded to above. No restriction is made on the design or structure
of the two systems. Theorem 2.1 utilizes the joint distribution of pairs (Xi:n,Xj :n) of ordered
component lifetimes and yields a markedly different representation of the joint distribution of
(T1, T2) than the one given in [26]. Specifically, the representation involves a stochastic rather
than generalized mixture of bivariate distributions of pairs of ordered component lifetimes and
features a new distribution-free measure, the bivariate signature matrix (BSM), with the useful
characteristic of having nonnegative elements summing to 1 and, thus, having an immediate
probabilistic interpretation. Most importantly, the matrix orderings of this new measure are
shown to provide the sought-after sufficient conditions for the bivariate stochastic ordering of
competing pairs of systems with shared components under the framework outlined above. Also
treated is the comparison of two pairs of systems with shared components relative to stochastic
precedence. A further notable feature of the new result is that it provides a linear representation
of G(t1, t2) for arbitrary t1 and t2, while the result in [26] requires separate expressions for
t1 ≤ t2 and t1 > t2.

Multidimensional signatures have been considered previously in [10], [11], [12], and [13]
under the assumption that both systems have the same set of components, where the lifetimes
T1 and T2 correspond to the transition times from the system UP state to DOWN1 and DOWN2
states, respectively. Gertsbakh and Shpungin [12] discussed the notion of bivariate signatures.
While they did not treat possible representation theorems, they did provide an algorithm for
estimating the BSM from Monte Carlo simulations. To our knowledge, the representation
theorems presented here, and the applications which follow, are new to the literature. Our
results were first presented at the ISI World Statistics Conference in Dublin, Ireland in 2011.

The paper is organized as follows. In Section 2, the definition of the BSM, the statement
and proof of Theorem 2.1, which yield a new representation theorem for the joint lifetimes
(T1, T2) of two coherent systems with shared components, and the development of new results
on the dependence between T1 and T2 for such systems are presented. In Section 3 , the BSM
of each of two pairs of systems with shared components based on a pool of n components with
i.i.d. lifetimes is shown to be a tool that is ideally suited for obtaining various ordering results
between the two pairs of systems. Specifically, the representation in Theorem 2.1 is utilized
in establishing a heretofore elusive result, namely, the identification of sufficient conditions
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for bivariate stochastic ordering of pairs of such systems. Furthermore, the bivariate signature
matrices of two such pairs of systems are shown to be useful in comparing these systems in
terms of stochastic precedence. Four concrete examples which illustrate our theoretical results
are provided in the final section.

2. Main results

Let us assume that T1 and T2 are the lifetimes of two coherent systems based on components
with i.i.d lifetimes X1, . . . , Xn having a common continuous distribution function F. We are
particularly interested in the case in which the two systems share one or more components,
and we will allow for each of the systems to be of order less than n. For the sake of clarity,
one can think of the two systems of interest as being based on n1 and n2 components and
having n1,2 components in common (i.e. having n1,2 shared components). We will assume
that n1,2 > 0, as otherwise the lifetimes of the two systems are independent (under the i.i.d.
assumption made above), and the joint distribution of their lifetimes is simply the product of
marginal distributions of the form shown in (1.1). We may identify the integer n above uniquely
as n = n1 + n2 − n1,2. We also consider the case in which these systems are based just on
some of these component lifetimes and not on all of them. So these two systems might share
all, some, or none of these components. It is well known that a coherent system fails at the
failure of one of its components. Let us denote the (increasing) ordered component lifetimes
as X1:n, . . . , Xn:n. Note that, using the i.i.d. assumption and the continuity of F, we have
P(X1:n < · · · < Xn:n) = 1. Hence, we can define the random vector I = (I1, I2) by

I = (i, j) whenever T1 = Xi:n and T2 = Xj :n. (2.1)

The bivariate probability mass function of I is denoted by pi,j = P(I = (i, j)) for i, j =
1, . . . , n. Note that

pi,j = |Ai,j |
n! , (2.2)

where |Ai,j | is the size of the set

Ai,j = {σ ∈ Pn : T1 = Xi:n and T2 = Xj :n whenever Xσ(1) < · · · < Xσ(n)}
and Pn is the set of permutations of the set {1, . . . , n}.
Definition 2.1. The matrixP = (pi,j ) is called the bivariate signature matrix (BSM) associated
with (T1, T2).

The following properties of the BSM are immediately evident.

(P1) The bivariate signature P = (pi,j ) does not depend on F.Actually, it can be computed
using (2.2) in the same manner as the univariate signature can be computed from (1.2)
by considering the n! permutations of the n component failure times. This procedure is
illustrated in Example 4.1 below.

(P2) Of course, we havepi,j ≥ 0 and
∑n
i=1

∑n
j=1 pi,j = 1.Moreover, the univariate signature

of order n, (p1, . . . , pn), of the coherent system with lifetime T1 can be computed from
the BSM as pi = ∑n

j=1 pi,j (i.e. as the marginal distribution of I1). Analogously,
the signature of order n, (p∗

1, . . . , p
∗
n), of T2 can be computed as p∗

j = ∑n
i=1 pi,j .

In particular, if the first system has n components then the ‘usual’ one-dimensional
signature of the first system can be obtained by taking the corresponding marginal of the
{pij } matrix (see the examples in Section 4).
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(P3) If T2 = Xk:n (i.e. T2 is the lifetime of a k-out-of-n system) then pi,k = pi and pi,j = 0
for i = 1, . . . , n and j �= k, where (p1, . . . , pn) is the signature of order n of T1. In this
case, I1 and I2 are independent.

The main property of the BSM is given in the theorem below where it is proven that the joint
distribution of two coherent systems sharing some (or all) components can be written as a
stochastic mixture of the bivariate joint distributions of the ordered component lifetimes. This
representation is similar to the representation in (1.1) obtained for a single coherent system
in [30].

Theorem 2.1. Let T1 and T2 be the lifetimes of two coherent systems respectively based on
n1 and n2 i.i.d. components with a common continuous distribution F . Assume that they have
n1,2 ≥ 0 components in common. Then, the joint distribution function G(t1, t2) = P(T1 ≤ t1,

T2 ≤ t2) of (T1, T2) can be written as

G(t1, t2) =
n∑
i=1

n∑
j=1

pi,jFi,j :n(t1, t2), (2.3)

where n = n1 +n2 −n1,2, P = (pi,j ) is the BSM of (T1, T2), and Fi,j :n(t1, t2) = P(Xi:n ≤ t1,

Xj :n ≤ t2) is the joint distribution of the order statistics obtained from the component lifetimes
X1, . . . , Xn.

Proof. As F is continuous, using the theorem of total probability, we have

G(t1, t2) = P(T1 ≤ t1, T2 ≤ t2)

=
n∑
i=1

n∑
j=1

P(I = (i, j))P(T1 ≤ t1, T2 ≤ t2 | I = (i, j))

=
n∑
i=1

n∑
j=1

pi,jP(Xi:n ≤ t1, Xj :n ≤ t2 | I = (i, j))

=
n∑
i=1

n∑
j=1

pi,jP(Xi:n ≤ t1, Xj :n ≤ t2),

where the last equality follows since, under the i.i.d. assumption, the events {Xi:n ≤ t1,

Xj :n ≤ t2} and {I = (i, j)} are independent. Hence, the proof is completed.

The joint distributionG of (T1, T2) has a singular part whenever P(T1 = T2) > 0. However,
if the components are i.i.d. ∼ F and F is absolutely continuous, then Fi:n(t1)Fj :n(t2) and
Fi,j :n(t1, t2) are both absolutely continuous bivariate distributions when i �= j . Therefore, the
joint distributionGof (T1, T2) cannot be represented as a mixture of these bivariate distributions.
Actually, in [26], we needed two different linear combinations (one for t1 ≤ t2 and another for
t1 > t2) based on Fi:n(t1)Fj :n(t2) to obtain G and to include its singular part. In the preceding
theorem, as

Fi,i:n(t1, t2) = P(Xi:n ≤ t1, Xi:n ≤ t2) = Fi:n(min(t1, t2))

is a singular bivariate distribution (the joint distribution of (Xi:n,Xi:n)), we can represent
G by using the linear combination (2.3) for all t1, t2. In particular, G is absolutely
continuous if and only if pi,i = 0 for all i = 1, . . . , n. In this case, its density function g
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can be written as g(t1, t2) = ∑n
i=1

∑n
j=1 pi,j fi,j :n(t1, t2), where fi,j :n is the joint density

of (Xi:n,Xj :n) for i �= j . A similar representation can be stated for the joint reliability
function of (T1, T2) with the same coefficients as Ḡ(t1, t2) = ∑n

i=1
∑n
j=1 pi,j F̄i,j :n(t1, t2),

where F̄i,j :n(t1, t2) = P(Xi:n > t1, Xj :n > t2).

The functionsFi:n, Fi,j :n, F̄i,j :n, and fi,j :n can all be computed fromF using the expressions
known in the theory of order statistics (see, e.g. [8, pp. 9–12]). For example, if 1 ≤ i < j ≤ n

then Fi,j :n can be computed as

Fi,j :n(t1, t2) =
n∑
r=j

r∑
s=i

n!
s! (r − s)! (n− r)!F

s(t1)(F (t2)− F(t1))
r−s(1 − F(t2))

n−r (2.4)

for t1 < t2, and

Fi,j :n(t1, t2) = Fj :n(t2) =
n∑
r=j

n!
r! (n− r)!F

r(t2)(1 − F(t2))
n−r

for t1 ≥ t2. Expanding these expressions in terms of powers of F (or F̄ = 1 − F ), and using
the expressions in [8, p. 46], we obtain the expressions for G obtained in [26].

The univariate signature can be used to compute the moments of a single coherent system
lifetime from (1.1). Analogously, the bivariate signature can be used to compute product
moments and covariance coefficients as follows.

Theorem 2.2. Under the assumptions of Theorem 2.1, if T1 and T2 have respective signatures
(p1, . . . , pn) and (p∗

1, . . . , p
∗
n) of order n and BSM P = (pi,j ), then

E(T1T2) =
n∑
i=1

pi,iαi,i:n +
n∑
i=1

n∑
j=i+1

(pi,j + pj,i)αi,j :n

and

cov(T1, T2) =
n∑
i=1

n∑
j=1

pi,j σi,j :n +
n∑
i=1

n∑
j=1

(pi,j − pip
∗
j )μi:nμj :n,

where μi:n = E(Xi:n), αi,j :n = E(Xi:nXj :n), σi,j :n = cov(Xi:n,Xj :n), and σi,i:n = σ 2
i:n =

var(Xi:n) for i, j = 1, . . . , n.

The proof is straightforward. In particular, if one system is a k-out-of-n system, that is, e.g.
T2 = Xk:n, then, from (P3), we havepi,k = pi for i = 1, . . . , n andpi,j = 0 for i, j = 1, . . . , n
and j �= k, E(T1Xk:n) = ∑n

i=1 piαi,k:n, and

cov(T1, Xk:n) =
k−1∑
i=1

piσi,k:n + pjσ
2
k:n +

n∑
i=k+1

piσi,k:n.

Particular expressions can be obtained when the component lifetimes have a common
exponential distribution. In this case, it is well known (see [9]) that cov(Xi:n,Xj :n) = var(Xi:n)
for j ≥ i. This property can be extended as follows. The proof is given in [28], which is available
from the first author upon request.

Corollary 2.1. Under the assumptions of Theorem 2.1, if T1 has signature (0, . . . , 0, pk,
. . . , pn) of order n and the i.i.d component lifetimes have a common exponential distribution,
then

cov(T1, Xj :n) = var(Xj :n) for j = 1, . . . , k.
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We now turn to the study of the conditional distribution of a system when we know that the
j th component failure occurs at time x > 0.

Theorem 2.3. Let T be the lifetime of a coherent system with i.i.d. components having a com-
mon continuous distributionF and with signature of order n of the form (0, . . . , 0, pk, . . . , pn).
Then the distribution function of (T −x | Xj :n = x) for 1 ≤ j < k and x > 0 can be written as

G(y | x) =
n∑
i=k

piHi−j |n−j (y | x),

whereHi−j |n−j (y | x) is the distribution function of the (i−j)th order statistic from n−j i.i.d.
random variables with common distribution functionH(y | x) = (F (x+y)−F(x))/(1−F(x))
for y ≥ 0.

Proof. From property (P3) and Theorem 2.1, the joint density function of (Xj :n, T ) is given
by g(x, y) = ∑n

i=k pifj,i:n(x, y),wherefj,i:n(x, y) is the joint density of (Xj :n,Xi:n). Hence,
the density function of (T − x | Xj :n = x) can be written as

g(y | x) = g(x, x + y)

fj :n(x)
=

n∑
i=k

pifi|j :n(y | x),

where fi|j :n(y | x) = fj,i:n(x, x+y)/fj :n(x) is the density function of (Xi:n−x | Xj :n = x).

From Equation (3) of [4], a straightforward calculation gives

fi|j :n(y | x)
= fj,i:n(x, x + y)

fj :n(x)

= (n− j)!
(n− i)! (i − j − 1)!

(
F(x + y)− F(x)

1 − F(x)

)i−j−1(1 − F(x + y)

1 − F(x)

)n−i
f (x + y)

1 − F(x)

= (n− j)!
(n− j − (i − j))! (i − j − 1)!H

i−j−1(y | x)(1 −H(y | x))n−j−(i−j)h(y | x),
whereH(y | x) = (F (x+y)−F(x))/(1−F(x)) andh(y | x) = f (x+y)/(1−F(x)). Hence,
fi|j :n(y | x) = hi−j :n−j (y | x), where hi−j :n−j (y | x) is the density function of the (i − j)th
order statistic from n− j i.i.d. random variables with common distribution function H(y | x)
for y ≥ 0. Therefore, from the expression obtained for g(y | x), the proof is complete.

Note that we have proved that (T −x | Xj :n = x) is equal in law (distribution) to the lifetime
of a coherent system in n − j i.i.d. components with common distribution function H(y | x)
and signature of order n − j given by (0, . . . , 0, pk, . . . , pn). A similar expression holds for
the reliability functions. Other representations under different conditions (such as Xj :n ≤ x or
Xj :n > x) have been obtained in [2], [3], [6], [16], [18], [19], [22], [25], [32], [34], and [35].

The property in Theorem 2.3 can be extended using the Markovian property of order
statistics, revealing that, for any j < k, (T − tj | X1:n = t1, . . . , Xj :n = tj ) is equal in law
to (T − tj | Xj :n = tj ). In particular, for systems with exponential components, we have the
following memoryless property: if T has signature (0, . . . , 0, pk, . . . , pn) of order n and i.i.d.
exponential components, then the distribution function of (T − x | Xj :n = x) does not depend
on x and can be written as

P(T − x ≤ y | Xj :n = x) =
n∑
i=k

piFi−j :n−j (y),
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where Fi−j :n−j (y) is the distribution of the (i − j)th order statistic from n − j i.i.d. random
variables with a common exponential distribution function F . Hence, we have E(T | Xj :n =
x) = x + E(T ∗), where E(T ∗) = ∑n

i=k piμi−j :n−j and μi−j :n−j = E(Xi−j :n−j ). Note
that μi−j :n−j does not depend on x and is given by μi−j :n−j = ∑i−j

r=1 μ/(n− j − r + 1).
Therefore,

E(T | Xj :n = x) = x +
n∑
i=k

piμi−j :n−j = x +
n∑
i=k

pi

i−j∑
r=1

μ

n− j − r + 1
, (2.5)

that is, the best function to predict T from Xj :n = x is a linear function of x (actually, it is the
regression line). Then, in this case, the correlation coefficient is more important since it is equal
to the regression coefficient and it can be used to measure how accurate these predictions will
be. This procedure is illustrated in Example 4.2 below. This property is not necessarily true
when the components have a common distribution different than the exponential distribution.

The following example illustrates the definitions and claims above.

Example 2.1. LetX1, X2, X3, andX4 represent the i.i.d. lifetimes of four components. Let T1
and T2 be the lifetimes of the following coherent systems with a single shared component: T1 =
X2:3 = min(max(X1, X2),max(X1, X3),max(X2, X3)) and T2 = min(X3, X4).We may then
calculate the probability distribution of the random pair (I1, I2) by using the permutations given
in Table 1. From the above, one may identify the BSM as

P =

⎛⎜⎜⎝
0 0 0 0
1
6

1
6

1
6 0

1
3

1
6 0 0

0 0 0 0

⎞⎟⎟⎠ .

From the matrix P ,which is the equivalent of the bivariate probability mass function of (I1, I2),

we may identify the marginal probability mass function of I1 as (0, 1
2 ,

1
2 , 0) and that of I2 as

( 1
2 ,

1
3 ,

1
6 , 0). These values coincide with the signatures of order 4 obtained in Table 1 (lines 6

and 2, respectively) of [29].

In practice, an interesting instance of the occurrence of systems sharing components is when
T1 = ψ1(X1, . . . , Xn) and T2 = Xi for 1 ≤ i ≤ n. In this case, the dependence between T1

Table 1: Calculation of the BSM for the systems in Example 2.1.

Equiprobable orderings (I1, I2) Equiprobable orderings (I1, I2)

X1 < X2 < X3 < X4 (2, 3) X3 < X1 < X2 < X4 (2, 1)
X1 < X2 < X4 < X3 (2, 3) X3 < X1 < X4 < X2 (2, 1)
X1 < X3 < X2 < X4 (2, 2) X3 < X2 < X1 < X4 (2, 1)
X1 < X3 < X4 < X2 (2, 2) X3 < X2 < X4 < X1 (2, 1)
X1 < X4 < X2 < X3 (3, 2) X3 < X4 < X1 < X2 (3, 1)
X1 < X4 < X3 < X2 (3, 2) X3 < X4 < X2 < X1 (3, 1)
X2 < X1 < X3 < X4 (2, 3) X4 < X1 < X2 < X3 (3, 1)
X2 < X1 < X4 < X3 (2, 3) X4 < X1 < X3 < X2 (3, 1)
X2 < X3 < X1 < X4 (2, 2) X4 < X2 < X1 < X3 (3, 1)
X2 < X3 < X4 < X1 (2, 2) X4 < X2 < X3 < X1 (3, 1)
X2 < X4 < X1 < X3 (3, 2) X4 < X3 < X1 < X2 (3, 1)
X2 < X4 < X3 < X1 (3, 2) X4 < X3 < X2 < X1 (3, 1)
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andXi can be used to measure the influence of the ith component on the system. This procedure
is illustrated in Example 4.3 below. In that example, the main component under this criteria
(i.e. that with the lifetime most highly correlated with the system lifetime) coincides with the
main component under the Birnbaum importance measure criteria. This case might be used to
predict T1 when we know that the failure of the ith component occurs at time t. Note that the
conditional distribution of (T1 | Xi = t) is a mixture of a discrete distribution (degenerate at t)
with weight d = ∑n

i=1 pi,i and an absolutely continuous distribution with weight 1 − d (see
Example 4.3 below).

The representations above can be extended to the case of coherent systems with exchangeable
components (i.e. its joint distribution is invariant under permutations). Thus, if two coherent
systems have lifetimes T1 = ψ1(Y1, . . . , Yn1) and T2 = ψ2(Z1, . . . , Zn2),where {Y1, . . . , Yn1}
and {Z1, . . . , Zn2} are subsets of {X1, . . . , Xn}, they share n1,2 > 0 components, n = n1 +
n2 −n1,2, and the random vector (X1, . . . , Xn) has a joint exchangeable absolutely continuous
distribution, then the mixture representation (2.3) holds. However, in this case, Fi,j :n cannot
be computed from (2.4). All the preceding results hold for this case except, of course, those
which assume that the components have i.i.d. exponential distributions.

Finally, we should mention that these results can be extended to higher dimensions. Thus,
for example, if T1, T2, and T3 are the lifetimes of three coherent systems based on component
lifetimes included in {X1, . . . , Xn}, where X1, . . . , Xn are i.i.d. with a common continuous
distribution, then the joint distribution G of (T1, T2, T3) can be written as

G(t1, t2, t3) =
∑
i,j,k

pi,j,kFi,j,k:n(t1, t2, t3),

where pi,j,k = P(T1 = Xi:n, T2 = Xj :n, T3 = Xk:n) and Fi,j,k:n is the joint distribution
of (Xi:n,Xj :n,Xk:n). The three-dimensional matrix P = (pi,j,k) is called the trivariate
signature matrix.

3. Ordering results based on bivariate signatures

In this section, we study how to use the BSM to perform stochastic comparisons. We start
with the notion of stochastic precedence. Arcones et al. [1] introduced the concept of stochastic
precedence (SP) as an alternative approach to the notion that one random variable is smaller
than another. More specifically, ifX and Y are two random variables (over the same probability
space), then X is smaller than Y in stochastic precedence when P(X > Y) ≤ P(X < Y). If
the random variables X and Y are independent and X ≤st Y , where ‘≤st’ denotes the usual
stochastic order (i.e. P(X > t) ≤ P(Y > t) for all t), then X is smaller than Y in the SP sense
(see [1]). Hence, stochastic precedence is a necessary property to have the usual stochastic order.

Recently, Hollander and Samaniego [15] (see also [31]) proposed using SP to compare
the lifetimes T1 and T2 of two independent coherent systems. Hollander and Samaniego [15]
obtained some expressions to compute P(T1 ≤ T2) based on the signature vectors of both
systems in the i.i.d. case. Therefore, these comparisons depend only on the signature vectors
and, hence, they are distribution free. Hollander and Samaniego [15] (see also Theorem 5.6 of
[31]) obtained similar expressions when the components in both systems are i.i.d. with distri-
butions satisfying the proportional hazard rate (PHR) model, showing that these comparisons
do not depend on the baseline hazard rate function. Alternative expressions were obtained in
[23], also for the case of independent systems.
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The bivariate signature can be used to perform SP comparisons of coherent systems sharing
some (or all) components. Thus, if P = (pi,j ) is the BSM of two coherent systems with
lifetimes T1 and T2,whose respective component lifetimes {Y1, . . . , Yn1} and {Z1, . . . , Zn2} are
subsets of {X1, . . . , Xn} andX1, . . . , Xn are i.i.d. (respectively exchangeable) with a common
(respectively joint absolutely) continuous distribution, then P(T1 ≤ T2) can be computed as

P(T1 ≤ T2) =
n∑
i=1

n∑
j=1

pi,jP(T1 ≤ T2 | T1 = Xi:n, T2 = Xj :n) =
∑
i≤j

pi,j . (3.1)

This expression proves that these comparisons are distribution free. Also, note that this method
can be applied when {Y1, . . . , Yn1} ∩ {Z1, . . . , Zn2} = ∅, that is, when the systems are
independent. Hence, it is an alternative method to that proposed in the literature mentioned
above (see Examples 4.1 and 4.3 below).

Next, we extend to the bivariate case the ordering results for the stochastic order based on
the univariate signature given in Kochar et al. [17] and Navarro et al. [29]. Specifically, they
proved (under different assumptions) that if the signature vectors of two coherent systems are
ST ordered (as discrete distributions), then so are the system lifetimes. The univariate stochastic
order is extended to the multivariate case as follows (see [33, p. 266]).

Definition 3.1. Let X and Y be two n-dimensional random vectors. Then we say that X ≤st Y

if E(φ(X)) ≤ E(φ(Y )) for all increasing real-valued functions φ for which these expectations
exist.

It is well known that if two random vectors are ST ordered then they are ordered in the lower
and upper orthant orders (see [33, p. 308]), that is, if X ≤st Y then

P(X1 ≤ x1, . . . , Xn ≤ xn) ≥ P(Y1 ≤ x1, . . . , Yn ≤ xn) (3.2)

and
P(X1 > x1, . . . , Xn > xn) ≤ P(Y1 > x1, . . . , Yn > xn) (3.3)

for all x1, . . . , xn.

Now we can extend the univariate results for the stochastic order as follows.

Theorem 3.1. Let T1 and T2 be the lifetimes of two coherent systems whose respective compo-
nent lifetimes {Y1, . . . , Yn1} and {Z1, . . . , Zn2} are subsets of {X1, . . . , Xn}, and X1, . . . , Xn
are i.i.d. with a common continuous distribution F. Let I be the random vector defined by (2.1)
for (T1, T2). LetT ∗

1 andT ∗
2 be the lifetimes of two coherent systems whose respective component

lifetimes {Y ∗
1 , . . . , Y

∗
n∗

1
} and {Z∗

1 , . . . , Z
∗
n∗

2
} are subsets of {X∗

1, . . . , X
∗
n}, and X∗

1, . . . , X
∗
n are

i.i.d. with a common continuous distribution F ∗. Let I ∗ be the random vector defined by (2.1)
for (T ∗

1 , T
∗
2 ). If I ≤st I ∗ and X1 ≤st X

∗
1, then

(T1, T2) ≤st (T
∗

1 , T
∗

2 ). (3.4)

Proof. From (2.3) we have

E(φ(T1, T2)) =
∫

R2
φ(t1, t2) dG(t1, t2) =

n∑
i=1

n∑
j=1

pi,jE(φ(Xi:n,Xj :n)),
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where P = (pi,j ) is the BSM of (T1, T2). Analogously,

E(φ(T ∗
1 , T

∗
2 )) =

∫
R2
φ(t1, t2) dG∗(t1, t2) =

n∑
i=1

n∑
j=1

p∗
i,jE(φ(X

∗
i:n,X∗

j :n)),

where P ∗ = (p∗
i,j ) is the bivariate signature of (T ∗

1 , T
∗

2 ).

Let k ≥ i. ThenXi:n ≤ Xk:n, and, asφ is increasing, we haveφ(Xi:n,Xj :n) ≤ φ(Xk:n,Xj :n)
and E(φ(Xi:n,Xj :n)) ≤ E(φ(Xk:n,Xj :n)). A similar property holds for k ≥ j. Therefore, the
function q(i, j) = E(φ(Xi:n,Xj :n)) is increasing in i and j.

On the other hand, using the fact that X1 ≤st X
∗
1 , from Theorem 6.B.16(b) of [33, p. 273],

we have (X1, . . . , Xn) ≤st (X
∗
1, . . . , X

∗
n). Hence, since �(x1, . . . , xn) = φ(xi:n, xj :n) is an

increasing function, we have

q(i, j) = E(φ(Xi:n,Xj :n)) ≤ E(φ(X∗
i:n,X∗

j :n)) = q∗(i, j). (3.5)

Therefore,

E(φ(T1, T2)) =
n∑
i=1

n∑
j=1

pi,j q(i, j)

≤
n∑
i=1

n∑
j=1

p∗
i,j q(i, j) (I ≤st I ∗ and q is increasing)

≤
n∑
i=1

n∑
j=1

p∗
i,j q

∗(i, j) (from (3.5) and p∗
i,j ≥ 0)

= E(φ(T ∗
1 , T

∗
2 ))

for any increasing function φ for which these expectations exist. Then (3.4) holds.

A similar result can be obtained for systems with exchangeable components.

Theorem 3.2. Let T1 and T2 be the lifetimes of two coherent systems whose respective compo-
nent lifetimes {Y1, . . . , Yn1} and {Z1, . . . , Zn2} are subsets of {X1, . . . , Xn}, and (X1, . . . , Xn)

is an exchangeable random vector with a joint absolutely continuous distribution. Let I

be the random vector defined by (2.1). Let T ∗
1 and T ∗

2 be the lifetimes of two coherent
systems whose respective component lifetimes {Y ∗

1 , . . . , Y
∗
n∗

1
} and {Z∗

1 , . . . , Z
∗
n∗

2
} are subsets

of {X∗
1, . . . , X

∗
n}, and (X∗

1, . . . , X
∗
n) is an exchangeable random vector with a joint absolutely

continuous distribution. Let I ∗ be the random vector defined by (2.1) for (T ∗
1 , T

∗
2 ). If I ≤st I ∗

and (X1, . . . , Xn) ≤st (X
∗
1, . . . , X

∗
n), then (T1, T2) ≤st (T

∗
1 , T

∗
2 ).

The proof is analogous to the proof of the i.i.d. case. Note that both theorems can be applied
to coherent systems having the same components (X1, . . . , Xn). In this case, we only need the
condition I ≤st I ∗. Next we analyze the conditions on the bivariate signatures P and P ∗ to
have I ≤st I ∗. First, we define the following matrix ordering.

Definition 3.2. Let A = (ai,j ) and A∗ = (a∗
i,j ) be two n × m matrices with the same total

mass, that is, with
∑n
i=1

∑m
j=1 ai,j = ∑n

i=1
∑m
j=1 a

∗
i,j . Then we say that A is less than A∗ in

the south-east shift order (written as A ≤S/E→ A∗) if A∗ can be obtained from A through a
finite sequence of transformations in which a positive mass c > 0 is moved from the term ai,j
to the term ar,s with r ≥ i and s ≥ j (i.e. the new terms are ai,j − c and ar,s + c, respectively).
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For example, the following matrices are S/E → ordered:⎛⎝0 2
3

1
3

0 0 0
0 0 0

⎞⎠ →
⎛⎝0 1

6
1
3

0 1
2 0

0 0 0

⎞⎠ →
⎛⎝0 1

6
1
6

0 1
2

1
6

0 0 0

⎞⎠ →
⎛⎝0 1

6
1
6

0 1
6

1
2

0 0 0

⎞⎠ . (3.6)

In the next result we use this matrix order to characterize I ≤st I ∗ using the bivariate
signatures.

Theorem 3.3. Let I be the random vector defined by I = (i, j) with probability pi,j ≥ 0
for i, j = 1, . . . , n. Let I ∗ be the random vector defined by I ∗ = (i, j) with probability
p∗
i,j ≥ 0 for i, j = 1, . . . , n. Let P = (pi,j ) and P ∗ = (p∗

i,j ). Then I ≤st I ∗ is equivalent to
P ≤S/E→ P ∗.

Proof. Let us assume that P ≤S/E→ P ∗, that is, there exists a finite sequence of matrices
A1, . . . ,Ak as those described in Definition 3.2 such that

P = A1 → A2 → · · · → Ak = P ∗,

where Al → Al+1 means that Al+1 is obtained from Al by a translation of a positive mass
cl > 0 from the (i, j)th term of Al to the (r, s)th term of Al with r ≥ i and s ≥ j.

Let φ(i, j) be an increasing function. As I and I ∗ have a finite support, without loss of
generality, we can assume that φ(i, j) ≥ 0 (if it takes negative values then we can replace
φ(i, j) by φ(i, j)− minr,s=1,...,n φ(r, s)). Hence, if Al = (a

(l)
i,j ) then

φ(i, j)a
(l)
i,j + φ(r, s)a(l)r,s = φ(i, j)(a

(l)
i,j − cl + cl)+ φ(r, s)a(l)r,s

= φ(i, j)(a
(l)
i,j − cl)+ φ(i, j)cl + φ(r, s)a(l)r,s

≤ φ(i, j)(a
(l)
i,j − cl)+ φ(r, s)(a(l)r,s + cl)

= φ(i, j)a
(l+1)
i,j + φ(r, s)a(l+1)

r,s ,

where, to obtain the inequality, we used the facts that φ is increasing and cl > 0. Therefore,

n∑
i=1

n∑
j=1

φ(i, j)a
(l)
i,j ≤

n∑
i=1

n∑
j=1

φ(i, j)a
(l+1)
i,j

for l = 1, . . . , k − 1, and then

n∑
i=1

n∑
j=1

φ(i, j)pi,j ≤
n∑
i=1

n∑
j=1

φ(i, j)p∗
i,j

for any increasing function φ. Hence, I ≤st I ∗.
Conversely, let us assume that I ≤st I ∗ and, for i, j ∈ {1, . . . , n}, let us consider the

function φ defined by φ(r, s) = 1 for r ≥ i and s ≥ j , and 0 elsewhere. Then we have

n∑
r=i

n∑
s=j

pi,j ≤
n∑
r=i

n∑
s=j

p∗
i,j

for all i, j . Hence, using the fact that
∑n
i=1

∑n
j=1 pi,j = ∑n

i=1
∑n
j=1 pi,j = 1, P ∗ can be

obtained by a finite sequence of transformations as described in Definition 3.2.
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The preceding result is used in Example 4.4 below to obtain the bivariate stochastic order
between systems. Finally, note that, under the assumptions of Theorem 3.1, if P ≤S/E→ P ∗
then, from (3.2) and (3.3), the series and parallel systems obtained from (T1, T2) and
(T ∗

1 , T
∗
2 ) are stochastically ordered, that is, min(T1, T2) ≤st min(T ∗

1 , T
∗

2 ) and max(T1, T2) ≤st
max(T ∗

1 , T
∗
2 ).

4. Examples

In this section, we present some examples to illustrate the applications of bivariate signatures.
In the first example we show how to compute the bivariate signature of two coherent systems.
This example shows that the bivariate signature might depend on where we place the components
in a system structure, that is, the precise labeling of the components.

Example 4.1. Let us consider two coherent systems with the same i.i.d. components and
respective system lifetimes T1 = min(X1,max(X2, X3)) and T2 = max(X1,min(X2, X3)).
Then the 3! = 6 permutations lead to the results given in Table 2. Hence, the bivariate signature
of (T1, T2) is

P =
⎛⎝0 1

3 0

0 1
3

1
3

0 0 0

⎞⎠
and their joint distribution can be written as

G(t1, t2) = 1
3F1,2:3(t1, t2)+ 1

3F2,3:3(t1, t2)+ 1
3F2:3(min(t1, t2)).

Note thatG is not absolutely continuous since P(T1 = T2) = p2,2 = 1
3 . Moreover, P(T1 ≤ T2)

can be computed as P(T1 ≤ T2) = ∑
i≤j pi,j = 1. Therefore, T1 ≤st T2. Actually, since

T1 ≤ T2, then we have T1 ≤st T2. Also, note that the (univariate) signatures of T1 and T2 can be
obtained as the marginal distributions of P (i.e. adding rows or columns), obtaining ( 1

3 ,
2
3 , 0)

and (0, 2
3 ,

1
3 ), respectively.

The coherent systems with i.i.d. components and lifetimes T2 = max(X1,min(X2, X3)) and
T ∗

2 = max(X2,min(X1, X3)) have the same signature. However, the bivariate signature of T1
and T ∗

2 is

P ∗ =
⎛⎝0 1

6
1
6

0 1
2

1
6

0 0 0

⎞⎠ ,

which is not equal to P . Moreover, P(T1 = T ∗
2 ) = p∗

2,2 = 1
2 �= 1

3 = p2,2.

Table 2.

Equiprobable orderings T1 T2 I

X1 < X2 < X3 X1 = X1:3 X2 = X2:3 (1, 2)
X1 < X3 < X2 X1 = X1:3 X3 = X2:3 (1, 2)
X2 < X1 < X3 X1 = X2:3 X1 = X2:3 (2, 2)
X2 < X3 < X1 X3 = X2:3 X1 = X3:3 (2, 3)
X3 < X1 < X2 X1 = X2:3 X1 = X2:3 (2, 2)
X3 < X2 < X1 X2 = X2:3 X1 = X3:3 (2, 3)
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The next example shows how these computations can be simplified when one system is a
k-out-of-n system.

Example 4.2. Let us consider T1 = X1:3 and T2 = max(X1,min(X2, X3)) with signatures
(1, 0, 0) and (0, 2

3 ,
1
3 ), respectively. Hence, their bivariate signature is

P =
⎛⎝0 2

3
1
3

0 0 0
0 0 0

⎞⎠
and their joint distribution can be written as

G(t1, t2) = 2
3F1,2:3(t1, t2)+ 1

3F1,3:3(t1, t2).

Note that if X1, X2, and X3 are i.i.d. with a common absolutely continuous distribution, then
G is absolutely continuous since P(T1 = T2) = 0.

The covariance between X1:3 and T2 can be computed as

cov(X1:3, T2) = 2
3σ1,2:3 + 1

3σ1,3:3.

If the component lifetimes have exponential distributions then σ1,2:3 = σ1,3:3 = σ1,1:3 and we
have

cov(X1:3, T2) = σ1,1:3 = var(X1:3) = 1
9μ

2.

Hence,

corr(X1:3, T2) =
√

var(X1:3)
var(T2)

.

Then, since var(T2) = 11
12μ

2, we have

corr(X1:3, T2) =
√

1/9

11/12
= 2√

33
= 0.348 16

and corr2(X1:3, T2) = 4
33 = 0.121 21, that is, a linear function of X1:3 only explains 12.12%

of the variation in T2. From (2.5), to predict T2, we should use

E(T2 | X1:3 = x) = x + 2
3μ1:2 + 1

3μ2:2 = x + 2
3

1
2μ+ 1

3
3
2μ = x + 5

6μ.

For example, if μ = 1 then the regression curve (line) is E(T2 | X1:3 = x) = 0.833 33 + x.
If μ is unknown then we might use E(X1:3) = μ/3 to estimate μ as μ̂ = 3x. Then we get
E(T2 | X1:3 = x) � 7x/2.

The next example shows that these representations can also be applied to systems sharing
some components (not necessarily all of them). Specifically, we consider the case T2 = Xi for
i = 1, 2, 3.

Example 4.3. Let us consider the systems with lifetimes T1 = min(X1,max(X2, X3)) and
T2 = Xi for i = 1, 2, 3. In this case, the dependence between T1 and Xi can be used to
measure the relevance of the ith component in the system. Hence, from Table 2 we have the
bivariate signature of (T1, X1) to be

P1 = P (T1, X1) =
⎛⎝ 1

3 0 0

0 1
3

1
3

0 0 0

⎞⎠
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and their joint distribution can be written as

G(t1, t2) = 1
3F1:3(min(t1, t2))+ 1

3F2:3(min(t1, t2))+ 1
3F2,3:3(t1, t2).

Note that the signature of order 3 of X1 (obtained by adding the rows) is ( 1
3 ,

1
3 ,

1
3 ), that is, X1

is a uniform mixture of X1:3, X2:3, and X3:3.Analogously, we have the bivariate signature of
(T1, Xi) to be

Pi = P (T1, Xi) =
⎛⎝0 1

6
1
6

1
3

1
6

1
6

0 0 0

⎞⎠
for i = 2, 3. Note that the signature of order 3 of Xi is also ( 1

3 ,
1
3 ,

1
3 ) for i = 2, 3.

Then, for x > 0, the conditional distribution of (T1 | X1 = x) is given by

GT1|1(t | x) = 2
3Dx(t)+ 1

3G2:2(t | x),
where Dx(t) = 0 (or Dx(t) = 1) for t < x (or t ≥ x) is the distribution function of a
degenerate random variable at x and G2:2(t | x) = F 2(t)/F 2(x) (or G2:2(t | x) = 1) for
t < x (or t ≥ x) is the distribution of Y2:2, where Y1 and Y2 are i.i.d. with common distribution
function P(Yj ≤ t) = F(t)/F (x) (or P(Yj ≤ t) = 1) for t < x (or t ≥ x) and j = 1, 2.
Note that this last distribution is the distribution of the right-truncated variable (Xi | Xi < x).
Similar results can be obtained for (T1 | Xi = x), i = 2, 3.

In particular, if the components have a common exponential distribution with mean μ then
a straightforward calculation shows that

cov(T1, X1) = 7
18μ

2 = 0.388 89μ2.

Hence, using the facts that var(T1) = μ2/3 and var(X1) = μ2, we have

corr(T1, X1) = 7/18√
1/3

√
1

= 7

18

√
3 = 0.673 58,

that is, we can explain 45.37% of the variation of T1 by using the regression line based on X1.
Analogously, for the other components, we have

cov(T1, Xi) = 5
36μ

2 = 0.138 89μ2

and

corr(T1, Xi) = 5/36√
1/3

√
1

= 5

36

√
3 = 0.240 56

for i = 2, 3, that is, we can explain only 5.78% of the variation of T1 by using the regression
line based on Xi for i = 2, 3. Hence, the most important (i.e. the most highly correlated)
component for the system lifetime is the first component. The first component is also the most
important component by using the Birnbaum importance measure.

These representations can also be applied to compare the same systems using SP. Thus, we
have P(T1 ≤ X1) = 1 and P(T1 ≤ Xi) = 2

3 for i = 1, 2. Analogously, if we want to compare
T1 with an independent componentX4 (with the same distribution asX1, X2, andX3), we first
need to compute the bivariate signature of (T1, X4), obtaining

P4 = P (T1, X4) =

⎛⎜⎜⎜⎝
0 1

12
1

12
1

12
1

12 0 1
6

1
6

1
6

1
6 0 0

0 0 0 0

⎞⎟⎟⎟⎠ .
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Note that the respective signatures of order 4 of T1 and X4 can be computed as the marginals
of P4, obtaining ( 1

4 ,
5

12 ,
1
3 , 0) and ( 1

4 ,
1
4 ,

1
4 ,

1
4 ). These coincide with the values given in Table 1

(lines 1 and 5) of [29]. In this case, the joint distribution representation is not of interest since
T1 and X4 are independent. To compare them using SP, from (3.1), we have

P(T1 ≤ X4) = 7
12 = 0.583 33,

and, hence, T1 stochastically precedes X4 (i.e. this system is worse than a single independent
component 58.333% of the time). This value coincides with the value obtained with the
calculations presented in [15], [23], and [31, pp. 68–74].

Finally, in the next example, we show how to obtain multivariate stochastic ordering results
from Theorems 3.1–3.3.

Example 4.4. Let us consider T1 = X1:3 and T2 = max(X1,min(X2, X3)) with bivariate
signature

P =
⎛⎝0 2

3
1
3

0 0 0
0 0 0

⎞⎠
(see Example 4.2), and T ∗

1 = min(X∗
1,max(X∗

2, X
∗
3)) and T ∗

2 = max(X∗
1,min(X∗

2, X
∗
3)) with

bivariate signature

P ∗ =
⎛⎝0 1

6
1
6

0 1
2

1
6

0 0 0

⎞⎠
(see Example 4.1), where X1, X2, and X3 are i.i.d. with a common absolutely continuous
distribution F, and X∗

1, X
∗
2, and X∗

3 are i.i.d. with a common absolutely continuous
distribution F ∗. As seen in (3.6), we have P ≤S/E→ P ∗. Therefore, if X1 ≤st X

∗
1 then,

from Theorems 3.1 and 3.3, we have (T1, T2) ≤st (T
∗

1 , T
∗

2 ).
Analogously, if the components are dependent and we assume that (X1, X2, X3) and

(X∗
1, X

∗
2, X

∗
3) have absolutely continuous joint distributions and satisfy

(X1, X2, X3) ≤st (X
∗
1, X

∗
2, X

∗
3),

then, from Theorems 3.2 and 3.3, we have (T1, T2) ≤st (T
∗

1 , T
∗

2 ).
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