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NUMERICAL SIMULATION OF THE EVOLUTION OF ICE COVERS
USING THE SCANDINAVIAN AND LAURENTIDE ICE SHEETS
AS EXAMPLES
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ABSTRACT. A non-linear parabolic equation describing the evolution of an isothermal linearly viscous ice
sheet is numerically solved in non-dimensional coordinates obtained by normalization over the horizontal size of a
glacier. The horizontal size of the ice sheet is defined from the solution of an ordinary differential equation, the
integral mass balance. For simple climate models, approximate relations describing the evolution of glaciers are
proposed. These relations and palaeogeographical data are used to estimate changes in the mass balance on the
surface of the Scandinavian and Laurentide ice sheets during retreat of the last glaciation.

RESUME. Simulation numerique de I'evolution des couvertures glaciaires en utilisant les calottes scandinaves
et laurentides comme exemples. Une équation parabolique non linéaire décrivant I'évolution d’une calotte glaciaire
isotherme a viscosité évoluant linéairement est résolue numériquement en coordonnées adimensionnelles obtenues
en les rapportant a I'étendue en plan du glacier. L'étendue en plan d'une calotte glaciaire est définie a partir de la
solution d’une équation différentielle ordinaire, le bilan de masse intégral. Pour des modéles sous climat simple.,
on propose des relations approchées décrivant I'évolution des glaciers. Ces relations et des données
paléogeographiques sont utilisées pour estimer les changements intervenus dans le bilan de masse de la surface des
calottes glaciaires scandinaves et laurentides durant la période de retrait de la derniére glaciation.

ZUSAMMENFASSUNG. Numerische Simulation der Entwicklung von Eisdecken am Beispiel des skandi-
navischen und laurentidischen Eisschildes. Eine nichtlineare, parabolische Gleichung fiir die Entwicklung eines
isothermen. linear viskosen Eisschildes wird numerisch in dimensionslosen Koordinaten, die sich durch
Normierung iiber den Grundriss eines Gletschers ergeben, gelost. Der Grundriss des Eisschildes folgt aus der
Losung einer gewdhnlichen Differentialgleichung fiir die integrale Massenbilanz. Fiir einfache Klimamodelle
lassen sich Naherungsbeziehungen fiir die Entwicklung von Gletschern angeben. Diese Beziehungen und
paliogeographische Daten werden zur Abschitzung der Massenbilanzinderungen an der Oberfliche des
skandinavischen und des laurentidischen Eisschildes wihrend des Riickzugs aus der letzten Vereisung
herangezogen.

MATHEMATICAL reconstruction of glaciations in the geological past (Kvasov and Verbitsky.
1981) is based on calculations using a thermohydrodynamical model of a stationary ice sheet
(Verbitsky and Chalikov, 1980[a], [b]) for prescribed regions of its existence. This model can be
used for ice sheets where an important component of mass balance is ice calving, i.e. such as the
glaciers of Antarctica and Greenland. For analysis of the history of the Quaternary glaciation it
is essential to study the behaviour of glaciers extending on land and changing their sizes. This
problem was considered on the basis of simple balance (Weertman, 1964, 1976: Birchfield and
Weertman, 1978) and the so-called “transport™ (Sergin, 1979) models. This paper is concerned
with analysis of the evolution of ice sheets based on solution of complete non-linear
hydrodynamical equations.

Here we study the dynamical properties of a large ice sheet using as an example a two-
dimensional glacier composed of isothermal linearly viscous ice. If the assumption about the
linear ice flow law is reasonably justified for large plain ice covers with characteristic values of
stresses not exceeding 10*—10° Pa (Budd, 1969), then the isothermal condition is. in effect.
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determined by the “strong™ assumption about the two-dimensional character of a glacier, after
which it is hardly appropriate to allow for the “fine” temperature structure.

The equation for calculating the dynamics of the free surface of an ice sheet is the kinematic
condition on its upper boundary, which, allowing for the vertically integrated continuity

equation, takes the form
h
h,+(j Udz) = (1)
0 x

where h is a free surface ordinate, U is the horizontal velocity, a is a function giving the mass
influx distribution, and x, z are rectangular Cartesian coordinates with the origin at the centre of
the glacier base.

Substitution into Equation (1) of the values of U derived from solution of the motion
equations obtained using the assumption about relative thinness of the glacier, reduces Equation
(1) to the form

h,—a(h®h,), =a (2)

where o= 3Kpg, K, p being respectively the fluidity and the density of ice and g the gravity
acceleration. (The assumption that U= Bt™ where 7 is the bottom stress (Oerlemans, 1981)
makes Equation (1) somewhat “poorer™.)

The initial condition for the non-linear parabolic Equation (2) is:

h=hg for 1=0. (3)
Requiring the continuity derivative ki, at the origin of the coordinates gives
h,=0 for x=0. 4)
At the edge of the glacier, we assume:
h=0 for x=L(r) (5)

where L is the glacier horizontal size. As the ice sheet approaches the edge of the continent, a
situation may occur when A+0. But the values of the edge thicknesses of glaciers are small
compared with their characteristic thicknesses, which also enables condition (5) to be used with a
high degree of accuracy.

The fact that L is dependent on time produces certain difficulties in solving of Equation (2).
To overcome them, we introduce non-dimensional coordinates x=L¢ and (=Tt where
To=H/ay and H and a, are the scales of quantities # and a. In the new coordinates, Equation
(2) will be written in the form

h,—L'L.Ehe— PR’ hy)s=a (6)
(here h and a are nondimensional quantities and f=aH “/aoLz); conditions (3)—(5) will take the
form:
h=hg for =0, (7)
h:=0 for £=0, (8)
h=0 for (£=il. 9)
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To calculate L, we integrate Equation (1) horizontally from 0 to L:

~L ~L
(JU hdx)l_Jo a dx. (10)

The expression obtained is the integral mass balance and can be transformed as follows:
(h*L),=a*L (11)

where
1 ~L 1 ~L
h*=—J h dx, a*:—] a dx.
L g L Jy

We divide both parts of Equation (11) by #*L and solve the differential equation obtained with
the condition A* L = hj L, for t=0, and obtain
hy Bl o™
L=Ly—ex —dt]. 12
0 h* p JD h* ) ( )
Equation (6) with conditions (7)—(9) is solved numerically using the grid method jointly with
Equation (12) (Verbitsky, 1981).

At time =0 let a=a,; =const. for £€[0,1—¢], e<1, a*=0. When >0 a=a, +a,
sin (2n7/T) for & [0, 1 —¢], a* =a,, sin (277/T). Results of the calculations are given in Figure
1. The amplitudes of oscillations of A* and L appear to be strongly damped with T" decreasing
from 10 (ToT=10"5s) to 3 (ToT=3 x 10'?s). Changes in #* and L at T=1 (T, T= 10" s) do
not exceed 200 m and 50 km respectively, for am=2 (apam=2 x 10" ms~"') and are not
shown in the figure. As a,, increases to 6 (@o@,=6x 10" ms~"), the oscillations of A*
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Fig. I. Changes in the mean thickness of the ice cover h* (1, 3, 5) and horizontal size L (2,4, 6) for periodic changes
in precipitation.
1,2—ay=2; T=10,
3. 4—aqn=2;T=3,
5.6—aw=6; T=3.
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and L (curves 5, 6) differ from sinusoidal ones. Here Ly=10"m, K=3x 10 *Pa~"! s !,
p=91Tkgm 3 g=98ms 2 H=10"m, ao=10"" ms™', and a, = 3. h, is calculated using

the expression
4 o 1/4
ho=(—J J adcdé)
BJeJo

which is the solution of Equation (6) without non-stationary terms where f=aH*/ayL3.

It is interesting that in simple climate models it is possible to avoid a quite laborious solution
of Equation (6) using the methods of similarity theory. Consider the glacier motion equations
and the continuity equation:

7px+.UUzz:05 (]3)
—p: +pg=0, (14)
U, +W,=0, (15)

where p is the pressure and u= 1K is the ice viscosity. We choose the value of L as the horizontal
and of 2* as the vertical scale, then, from Equation (14) the pressure scale {p) will be defined:

(p)=pgh*. (16)
Let ( W) =a, then, allowing for Equation (15),
L
<U> =day h—*, ( 1 7)
and, finally, Equation (13) yields

1/4
h':}’L”z. }?=(K&) (18)
Pg

where x is an empirical constant of order 1. Substituting Equation (18) into Equation (11) gives
the approximate equation describing the evolution of the ice-sheet edge:

L), —a* (19)
or
YL~V L, = 0™, (20)
Hence, setting L=L, at t=0
1 .
- _f a* dz+L5f2) , L>0. @1
3y Jo

The simple expressions obtained, similar, to a certain extent, to those in Weertman (1964,
1976), allow one to perform approximate calculations of the regime (mass balance) of the
Scandinavian and Laurentide ice sheets. Their dynamics has been thoroughly studied for the
time of the retreat of the last glaciation which reached a maximum 18 000 years B.P.

Consider the retreat of the Scandinavian ice sheet from edge formations during its maximum
stage at Vyshniy Volochek to the Salpausselkd ranges north of Vyborg (Gerasimov, 1973).
From 18 000 to 11 000 years B.p. the sheet edge became 500 km closer to its dynamical centre in
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the northern part of the Gulf of Bothnia and the radius decreased from 1000 to 500 km. The
calculations thus far will not allow for the non-uniform rate of retreat of the glacier which was
higher during the inter-stage warmings and slower during the stages. In a range of
18 00012 500 years B.p. these warmings were small and brief; but 12 500—11 000 years B.p. the
inter-stages Bolling and Allerdd caused a rapid retreat of the glacier edge. Between 11 000 and
10 000 years B.P. the ice sheet was in a state close to stationary and then disintegrated rapidly.

The retreat of the Laurentide sheet occurred at a higher rate. Beginning from 18 000 to
8 000 years B.P. its edge retreated from the Ohio River almost to the southern part of Hudson
Bay and became 1200 km nearer to the dynamical centre (in Hudson Bay) and the radius
decreased from 2400 to 1200 km. In North America there were no inter-stages similar to
Bolling and Allerod; the retreat of the glaciers continued to edge formations of the Cochrane
stage, which were formed 8 000 years B.P. Subsequent disintegration of the Laurentide sheet
cannot be described using the model proposed here. The decisive factor in this case was the
formation of a *“calving bay” in Davis Strait and penetration of sea-water into the central part of
Hudson Bay. which, under the effect of isostasy, was lowered by several hundred metres. As
a result, the Laurentide ice sheet formed a great number of icebergs and disintegrated. This
phenomenon is referred to as the collapse of an ice sheet (Andrews and Peltier, 1976).

Calculation of the value of @* according to Equation (20) for a linear presentation of L =
Lo —yrtis summarized in Table I.

Thus, for the period of retreat of the Scandinavian ice sheet (18 000—11 000 B.p.) we
obtained a value for the excess of ablation over accumulation within the range 125-
170 mm/year (this value is averaged over the sheet area). This value appears to be sufficient to
provide a retreat of the glacier edge of some 70m per annum, on average. The retreat,
apparently, was mainly caused by a reduction of atmospheric precipitation (Kvasov, 1978). The
Laurentide ice sheet 18 000—8 000 years B.p. retreated as a result of an excess of ablation over
accumulation amounting to 130200 mm/year at a mean rate of 120 m per year. Relatively
small changes in the mass balance on the surface of the ice sheets led to a rapid change in their
sizes. As a result, during the time of the order of ten thousand years the Earth passed from
glaciation maximum to the beginning of interglaciation.

In conclusion, we note that in a more general case when y= () Equation (19) reduces to an
equation of the Bernoulli type:

L+ ' yL=b'a* L 22)

the solution of which is as follows:
*

2 oy I A ’
L=exp ﬁ—J‘ »~ 'y, dt|| Ly +—J — exp m-J- y~y, de) de| . (23)
3Jo 3Jo 7 3Jo

When y=const. Equation (23) is transformed into Equation (21).
MS. received 23 April 1981

TaBLE I. CALCULATED ABLATION RATES OF ICE SHEETS

Scandinavian Laurentide
Ice sheet Lo=10°m; y=24x10"%ms! Lo=2.4%10°m; y=4x 10~ %ms~"
t thousand years B.P. 18 16 14 12 18 16 14 12 10 8
a"'mmyear—1 —125 —135 —147 —165 —138 —144 —153 —162 —174 —192
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