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NUMERICAL SIMULATION OF THE EVOLUTION OF ICE COVERS 
USING THE SCANDINAVIAN AND LAURENTIDE ICE SHEETS 

AS EXAMPLES 

By D. D. KVASOV and M. YA. VERBITSKY 

(Leningradskoye Otd., lnstitut Okeanologii im. P. P. Shirshova, Akademiya N auk S.S.S.R., 
30, Pervaya Liniya, 199053 Leningrad, U .S.S.R.) 

ABSTRACT. A non-linea r pa rabolic equation desc ribi ng the evolutio n of an isothe rm al linea rl y visco'us ice 
sheet is numeri ca lly solved in non-dimensional coordinates obtained by no rmali zation over the ho ri zontal size o f a 
glac ier. The horizontal size o f the ice sheet is defined from the so lution o f a n ord inary d iffe renti al equation. the 
integra l mass balance. Fo r s imple climate models, approximate rela tio ns descri bing the evolution of glaciers are 
proposed . These relations a nd pa laeogeographical data are used to estimate changes in the mass balance on the 
surface o f the Scandinav ian a nd La urentide ice sheets during retrea t o f the last glaciation. 

R ESUME. S imulation numerique de revolution des couvertures glaciaires en utilisal1l les calottes scandinaves 
et laurel1lides comme exemples. U ne equation pa rabolique non lineai re decrivant revol ution d ' une ca lotte glaciaire 
isotherme a viscosite evolu ant lineairement est n:solue numeri quement en coordonnees ad imensionnell es obtenues 
en les rapportant a l'etend ue en pl an du glacier. L'etendue en plan d'une calo tte glac iaire est defini e a part ir de la 
solution d ' une equation diffe rentielle ordinaire. le bil an de masse integra l. Po ur des modi:les sous climat simple. 
on pro pose des relations a pproc hees decri vant revolution des glaciers. Ces relatio ns et des don nees 
paleogeographiques sont utili sees po ur estimer les changements in tervenu s da ns le bilan de masse de la surface des 
ca loltes glaciaires scandin aves et laurentides durant la periode de retra it de la dern iere glacia tion. 

ZUSAMMENFASSUNG. NlIIl1erische S imulation del' EntlVickhlllg von Eisdecken am Beispiel des skandi­
navischen und laurentidischen Eisschildes. Eine nichtl ineare. parabo lische G leichung fii r d ie Entwick lun g eines 
isothermen, linear viskosen Eisschildes wird numeri sch in dimensio nslosen Koord in a ten, die si ch durc h 
Nor lllierung iiber den G rundri ss eines Gletschers ergeben, geliist. Der G rundri ss des Eisschildes fo lgt aus de r 
Liisung einer gewiihn lichen Differenti algleichung fiir die integrale M assenbil anz. Fii r ei nfac he Kli mamode lle 
lassen sich Nii herungsbez ieh ungen fiir die Ent wicklung von G letschern angeben. Diese Beziehungen und 
pa liiogeographische Daten werden zur Abschiitzung der Massenbil a nzanderungcn a n der O berfhiche des 
skandi navisc hen und des la urentidischen Eisschildes wahrend des Riickzugs aus de r letz ten Vereisung 
herangezogen. 

M ATH E MATICAL reconstruction of glaciations in the geological past (K vaso v and Verbitsky, 
1981 ) is based on calculation s using a thermohydrodynamical model of a stationary ice sheet 
(Verbitsky and Chalikov, 1980[aj , rb]) for prescribed regions of its existence. This model can be 
used for ice sheets where an important component of mass balance is ice cal ving, i.e. such as the 
glaciers o f Antarctica and Greenland. For analysis of the hi story of the Quaternary glaciation it 
is essential to study the behaviour of glaciers extending on land and changing their sizes. Thi s 
problem was considered on the basis of simple balance (Weertman, 1964, 1976; Birchfield and 
Weertman, 1978) and the so-called " transport" (Sergin, 1979) models. This paper is concerned 
with analysis of the evolution of ice sheets based on solution of complete non-linear 
hydrodynamical equations. 

Here we study the dynamical properties of a large ice sheet using as an example a two­
dimensional glacier composed of isothermal linearly vi scous ice . If the assumption about the 
linear ice flow law is reasonably justified for large plain ice covers with characteristic values of 
stresses not exceeding 104_ 10 5 Pa (Budd, 1969), then the isothermal condition is, in effect. 
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determined by the " strong" assumption about the two-dimensional character of a glacier, after 
which it is hardly appropriate to allow for the " fine" temperature structure. 

The equation for calculating the dynamics of the free surface of an ice sheet is the kinematic 
condition on its upper boundary, which, allowing for the vertically integrated continuity 
equation, takes the form 

(I) 

where h is a free surface ordinate, U is the horizontal velocity, a is a function giving the mass 
influx distribution , and x , z are rectangular Cartesian coordinates with the origin at the centre of 
the glacier base. 

Substitution into Equation (I) of the values of U derived from solution of the motion 
equations obtained using the assumption about relative thinness of the glacier, reduces Equation 
(I) to the form 

(2) 

where a = jKpg, K, P being respectively the fluidity and the density of ice and g the gravity 
acceleration. (The assumption that U=Brm where [ is the bottom stress (Oerlemans, 1981) 
makes Equation (I) somewhat " poorer" .) 

The initial condition for the non-linear parabolic Equation (2) is: 

h=ho for 1=0. (3) 

Requiring the continuity derivative hx at the origin of the coordinates gives 

for x=O. (4) 

At the edge of the glacier, we assume: 

h=O for x =L(t) (5) 

where L is the glacier horizontal size. As the ice sheet approaches the edge of the continent, a 
situation may occur when h:l= O. But the values of the edge thicknesses of glaciers are small 
compared with their characteristic thicknesses, which also enables condition (5) to be used with a 
high degree of accuracy. 

The fact that L is dependent on time produces certain difficulties in solving of Equation (2). 
To overcome them, we introduce non-dimensional coordinates x = Lt, and 1 = To [ where 
To = H/ ao and Hand ao are the scales of quantities hand a. In the new coordinates, Equation 
(2) will be written in the form 

(6) 

(here h and a are nondimensional quantities and fJ=aH4 / aoL2) ; conditions (3)-(5) will take the 
form: 

h=ho for [=0, (7) 

h~=O for t,=0, (8) 

h=O for t,= 1. (9) 
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To calculate L , we integrate Equation (1) horizontally from 0 to L: 

The expression obtained is the integral mass balance and can be transformed as follows : 

(h* L)/ =a* L 

where 

h* = ~ foL h dx, a* = ~ foL a dx. 
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(10) 

(11 ) 

We divide both parts of Equation (11) by h* L and solve the differential equation obtained with 
the condition h * L = ht Lo for [= 0, and obtain 

ht (I a* ) 
L=Lo h* exp fo h* dt . (12) 

Equation (6) with conditions (7)-(9) is solved numerically using the grid method jointly with 
Equation (12) (Verbitsky, 1981). 

At time 1=0 let a=a,=const. for ~ E [O, I-c], c ~ l, a*=O. When [ > 0 a=a, +am 

sin (2nr/ T) for ~ E [0, I - e], a * = am sin (2nr/ T). Results of the calculations are given in Figure 
I. The amplitudes of oscillations of h* and L appear to be strongly damped with T decreasing 
from 10 (ToT= 10'3 s) to 3 (ToT=3 X 10 12 s). Changes in h* and L at T= I (ToT= 10'2 s) do 
not exceed 200 m and 50 km respectively, for am = 2 (aoa m = 2 X 10 - 9 m s - ') and are not 
shown in the figure. As am increases to 6 (aoam = 6 x 10- 9 m s - '), the oscillations of h* 

h* (100 i( fD 5,.,) 
5 10 

2 

Fig. I . Changes in the mean thickness of the ice cover h * (/,3,5) and horizontal size L (2,4,6) for periodic changes 
in precipitation. 
1, 2 - am = 2;T= IO, 
3, 4 - am = 2;T= 3, 
5, 6 - am = 6; T = 3. 
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and L (curves 5,6) differ from sinusoidal ones. Here Lo = 105 m, K = 3 X 10 - 4 Pa - 1 S - I, 

p=917 kgm - 3, g=9.8 m S - 2, H= 103 m, ao= 10 - 9 m S - I , and al =3 . ho is calculated using 
the expression 

(

4 1 ~ ) 1/4 

ho = 7i r So a d~ d~ 
which is the solution of Equation (6) without non-stationary terms where fJ = aH4/aoL5. 

It is interesting that in simple climate models it is possible to avoid a quite laborious solution 
of Equation (6) using the methods of similarity theory. Consider the glacier motion equations 
and the continuity equation: 

- pz +pg=O, 

(1 3) 

(14) 

( 15) 

where p is the pressure and J1 = ~K is the ice viscosity. We choose the value of L as the horizontal 
and of h* as the vertical scale, then, from Equation (14) the pressure scale ( p ) will be defined: 

(p) = pgh*. 

Let ( W ) = ao then, allowing for Equation (15), 

and, finally, Equation (13) yields 

L 
( U) =ao h*' 

h* = yL 1/ 2, 
( 

f.1ao) 1/4 
Y= K-­

pg 

(16) 

(17) 

(18) 

where K is an empirical constant of order 1. Substituting Equation (18) into Equation (11) gives 
the approximate equation describing the evolution of the ice-sheet edge: 

(19) 

or 

(20) 

Hence, setting L = Lo at t = 0 

L = ( 31y f: a * d! + L6/
2 r ' L >O. (21) 

The simple expressions obtained, similar, to a certain extent, to those in Weertman (1 964, 
1976), allow one to perform approximate calculations of the regime (mass balanc ) o f the 
Scandinavian and Laurentide ice sheets. Their dynamics has been thoroughly studied fo r the 
time of the retreat of the last glaciation which reached a maximum 18 000 years B.P. 

Consider the retreat of the Scandinavian ice sheet from edge formations during its maximum 
stage at Vyshniy Volochek to the Salpausselkii ranges north of Vyborg (Gerasimov, 1973). 
From 18000 to 11 000 years B.P. the sheet edge became 500 km closer to i ~s Jynamical centre in 
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the northern part of the Gulf of Bothnia and the radius decreased from I 000 to 500 km. The 
calculations thus far will not allow for the non-uniform rate of retreat of the glacier which was 
higher during the inter-stage warmings and slower during the stages. In a range of 
18 000-12 500 years B.P. these warmings were small and brief; but 12 500-11 000 years B.P. the 
inter-stages Balling and Allerod caused a rapid retreat of the glacier edge. Between 11 000 and 
10000 years B.P. the ice sheet was in a state close to stationary and then disintegrated rapidly. 

The retreat of the Laurentide sheet occurred at a higher rate. Beginning from 18 000 to 
8000 years B.P. its edge retreated from the Ohio River almost to the southern part of Hudson 
Bay and became I 200 km nearer to the dynamical centre (in Hudson Bay) and the radius 
decreased from 2400 to 1 200 km. In North America there were no inter-stages similar to 
Balling and Allerod ; the retreat of the glaciers continued to edge formations of the Cochrane 
stage, which were formed 8 000 years B.P. Subsequent disintegration of the Laurentide sheet 
cannot be described using the model proposed here. The decisive factor in this case was the 
formation of a "calving bay" in Davis Strait and penetration of sea-water into the central part of 
Hudson Bay, which, under the effect of isostasy, was lowered by several hundred metres . As 
a result. the Laurentide ice sheet formed a great number of icebergs and disintegrated. This 
phenomenon is referred to as the collapse of an ice sheet (Andrews and Peltier, 1976). 

Calculation of the value of a * according to Equation (20) for a linear presentation of L = 
La - !/It is summarized in Table I. 

Thus, for the period of retreat of the Scandinavian ice sheet (18000- 11000 B.P .) we 
obtained a value for the excess of ablation over accumulation within the range 125-
170 mm/ year (this value is averaged over the sheet area). This value appears to be sufficient to 
provide a retreat of the glacier edge of some 70 m per annum, on average. The retreat, 
apparently, was mainly caused by a reduction of atmospheric precipitation (Kvasov, 1978). The 
Laurentide ice sheet 18000--8000 years B.P. retreated as a result of an excess of ablation over 
accumulation amounting to 130--200 mm/ year at a mean rate of 120 m per year. Relatively 
small changes in the mass balance on the surface of the ice sheets led to a rapid change in their 
sizes. As a result, during the time of the order of ten thousand years the Earth passed from 
glaciation maximum to the beginning of interglaciation. 

In conclusion, we note that in a more general case when y= y(t) Equation (19) reduces to an 
equation of the Bernoulli type: 

(22) 

the solution of which is as follows: 

L=exp ( -~ fa' y- 'y, dt)[ L~/2 +~ f: a; exp ( ~ fa' y- 'y, dt) dtf (23) 

When y=const. Equation (23) is transformed into Equation (21). 

MS. received 23 April 1981 

TABLE I. CALCULATED ABLATION RATES OF ICE SHEETS 

Ice sheet 

t thousand years H.P . 
a* mm year - I 

Scandinavian 
Lo= I06 m ;IjJ = 2.4 x 1O - 6 ms - 1 

18 16 14 12 
-125 - 135 - 147 - 165 

Laurentide 
Lo=2.4 x I06 m;IjJ= 4 x 1O - 6ms - 1 

18 16 14 12 10 8 
-138 - 144 - 153 - 162 - 174 - 192 
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