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Abstract
In this paper, we study the distribution of the temperature within a body where the heat is transported only by
radiation. Specifically, we consider the situation where both emission-absorption and scattering processes take
place. We study the initial-boundary value problem given by the coupling of the radiative transfer equation with
the energy balance equation on a convex domain �⊂R3 in the diffusion approximation regime, that is, when the
mean free path of the photons tends to zero. Using the method of matched asymptotic expansions, we will derive
the limit initial-boundary value problems for all different possible scaling limit regimes, and we will classify them
as equilibrium or non-equilibrium diffusion approximation. Moreover, we will observe the formation of boundary
and initial layers for which suitable equations are obtained. We will consider both stationary and time-dependent
problems as well as different situations in which the light is assumed to propagate either instantaneously or with
finite speed.

1. Introduction

The kinetic equation, which describes the interaction of matter with photons, is the radiative transfer
equation. The radiative transfer equation can be written including absorption-emission processes and
scattering processes in a rather general setting as

1

c
∂tIν(t, x, n) + n · ∇xIν(t, x, n) = αe

ν
− αa

ν
Iν(t, x, n) + αs

ν

(∫
S2

K(n, n′)Iν(t, x, n′) dn′ − Iν(t, x, n)

)
. (1.1)

We denote by Iν(t, x, n) the radiation intensity, that is, the distribution of energy of photons moving
at time t> 0, at position x ∈�⊂R3 and in direction n ∈ S2 with frequency ν > 0. Moreover, c is the
speed of light in the medium that will be assumed to be constant. The parameters αe, αa and αs are,
respectively, the emission, absorption and scattering coefficients. These are functions that can depend
on the frequency ν, on the position x or, in the case of local thermal equilibrium, on the local temperature
T(x). The function K is the scattering kernel. It can be considered as the probability rate of a photon
to be deflected from an incident direction n′ ∈ S2 to a new direction n ∈ S2. The scattering kernel K can
also be assumed to depend on the frequency ν ∈R+. However, in this paper, we omit the dependence on
ν in order to simplify the notation. Notice that all the results that we will present in this paper also hold
in the case where K is a function of ν.

In this paper, we will study the heat transfer by means of radiation under some assumptions. First
of all, we consider only the case of local thermal equilibrium in which the temperature T(t, x) is well-
defined at any point x ∈� and for any time t> 0. This is not necessarily the case in situations where
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the microscopic processes driving the system towards equilibrium are slow. Such problems arise in
applications to astrophysics (cf. [45]). Under this assumption, the emission coefficient takes a particular
form. Indeed, it is given by αe

ν
= αa

ν
Bν(T(t, x)), where Bν(T) = 2hν3

c2
1

e
hν
kT −1

is the Planck distribution of a
black body. We assume also that the considered material is isotropic without a preferred direction of
scattering. Hence, the scattering kernel K is invariant under rotations.

We couple the radiative transfer equation with the energy balance equation

C∂tT(t, x) + 1

c
∂t

(∫ ∞

0

dν
∫
S2

dn Iν(t, x, n)

)
+ div

(∫ ∞

0

dν
∫
S2

dn nIν(t, x, n)

)
= 0, (1.2)

where C> 0 is the volumetric heat capacity of the material. The combined system (1.1) and (1.2) allows
to determine the temperature of the system at any point when the heat is transferred only by means of
radiation. Notice that in (1.2), we are not considering other heat transport processes such as conduction or
convection. After a suitable time rescaling, we can assume C = 1. As a boundary condition, we consider
a source of radiation placed at infinity. Mathematically, we impose

Iν(t, x, n) = gν(t, n) if x ∈ ∂� and n · nx < 0, (1.3)

where nx ∈ S2 is the outer normal to the boundary at point x. However, we could consider a more general
setting with the incoming boundary profile gν(t, x, n) depending also on x ∈ ∂�.

In this paper we, will consider both the time-dependent and the stationary cases. Assuming �⊂R3

bounded and convex and as initial values the bounded functions I0(x, n, ν) and T0(x), we consider the
following initial-boundary value problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

c
∂tIν(t, x, n) + n · ∇xIν(t, x, n) = αa

ν
(x) (Bν(T(t, x)) − Iν(t, x, n))

+ αs
ν
(x)

(∫
S2

K(n, n′)Iν(t, x, n′) dn′ − Iν(t, x, n)

)
x ∈�, n ∈ S2, t> 0

∂tT + 1

c
∂t

(∫ ∞

0

dν
∫
S2

dn Iν(t, n, x)

)
+ div

(∫ ∞

0

dν
∫
S2

dn nIν(t, n, x)

)
= 0 x ∈�, n ∈ S2, t> 0

Iν(0, x, n) = I0(x, n, ν) x ∈�, n ∈ S2

T(0, x) = T0(x) x ∈�
Iν(t, n, x) = gν(t, n) x ∈ ∂�, n · nx < 0, t> 0

(1.4)
and the following stationary boundary value problem⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

n · ∇xIν(x, n) = αa
ν
(x) (Bν(T(x)) − Iν(x, n))

+ αs
ν
(x)

(∫
S2

K(n, n′)Iν(x, n′) dn′ − Iν(x, n)

)
x ∈�, n ∈ S2

div
(∫ ∞

0

dν
∫
S2

dn nIν(n, x)

)
= 0 x ∈�, n ∈ S2

Iν(n, x) = gν(n) x ∈ ∂�, n · nx < 0.

(1.5)

Problems like (1.4) and (1.5) or similar equations related to radiative transfer are often studied in the
framework of the so-called diffusion approximation (see [42, 58]). This approximation is valid when the
mean free path of the photons is much smaller than the macroscopic size of the system. However, the
mean free path of the photons can be small because either the scattering mean free path or the absorption
mean free path is smaller than the size of the system. The main consequence of that is that, depending
on the ratio between the different mean free paths, the radiation intensity can be approximated by the
Planck distribution, that is, Bν(T), or it cannot be. The first case is denoted as equilibrium diffusion
approximation, while the second one is referred to as non-equilibrium diffusion approximation. These
concepts have been extensively discussed in the physical literature on radiation (cf. [42, 58]). The goal
of this paper is to obtain a precise mathematical characterization of these concepts, specifically to derive

https://doi.org/10.1017/S0956792525100168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525100168


European Journal of Applied Mathematics 3

an accurate mathematical condition for the validity of the equilibrium diffusion approximation and to
determine the regions where the equilibrium or non-equilibrium diffusion approximation holds for the
specific problems (1.4) and (1.5). To this end, we will use perturbative methods and matched asymptotic
expansions in order to study different scaling limits for the scattering and absorption mean free paths.

1.1. Scaling lengths and results

We study the solutions of the time-dependent and stationary radiative transfer equations (1.4) and (1.5)
under different scaling limits, and we obtain suitable problems satisfied by the limit of the solutions of
the original problems. For these problems, we will obtain either the equilibrium or the non-equilibrium
diffusion approximation. To this end, we start defining some characteristic lengths.

We consider a convex domain �⊂R3 with diameter of order 1 and such that the size of the domain
is comparable in all directions of the space. Moreover, the characteristic macroscopic length L is
assumed to be L = 1. We remark that many of the results obtained in this paper are also valid in a non-
convex domain. However, in non-convex domains, we should also take into account the consequences
of incoming radiation into cavities, an issue that we will not consider in this paper (see [30] for more
details).

We will replace the absorption coefficient αa
ν
(x) by

αa
ν
(x)

�A

(1.6)

and the scattering coefficient αs
ν
(x) by

αs
ν
(x)

�S

, (1.7)

where now αa
ν
(x) =O(1) and αs

ν
(x) =O(1) are bounded by a constant of order one in both variables.

We denote by �A the absorption length and by �S the scattering length. These are also the mean free
paths of the absorption/emission processes and the scattering processes, respectively. In some physical
applications, it is convenient to assume αa

ν
(x) or αs

ν
(x) to tend to zero for large or small frequencies ν.

The exact dependence of these functions on ν will be made after. Roughly speaking, we have to assume
that they have to decay not too fast in order to obtain that some integrals arising in the analysis are
convergent.

In many technological applications, it can be assumed that αs
ν
� αa

ν
(cf. [58]). However, there are also

applications where the scattering plays a more important role than the absorption/emission process. This
is the case, for example, in the analysis of planetary atmospheres (see [20, 45]).

Another important scaling length that we should consider is the Milne length, which is given by the
minimum between absorption and scattering length,

�M = min{�A, �S}. (1.8)

The Milne length can be considered to be the effective mean free path of the whole radiative process.
The key feature of the Milne length is that at distances of order �M to the boundary, the radiation intensity
becomes isotropic, that is, independent of the direction n ∈ S2. Since we are interested in the diffusion
approximation, we assume in the rest of this paper �M � L = 1.

Another length that plays a crucial role in the analysis of this paper is the quantity that we will denote
as thermalization length, which is the geometrical mean of the absorption and the Milne length

�T = √
�A�M. (1.9)

The thermalization length is the characteristic distance from the boundary at which the radiation
intensity Iν approaches the Planck equilibrium distribution of the temperature.
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We now replace in (1.4) and (1.5) the absorption and scattering coefficients with the expressions in
(1.6) and (1.7). The changes in the temperature take place in times of order

τh = �A

min{�2
T , 1} 	 1,

which will be denoted as the heat parameter. Therefore, in order to obtain an equation that changes in
times t of order 1, we will replace t by τht. Notice that, after this change of variable, the changes of
times t of order 1 are associated with relevant changes of the temperature of order 1. We will use this
notation throughout the paper; that is, we will denote by t the time after the change of variable. Hence,
(1.4) writes using L = 1⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

c
∂tIν(t, x, n) + τhn · ∇xIν(t, x, n) = αa

ν
(x)τh

�A

(Bν(T(t, x)) − Iν(t, x, n))

+ αs
ν
(x)τh

�S

(∫
S2

K(n, n′)Iν(t, x, n′) dn′ − Iν(t, x, n)

)
x ∈�, n ∈ S2, t> 0

∂tT + 1

c
∂t

(∫ ∞

0

dν
∫
S2

dn Iν(t, n, x)

)

+ τhdiv
(∫ ∞

0

dν
∫
S2

dn nIν(t, n, x)

)
= 0 x ∈�, n ∈ S2, t> 0

Iν(0, x, n) = I0(x, n, ν) x ∈�, n ∈ S2

T(0, x) = T0(x) x ∈�
Iν(t, n, x) = gν(t, n) x ∈ ∂�, n · nx < 0, t> 0.

(1.10)
We will also consider the case where the speed of light is infinite, that is, c = ∞. This approximation is
justified if the characteristic time for the temperature to change is much smaller than the time required
for the light to cross the domain. In this case, the equation will be⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n · ∇xIν(t, x, n) = αa
ν
(x)

�A

(Bν(T(t, x)) − Iν(t, x, n))

+ αs
ν
(x)

�S

(∫
S2

K(n, n′)Iν(t, x, n′) dn′ − Iν(t, x, n)

)
x ∈�, n ∈ S2, t> 0

∂tT + τhdiv
(∫ ∞

0

dν
∫
S2

dn nIν(t, n, x)

)
= 0 x ∈�, n ∈ S2, t> 0

T(0, x) = T0(x) x ∈�
Iν(t, n, x) = gν(t, n) x ∈ ∂�, n · nx < 0, t> 0.

(1.11)
Similarly, the stationary problem (1.5) can be written as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

n · ∇xIν(x, n) = αa
ν
(x)

�A

(Bν(T(x)) − Iν(x, n))

+ αs
ν
(x)

�S

(∫
S2

K(n, n′)Iν(x, n′) dn′ − Iν(x, n)

)
x ∈�, n ∈ S2

div
(∫ ∞

0

dν
∫
S2

dn nIν(n, x)

)
= 0 x ∈�, n ∈ S2

Iν(n, x) = gν(n) x ∈ ∂�, n · nx < 0.

(1.12)

It is important to remark that we assume gν(t, n) in (1.10) and (1.11) to change in times of order 1
after rescaling the time; that is, we assume the incoming radiation gν to change in the same time scale
as the one for meaningful changes of the temperature.

Notice that at first glance, the time τh does not seem to have units of time. However, we must take into
account that since L = 1, omitted in all the equations, all quantities �A, �S, �M and �T are non-dimensional
parameters that have to be understood as �A

L
, �S

L
, �M

L
and �T

L
. In addition, we recall that we have chosen
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Table 1. Main results

�M = �T � L �M � �T � L �M � �T = L �M � L � �T

Milne layer Milne =
Thermalization

Yes Yes Yes

Thermalization
layer

Thermalization
= Milne

Yes ≈ Bulk No

Bulk Equilibrium
diffusion
approximation

Equilibrium
diffusion
approximation

Transition from
equilibrium to
non-equilibrium
approximation

Non-equilibrium
diffusion
approximation

a particular unit of time for which the heat capacity is C = 1. Hence, all the space and time variables
appearing in (1.10)–(1.12) are non-dimensional. In Sections 4–6, we will see that the definition of the
heat parameter, namely, τh, is motivated by the behaviour of the radiation intensity in the bulk, and it is
the order of time in which the temperature changes.

There are three characteristic lengths in (1.10)–(1.12), namely, �A, �S and L = 1, and we can consider
several relative scalings between them. Since �M � 1 in the case of the diffusion approximation, the
solutions can be described by means of different boundary layers. It turns out that the relative size and
the structure of these boundary layers can be characterized using the relative scalings of �M (cf. (1.8)), �S

(cf. (1.9)) and L = 1. In order to consider these different scalings, in the following sections, we will set
for the equations (1.10), (1.11) and (1.12) �M = ε� 1, and we will choose �A, �S and c as powers of ε.

Notice that the incoming radiation gν to the boundary of � is not necessarily isotropic, and in gen-
eral, it is different from the Planck distribution; that is, it is not in thermal equilibrium. This implies the
onset (in principle) of two nested boundary layers near the boundary where the intensity Iν changes its
behaviour. The thickness of these layers is �M and �T , respectively. In the first layer, which we call the
Milne layer, the radiative intensity Iν becomes isotropic. In the latter, which we denote as the thermal-
ization layer, Iν approaches the Planck distribution for a suitable temperature that has to be determined,
and it is one of the unknowns of the problem. Notice moreover that, since by definition �M ≤ �T , the
Milne layer always appears before the thermalization layer. On the other hand, if �M is comparable to �T ,
both layers can coincide. It is worth noting that beyond the thermalization layer, the radiative intensity
Iν is given by a Planck distribution. In the time-dependent problem, besides the formation of boundary
layers, we observe the formation of initial layers in which the radiation intensity becomes isotropic or
the equilibrium distribution, respectively.

Table 1 summarizes the behaviour of the solution (T , Iν) to the equations (1.10)–(1.12) for different
scaling limits yielding equilibrium or non-equilibrium diffusion approximation. Moreover, for any con-
sidered regime, we observe the onset or not of Milne layers or thermalization layers. Finally, when �T

is of the same order as the characteristic length L, the thermalization, that is, the transition of Iν to the
equilibrium distribution Bν(T), takes place in the bulk of the domain �.

The theory of the non-equilibrium diffusion approximation of the radiative transfer equation is
particularly relevant in astrophysical situations. The most extreme scenario takes place when the ther-
malization processes are so slow that it is not possible to define a macroscopic temperature at each point.
This situation, which will not be considered in this paper, is known as non-local thermal equilibrium
(cf. [29, 45]), and it takes place for very rarefied gases.

Nevertheless, the non-equilibrium diffusion approximation can also occur in cases in which the local
thermal equilibrium holds. This is the situation considered in this article. As given in Section 6.5 (83)
in [42] and in Sections 4.2.3 and 4.3 in [50], when the scattering process is much more important than
the emission-absorption process, the radiation intensity converges, as the mean free paths of the photons
tends to zero, to the Planck distribution at distances form the boundary of the order of the thermalization
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length �T . In particular, if �T is much larger than the characteristic size of the domain, the radiation
intensity does not approach Bν(T) at any point. Specific astrophysical situations where this happens are
hot stellar atmospheres where scattering is the leading radiation process (cf. [42]).

Moreover, the parameter regimes considered in this paper have significant applications in the descrip-
tion of the behaviour of the temperature in the upper part of the atmosphere. We emphasize that the main
aim of this article is the classification of the situations in which equilibrium or non-equilibrium diffusion
approximation holds and the formal derivation of the limit equations describing these approximations.

1.2. Revision of the literature

The problem concerning the distribution of temperature of a material interacting with electromagnetic
waves is not only a relevant question in many physical applications, but it is also the source of several
interesting mathematical problems. The radiative transfer equation is the kinetic equation describing the
interaction of photons with matter. Its derivation and its main properties are explained in [10, 42, 45, 50,
58]. In particular, the validity of the diffusion approximation and a discussion of the situations where
the radiation intensity is expected to be or not to be given approximately by the Planck distribution are
considered in [42, 58].

Starting from the seminal work of Compton [11], the interaction of matter and radiation has been
widely studied both in the physical and mathematical literature. Some of the early results can be found
in the paper of Milne [43], who considered a simplified model of monochromatic radiation depending
only on one space variable.

When considering the diffusion approximation of the radiative transfer equation, a boundary layer
near the boundary appears in which the distribution of radiation becomes isotropic. The specific equa-
tion describing this layer involves a radiative transfer equation depending on one space variable, whose
details depend on the problem under consideration. This class of problems is known in the mathematical
literature as Milne problems, and they have been extensively studied at least for some particular choices
of αa

ν
and αs

ν
.

While it is difficult to find explicit solutions of the radiative transfer equation, in the case of a small
photon’s mean free path (i.e. in the diffusion approximation), this problem reduces to an elliptic (in the
stationary case) or a parabolic (in the time-dependent case) problem. The mathematical properties of
these problems are much better understood than the properties of the non-local radiative transfer equation
(1.1). Due to this, the diffusion approximation of the radiative transfer equation has been studied in great
detail.

Before discussing the currently available mathematical results about the diffusion approximation and
the Milne problems, it is worth introducing an equation that is closely related to the radiative transfer
equation (1.1). In the absence of emission-absorption processes, that is, when αa

ν
= 0, and when αs

ν
is

independent of the frequency ν the radiative transfer equation (1.1) reduces to

∂tu(t, x, n) + n · ∇xu(t, x, n) = α(x)

(∫
S2

K(n, n′)u(t, x, n′) dn′ − u(t, x, n)

)
, (1.13)

where u = ∫ ∞
0

Iν(t, x, n) dν. This equation is mathematically identical to the one-speed neutron transport
equation. Moreover, in the stationary case, the radiative transfer equation reduces to (1.13) also in the
presence of absorption-emission processes if both αa and αs are independent of the frequency. The case
where both absorption and scattering coefficients are independent of the frequency is usually denoted
in the literature as the grey approximation. Therefore, the one-speed neutron transport equation and the
radiative transfer equation for the grey approximation are mathematically equivalent. See [12] for more
details. As a matter of fact, the neutron transport equation, especially its diffusion approximation, was
largely studied in the late 1970s. The reason is that this problem is important in order to determine
the critical size for neutron transport, that is, the smallest size of the system for which the scattering
eigenvalue problem has a stable solution. This is relevant in nuclear reactor engineering. For more details
about this issue, we refer to [12].
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In several articles [23, 35–40], Larsen and several coauthors studied many properties of the neutron
transport equation and its diffusion approximation. Moreover, in [41], the authors studied via asymptotic
analysis the diffusion approximation of the radiative transfer equation for both absorption and scattering
taking as initial and boundary value the Planck distribution. This choice of boundary data simplifies the
treatment of the problem because no boundary layers or initial transport problems arise at least to the
leading order.

To the best of our knowledge, the first mathematically rigorous article about the diffusion approxi-
mation for the neutron transport equation is [9]. In that article, the authors studied equation (1.13) under
different boundary conditions including also the absorbing boundary condition that we are consider-
ing in (1.3). In particular, using probabilistic methods, they studied the Milne problem arising for the
boundary layers and proved the convergence of the solution of the original neutron transport equation to
the solution of a diffusive problem. Moreover, the scattering kernel considered is assumed to be strictly
positive, bounded and rotationally symmetric.

More recently, Guo and Wu studied in a series of papers [28, 54–57] both the stationary and time-
dependent diffusion approximation for the neutron transport equation with a constant scattering kernel
and a constant scattering coefficient. They proved rigorously the convergence to such a diffusion problem
computing also a geometric correction for the boundary layer. Their method is based on the derivation
of suitable L2 − Lp − L∞ estimates, a method that has been extensively used in the study of kinetic
equations (cf. [27, 31]).

The mathematical theory of the radiative transfer equation has also been extensively studied. The
well-posedness and the diffusion approximation for the time-dependent problem without scattering have
been studied using the theory of m-accretive operators in [4–6].

In a recent paper [16], we developed an alternative method to derive the equilibrium diffusion
approximation starting with the stationary radiative transfer equation. Specifically, in [16], the grey
approximation and the case of absence of scattering are considered. The procedure developed in [16]
consists of reformulating the problem (1.12) as a non-local elliptic equation for the temperature for
which maximum principle techniques are applicable.

As indicated before, an important class of problems, which need to be studied in order to derive the
boundary condition for the diffusion approximation, are the Milne problems.

In the case of pure absorption, namely, when αs
ν
= 0, the well-posedness for the Milne problem can be

found, for instance, in [25] and also in [16] using different methods. In particular, in [25], well-posedness
is shown for a very large class of absorption coefficients.

In the case of pure scattering, radiative transfer equation for the grey approximation (equivalently the
neutron transport equation), the well-posedness of the Milne problem has been studied in [7, 9]. More
recently, geometric corrections to the solution of the Milne problem have been obtained in [28, 54–57].

To our knowledge, the only example of the Milne problem involving both emission/absorption and
scattering has been studied in [51]. The case considered in this paper is that of a constant scattering
kernel and constant scattering coefficient and a more general absorption coefficient. The proof relies on
the accretiveness of the operators used, similar to the Perron method applied to solve boundary value
problems for elliptic equations.

It is finally worth mentioning that also for other kinetic equations, such as the Boltzmann equation,
the diffusion limit and hence the boundary layer equations have been studied. The equations describing
the boundary layers are also often denoted in the literature by Milne problems (see, for instance, [8,
17–19]).

Besides the studies about the diffusion approximation, the radiative transfer equation has been anal-
ysed in numerous works. In recent times, there has been a growing interest in the study of problems
involving the radiative transfer equation in different contexts. The well-posedness of the stationary equa-
tion (1.5) has been considered in [14, 30]. The authors proved the existence of solutions to the stationary
radiative transfer equation with or without scattering in the cases of constant coefficients, coefficients
depending on the frequency but not on the temperature of the system and finally, coefficients depending
on both the frequency and the temperature of the particular form αν(T) = Q(ν)α(T).
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Finally, the radiative transfer equation has also been considered for more complicated interactions
between matter and photons. We refer to [24, 26, 42, 58] for problems concerning the interaction of
matter with radiation in a moving fluid. For the study of the interaction of electromagnetic waves with
a Boltzmann gas whose molecules have different energy levels, we refer to [13, 29, 45, 49]. Several
authors considered problems where the heat is transported in a body by means of both radiation and
conduction; we refer to [21, 22, 33, 34, 46, 52, 53]. Finally, homogenization problems in porous and
perforated domains where the heat is transported by conduction, radiation and possibly also convection
are studied in [1–3, 32, 48]. Specifically, in [48], the authors applied the method of multiple scales
to a homogenization problem describing the heat transport in a porous medium. The heat transport is
assumed to be due to the conduction in the solid part of the material and due to the radiation in the
gas-filled cavities.

Derivations of the scattering kernel for the radiative transfer equation, taking as starting point the
Maxwell equations, has also been extensively studied in [44].

1.3. Structure of the paper

The paper is organized as follows. In Section 2, we will study some of the mathematical properties
of the scattering operator and of the absorption-emission process appearing in the radiative transfer
equation. We will then proceed to the derivation of the limit problems in the diffusion approximation
under different scaling limits. In Section 3, we consider the stationary diffusion approximation for the
radiative transfer equation, and we derive, using the method of matched asymptotic expansions, the new
limit boundary value problem as well as the boundary layer equations. Moreover, we will see for which
choice of characteristic lengths the equilibrium diffusion approximation holds and for which ones it
fails. We will then proceed with the study of the time-dependent diffusion approximation, for which
we will use again the method of matched asymptotic expansions. In Section 4, the focus is on the case
of infinite speed of light (i.e. instantaneously transport of the radiation in the domain), namely, on the
problem (1.11). Besides the construction of the limit problems and their classification as equilibrium
and non-equilibrium diffusion approximations, we will also derive the initial layer and initial-boundary
layer equations. In Section 5 and in Section 6, we proceed similarly to Section 4 studying first the time-
dependent diffusion approximation in the case of finite speed of light, that is, speed of light of order one
(cf. Section 5), and later in the case where the speed of light is assumed to scale like a power law c = ε−κ

for κ > 0 and ε= �M (cf. Section 6).

2. Preliminary results

In this section, we collect some properties of the scattering operator and absorption operator that will
be used later in the analysis of the diffusion approximation.

2.1. Properties of the scattering operator

Before deriving suitable diffusion approximations according to the different values of �M and �T , we
describe some properties of the scattering kernel and of the scattering operator.

We consider throughout the paper the kernel K ∈ C
(
S2 × S2

)
to be non-negative and satisfying∫

S2 K(n, n′)dn = 1. We also assume in the whole article that the kernel K is invariant under rotations,
that is,

K(n, n′) = K(Rn, Rn′) for all n, n′ ∈ S2 and for any R ∈ SO(3).

Moreover, for any n,ω ∈ S2, we define by Rn,ω ∈ SO(3) the rotation of π around the bisectrix of the
angle between n and ω lying in the plane containing both vectors. This rotation satisfies Rn,ω(n) =ω
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and Rn,ω(ω) = n. As shown in [14], this implies that the scattering kernel K is symmetric. Notice that
this is not true in two dimensions unless we assume K to be invariant also under reflections.

We define the scattering operator as the bounded linear operator given by

H : L∞ (
S2

) → L∞ (
S2

)

ϕ 
→ H[ϕ] =
∫
S2

K(·, n′)ϕ(n′) dn′.
(2.1)

With this notation, we can formulate the following proposition, which contains the most important
properties of the scattering operator.

Proposition 2.1. Let K ∈ C
(
S2 × S2

)
, invariant under rotations, non-negative and satisfying∫

S2

K(n, n′)dn = 1.

Assume ϕ ∈ L∞ (
S2

)
satisfies H[ϕ] = ϕ. Then

(i) ϕ is continuous,
(ii) ϕ is constant,
(iii) Ran(Id − H) = {

ϕ ∈ L∞(S2):
∫
S2 ϕ = 0

}
.

The proof of Proposition 2.1 can be found in Appendix A. A direct consequence of Proposition 2.1 is
the following proposition for a continuous scattering kernel K ∈ C

(
S2 × S2 ×�×R+

)
invariant under

rotations for each pair (x, ν).

Proposition 2.2. Let K ∈ C
(
S2 × S2 ×�×R+

)
. For any x, ν ∈�×R+, we define Kx,ν(n, n′) =

K(n, n′, x, ν). Assume that for any x, ν ∈�×R+, the kernel Kx,ν is invariant under rotations, is
non-negative and satisfies

∫
S2 Kx,ν(n, n′)dn = 1. Then the following holds.

(i) For any x, ν ∈�×R+ and n,ω ∈ S2, there exist finitely many n1, · · · , nN ∈ S2 such that (A.1)
holds for Kx,ν;

(ii) if ϕ ∈ L∞ (
S2 ×�×R+

)
satisfies H[ϕ] = ϕ, then ϕ is continuous, and it is constant for every

x, ν ∈�×R+,
(iii) Ran(Id − H) = {

ϕ(·, x, ν) ∈ L∞(S2):
∫
S2 ϕ(n, x, ν) dn = 0

}
for every x, ν ∈�×R+.

Proof. Apply Proposition 2.1 to the continuous kernel Kx,ν.

Remark. In the following sections, we will consider the diffusion approximation for scattering kernels
K independent of x ∈� and ν ≥ 0. However, under the assumptions of Proposition 2.2, the same results
would apply for more general kernels depending continuously on x and ν.

Remark. The assumption of K being invariant under rotations is crucial for the validity of Proposition
2.1 and Proposition 2.2. Consider, for example, the following continuous function

k(n) = 2

3π

(
χ{|n·e3|≤ 1

4 }(n) + (2 − 4|n · e3|)χ{ 1
4<|n·e3|< 1

2 }(n)
)

.

Then the kernel K(n, n′) = k(n)χS2 (n′) is continuous in both variables, is non-negative and satisfies∫
S2

K(n, n′) dn =
∫
S2

k(n) dn = 1.

However, K is not invariant under rotations. This kernel describes the scattering properties of a
non-isotropic medium. It is easy to see that in this case H[c](n) = ck(n), for c ∈R. Hence, the con-
stant functions are not a solution to H[ϕ] = ϕ. Actually, all solutions of H[ϕ] = ϕ satisfy ϕ(n) =
k(n)

∫
S2 ϕ(n′) dn′ and have hence the form ϕ = λk, where λ ∈R is an arbitrary constant. Therefore,

the subspace of eigenvectors of H with eigenvalue 1 is one-dimensional.
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Remark. As we noticed above, in two dimensions, the invariance under rotations of K does not imply
directly its symmetry under reflections. However, it is still possible to show that the only eigenfunctions
of H with eigenvalue 1 are the constants. To check this, we recall the well-known fact that the one-
dimensional sphere S1 can be parameterized by θ ∈ [0, 2π ). Moreover, we can assume without loss of
generality that any scattering kernel K invariant under rotations has the form K(n, n′) = K(θ (n) − θ (n′)).
Let f ∈ L∞(S1) be an eigenfunction with eigenvalue 1 for H. We then see∫ 2π

0

K(θ − ϕ)f (ϕ) dϕ = f (θ ).

This equation can be solved using the Fourier series. We hence obtain the following identity for the
Fourier coefficients

f̂ (n)
(

1 − 2π K̂(n)
)

= 0. (2.2)

For n = 0 we have K̂(0) = 1
2π

∫ 2π

0
K(θ ) dθ = 1

2π
. On the other hand, we obtain for n �= 0

∣∣∣K̂(n)
∣∣∣< 1

2π

∫ 2π

0

K(θ ) dθ = 1

2π
.

Therefore, the identity (2.2) is satisfied if and only if f̂ (n) = 0 for all n �= 0. This implies that f is constant.

2.2. Relation between the temperature and the radiation intensity

We derive here an identity that relates temperature and radiation intensity and that will be repeatedly
used in the stationary problem, for instance, in the stationary boundary layer equations.

Using the identity div
(∫ ∞

0
dν

∫
S2 dn nIν(x, n)

) = ∫ ∞
0

dν
∫
S2 dn n · ∇xIν(x, n) and plugging the first

equation of (1.5) into the second one, we see that we have∫ ∞

0

dν
∫
S2

dn αa
ν
(x) (Bν(T(x)) − Iν(x, n))= 0, (2.3)

where we also used the fact that the integral over the sphere S2 of the scattering term is 0 due to the
symmetry of the kernel K. With this identity, we can recover the value of the temperature given the
radiation intensity. Let us define by F : R+ ×�→R+ the following function

F(T , x) =
∫ ∞

0

αa
ν
(x)Bν(T) dν. (2.4)

Since Bν is monotone in T , the function F(·, x) is invertible. Hence, (2.3) implies that

T(x) = F−1

((∫ ∞

0

dν
∫
�

S2

dn αa
ν
(x)Iν(x, n)

)
, x

)
, (2.5)

where F−1 is the inverse with respect to the first variable; that is, F(T , x) = ξ implies T = F−1(ξ , x).
Equations (2.3) and (2.5) will appear often in the following sections, in particular in the study of the
boundary layers.

3. The stationary diffusion approximation: different scales

We first study the stationary diffusion regime for different scalings. We consider (1.12) for αa
ν

and αs
ν

strictly positive and bounded. Moreover, in the diffusion regime, we have �M � 1. Hence, in (1.12),
we assume �M = min{�A, �S} = ε. Moreover, we impose �A = ε−β and �S = ε−γ , for suitable choices of
γ , β ≥ −1 with min{γ , β} = −1. Notice that at least one of β and γ is negative. This choice of �A and
�S as an inverse power law of ε > 0 for β, γ ≥ −1 will be convenient in order to make the computations
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simpler in the following subsections. Under these assumptions, we rewrite equation (1.12) as⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

n · ∇xIν(x, n) = εβαa
ν
(x) (Bν(T(x)) − Iν(x, n))

+ εγ αs
ν
(x)

(∫
S2

K(n, n′)Iν(x, n′) dn′ − Iν(x, n)

)
x ∈�, n ∈ S2

div
(∫ ∞

0

dν
∫
S2

dn nIν(n, x)

)
= 0 x ∈�, n ∈ S2

Iν(n, x) = gν(n) x ∈ ∂�, n · nx < 0.

(3.1)

Moreover, we assume the scattering kernel K ∈ C(S2 × S2) to be invariant under rotations, non-negative
and with

∫
S2 K(n, n′)dn = 1. We consider also�⊂R3 to be a bounded convex domain with C1-boundary.

For x ∈ ∂�, we denote by nx ∈ S2 the outer normal to the boundary at x.
Before describing in detail the limit diffusion problems for the different choices of scaling parameters,

we shortly explain how we will use the method of matched asymptotic expansions to derive the limit
problems for each case. In order to find the limit problem valid in the bulk, the so-called outer problem,
we expand the radiation intensity as

Iν(x, n) = φ0(x, n, ν) +
∑
k≥0

εδ+kψk+1(x, n, ν) +
∑
l>0

εlφl(x, n, ν) (3.2)

for a suitable δ > 0 depending on the choice of the scaling parameters. To be more precise,

δ=
⎧⎨
⎩
γ + 1 if β = −1 (i.e. �A = �M),

β − �β� if γ = −1 (i.e. �S = �M).
(3.3)

We remark that if −1<β < 0, by our definition, δ = β + 1> 0. The choice of δ in (3.2) is due to the
following observations. If �A = �M, the leading term of the radiative transfer equation is the emission-
absorption term, so that

αa
ν
(x)(Iν(x, n) − Bν(T(x))) = εn · ∇xIν(x, n) − αs

ν
(x)εγ+1(H − Id)[Iν(x, ·)](n),

where we used the notation of (2.1). Therefore, it is natural to look for a solution of this equation in form
of a series of powers of ε with exponents 1 and γ + 1. On the other hand, if �S = �M, the leading term is
the scattering term yielding

αs
ν
(x)(H − Id)[Iν(x, ·)](n) = εn · ∇xIν(x, n) − εβ+1αa

ν
(x)(Iν(x, n) − Bν(T(x))).

As we have seen in Proposition 2.1, the solvability of this equation requires to impose a compatibil-
ity condition on the right-hand side. More precisely, (Id − H) is invertible in the space of functions
with

∫
S2 f (n)dn = 0. This compatibility condition is provided by the transport term εn · ∇xIν(x, n). In

particular, the relevant feature is that the problem

αs
ν
(x)(H − Id)[Iν(x, ·)](n) − εn · ∇xIν(x, n) = f (x, n, ν) (3.4)

is not solvable if ε= 0, unless
∫
S2 f (x, n, ν)dn = 0. On the contrary, in the case of ε > 0 and small, it turns

out that problem (3.4) can be solved for general f . However, the solution becomes of the order ε−2‖f ‖∞.
This explains why we have to add terms much larger than εβ+1 in the expansion (3.2) for β > 0. We
remark that the expansion (3.2) is also used in the time-dependent case. There, the value of δ when
�S = �M is justified by the behaviour of the radiation intensity for smaller time scales and by the need to
impose this orthogonality condition.

Having expansion (3.2), we proceed by plugging it into the boundary value problem (1.12), and
we compare all terms of the same order of magnitude. In this way, we will obtain different diffusive
equations solved by φ0 in the interior of � that will yield the leading order of the radiation intensity Iν .

However, to solve the resulting equation for φ0, we need some boundary condition whose derivation
requires to analyse boundary layer equations for (3.1). The resulting boundary layer problems are related
to the description of the radiation intensity in the regions close to the boundary. The thickness of these
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layers is given by the Milne length and the thermalization length. Therefore, we will rescale the space
variable according to �M and to �T , and we will analyse the resulting one-dimensional problems.

The matching between the outer and the inner solutions will provide the boundary condition for the
equation satisfied in the bulk.

3.1. Case 1.1: �M = �T � �S and L = 1. Equilibrium approximation

Since we set �M = ε� 1, the case �M = �T � �S arises when �A = ε (i.e. β = −1) and �S = ε−γ for
γ >−1. Notice that in this case �S could be small, namely, �S � L = 1, but also large, for example,
if γ > 0.

In order to find the outer problem, we choose δ = γ + 1, and we substitute (3.2) into the first equation
in (3.1), and we identify all terms with the same power of ε, that is, ε−1, εγ (if −1< γ < 0) and ε0. If
−1< γ < 0, the terms of order ε−1 give

0 = αa
ν
(x)(Bν(T(x)) − φ0(x, n, ν)).

Hence, the leading order satisfies φ0(x, n, ν) = Bν(T(x)), where Bν is the Planck distribution, which is
independent of n ∈ S2. This corresponds to the diffusion equilibrium approximation, since in the interior,
the radiation intensity is at the leading order the equilibrium Planck distribution.

The terms of order εγ imply ψ1 = 0. Indeed, since φ0(x, n, ν) = Bν(T(x)) is independent of n ∈ S2, we
have

∫
S2 K(n, n′)φ0(x, ν)dn′ − φ0(x, ν) = 0, so that

αa
ν
ψ1(x, n, ν) =

∫
S2

K(n, n′)φ0(x, ν)dn′ − φ0(x, ν) = 0.

Finally, we compare all terms of order ε0. In this case, we have

n · ∇xBν(T(x)) = −αa
ν
(x)φ1(x, n, ν),

where in the case γ = 0, we used again that (H − Id) Bν(T) = 0.
Therefore, we obtain the following expansion for Iν

Iν(x, n) = Bν(T(x)) − ε
1

αa
ν
(x)

n · ∇xBν(T(x)) + · · · , (3.5)

where T(x) is a function, which is at this stage still unknown.
We now plug (3.5) into the second equation of (3.1). The term of order ε0 cancels out because Bν(T)

is isotropic, hence

div
(∫ ∞

0

dν
∫
S2

dn nBν(T(x))

)
= 0.

We find that the leading term is the one of order ε1, and we obtain

div
(∫ ∞

0

dν
1

αν(x)

(∫
S2

dn n ⊗ n

)
∇xBν(T(x))

)
= 0.

Finally, using that
∫
S2 n ⊗ n dn = 4π

3
Id, we conclude that the limit problem solved at the interior by T is

div
(∫ ∞

0

∇xBν(T(x))

αν(x)
dν

)
= 0. (3.6)

In order to obtain the behaviour of Iν close to the boundary ∂�, we now derive a boundary value problem
that can be written in a single variable. This boundary layer equation is known in the literature as the
Milne problem. The matching of the solution of the Milne problem with the outer solution will provide
the boundary value for the equation (3.6) solved by the temperature T .

We take p ∈ ∂�. Assuming that near the boundary the radiation intensity and the temperature only
depend on the distance to the boundary, we can further assume that they depend only on the distance
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p

x

np

−np · (x− p)

Figure 1. Representation of the change of variables.

to the boundary in direction np. This is possible due to the smallness of the thickness of the boundary
layer and the continuity of α. We hence define for x ∈� in a neighbourhood of p the new scalar rescaled
variable

y = −x − p

ε
· np. (3.7)

We recall that −(x − p) · np is non-negative, since x − p points in the interior of the domain, and it
is exactly the length of the cathetus with endpoint p of the triangle having as hypotenuse x − p (cf.
Figure 1).

Defining Rp(x) = Rotp(x − p) as a rigid motion mapping p to zero with Rotp(np) = −e1, we see that
we can also write y as the first component of y1 =Rp

(
x
ε

)
1
. Hence, as ε→ 0, we obtain that both the

absorption and the scattering coefficients satisfy αj
ν
(x) = αj

ν

(
εRotp(x) + p

) → αj
ν
(p), j ∈ {a, s}.

We can now write the one-dimensional problem obtained by this new scaling and by the limit ε→ 0.
Since εγ+1 → 0 as ε→ 0, the scattering term is negligible, and we obtain for any p ∈ ∂�⎧⎪⎪⎪⎨

⎪⎪⎪⎩

−(n · np)∂yIν(y, n; p) = αa
ν
(p)(Bν(T(y, p)) − Iν(y, n; p)) y> 0 , n ∈ S2

div
(∫ ∞

0

dν
∫
S2

dn (n · np)Iν(y, n; p)

)
= 0 y> 0, n ∈ S2

Iν(0, n; p) = gν(n) n · np < 0.

(3.8)

The Milne equation (3.8) is the equation describing the boundary layer for the diffusion approximation.
In the pure absorption case, the Milne problem was rigorously studied in [25]. The well-posedness of
(3.8) is shown there for constant absorption coefficients and also for coefficients depending only on
the frequency ν, as well as for coefficients depending on both frequency and temperature of the form
αa
ν
(p) = Q(ν)α(T(p)). Moreover, the asymptotic behaviour of Iν at infinity has also been computed in

this paper. It is indeed shown in [25] that as y → ∞, the solution of the Milne problem converges to the
Planck distribution, that is,

lim
y→∞

Iν(y, n; p) = I∞
ν

(p) = Bν(T∞(p)),

for some T∞(p) depending only on gν and p. Notice that I∞
ν

(p) is independent of n ∈ S2.
Moreover, since in this case the thermalization length and the Milne length are the same, this is

the only boundary layer appearing. The radiation intensity Iν becomes simultaneously isotropic and at
equilibrium Bν(T) in the same length scale. This gives a matching condition for the temperature that
has to be used as a boundary condition for the new limit problem. In particular, the temperature and the
radiation intensity solving the Milne problem (3.8) are related by equation (2.3). In particular,

T∞(p) = lim
y→∞

F−1

((∫ ∞

0

dναa
ν
(p)I∞

ν
(p)

)
, p

)
, (3.9)
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where F is defined in (2.4) and g 
→ I∞
ν

(p) is a functional that determines the limit intensity for each
boundary point p ∈ ∂�.

Summarizing, the limit problem for the stationary radiative transfer equation (1.12) in the case �M =
�T � �S is given by the following boundary value problem

⎧⎨
⎩

div
(∫ ∞

0

∇xBν(T(x))

αν(x)
dν

)
= 0 x ∈�

T(p) = T∞(p) p ∈ ∂�,

where T∞(p) is given by (3.9).

3.2. Case 1.2: �M = �T = �S � L. Equilibrium approximation

Due to the definitions �M = ε� 1 and �T = √
�A�M, we have �M = �S = �T = �A = ε in (1.12), that is,

β = γ = −1 in (3.1).
We consider the expansion (3.2) for δ= 0, or equivalently without the expansion

∑
k≥0 ε

δ+kψk+1. We
plug (3.2) into (3.1), and we compare all terms of the same power of ε, namely, ε−1 and ε0. The term of
order ε−1 yields

0 = αa
ν
(x)(Bν(T(x)) − φ0(x, n, ν)) + αs

ν
(x)

(∫
S2

K(n, n′)φ0(x, n′, ν)dn′ − φ0(x, n, ν)

)
. (3.10)

Notice that φ0(x, n, ν) = Bν(T(x)) is a solution to (3.10). This follows from Proposition 2.1 and the
isotropy of Bν(T). We show now that the solution to (3.10) is unique.

To this end, for every x ∈R3 and ν > 0, we define 0< θν,x = αs
ν (x)

αa
ν (x)+αs

ν (x)
< 1. Moreover, we also

define the following operator, which maps for every fixed x, ν non-negative continuous functions to
non-negative continuous functions and which is given by

Aν,x[ϕ](n) = θν,x

∫
S2

K(n, n′)ϕ(n′) dn′. (3.11)

Then equation (3.10) can be rewritten as

φ0(x, n, ν) = Aν,x[φ0](x, n, ν) + αa
ν
(x)

αa
ν
(x) + αs

ν
(x)

Bν(T(x)). (3.12)

Since the maps φ0 
→ Aν,x(φ0) is a linear contraction, the Banach fixed-point theorem implies that (3.12)
has a unique solution for every T(x) ∈R+. Hence, φ0 = Bν(T). Therefore, in this case, we also recover
the equilibrium diffusion approximation.

We turn now to the terms of order ε0. In this case, we have

n · ∇xBν(T(x)) = −αa
ν
(x)φ1(x, n, ν) − αs

ν
(x)

(∫
S2

K(n, n′)φ1(x, n′, ν) dn′ − φ1(x, n, ν)

)
.

Then, using the operator Aν,x defined as in (3.11), we can rewrite this equation as

− 1

αa
ν
(x) + αs

ν
(x)

n · ∇xBν(T(x)) = (
Id − Aν,x

)
φ1(x, n, ν). (3.13)

The same argument as for the term of order ε−1 holds also in this case, and the Banach fixed-point
theorem ensures the existence of a unique solution to (3.13) given by

φ1(x, n, ν) = − 1

αa
ν
(x) + αs

ν
(x)

(
Id − Aν,x

)−1
(n) · ∇xBν(T(x)),
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where for any x, ν, we used the notation

(
Id − Aν,x

)−1
(n) =

⎛
⎜⎜⎝

(
Id − Aν,x

)−1
(n1)(

Id − Aν,x

)−1
(n2)(

Id − Aν,x

)−1
(n3)

⎞
⎟⎟⎠ ,

which is well-defined due to the action of the linear operator Aν,x only on the variable n ∈ S2.
Hence, we obtain the following expansion

Iν(x, n) = Bν(T(x)) − ε
1

αa
ν
(x) + αs

ν
(x)

(
Id − Aν,x

)−1
(n) · ∇xBν(T(x)) + ε2φ2 + · · · (3.14)

Plugging (3.14) into the second equation of (1.12) and using that the Planck distribution is isotropic,
we obtain the following limit problem solved in the domain � that yields the temperature T(x) to the
leading order

0 = div
(∫ ∞

0

dν
∫
S2

dn n
1

αa
ν
(x) + αs

ν
(x)

(
Id − Aν,x

)−1
(n) · ∇xBν(T(x))

)

= div
(∫ ∞

0

dν
1

αa
ν
(x) + αs

ν
(x)

(∫
S2

dn n ⊗ (
Id − Aν,x

)−1
(n)

)
∇xBν(T(x))

)
.

(3.15)

The behaviour of Iν close to the boundary ∂� is given again by a boundary layer equation, which can
be written in one variable. The derivation of the Milne problem for this case follows exactly the same
steps as Subsection 3.1 under the scaling (3.7). In this case, both emission and scattering terms appear,
since they are of the same order. Hence, for every p ∈ ∂�, the Milne problem is given by⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−(n · np)∂yIν(y, n, p) = αa
ν
(p)(Bν(T(y, p)) − Iν(y, n, p))

+αs
ν
(p)

(∫
S2

K(n, n′)Iν(y, n′, p) dn′ − Iν(y, n, p)

)
y> 0 , n ∈ S2

div
(∫ ∞

0

dν
∫
S2

dn (n · np)Iν(y, n, p)

)
= 0 y> 0, n ∈ S2

Iν(0, n, p) = gν(n) n · np < 0.

(3.16)

The mathematical properties of the Milne problem for both absorption and scattering processes have
been considered in [51]. Although the results provided in [51] have been obtained only for the case of a
constant scattering kernel and constant scattering coefficient, the arguments there suggest that for more
general choices of K and αs

ν
, the solution Iν of (3.16) converges to the Planck equilibrium distribution

as y → ∞.
Notice that in this case, the thermalization length and the Milne length are the same; hence, the bound-

ary layers coincide. Matching inner and outer solutions, we obtain the following boundary condition for
equation (3.15)

T∞(p) = lim
y→∞

F−1

((∫ ∞

0

dν
∫
�

S2

dn αa
ν
(p)Iν(y, n, p)

)
, p

)
, (3.17)

with F as in (2.4). Indeed, as we have seen in Subsection 2.2, the temperature T and the radiation energy
Iν satisfying the Milne problem (3.16) are related by the identity (2.3).

Summarizing, the limit problem for the stationary radiative transfer equation (1.12) in the case �M =
�T = �S is given by the following boundary value problem⎧⎨

⎩
div

(∫ ∞

0

dν

αa
ν
(x) + αs

ν
(x)

(∫
S2

dn n ⊗ (
Id − Aν,x

)−1
(n)

)
∇xBν(T(x))

)
= 0 x ∈�

T(p) = T∞(p) p ∈ ∂�,

where T∞ is defined as in (3.17) for the solution Iν(y, n, p) to the Milne problem (3.16).
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3.3. Case 2: �M � �T � L. Equilibrium approximation

The assumption �T = √
�M�A 	 �M implies �A > �M and hence ε= �M = �S. We thus consider �A = ε−β

for β >−1. Moreover, since �T = ε
1−β

2 � L = 1, we restrict to the case �A = ε−β for β ∈ (−1, 1).
Since �M = �S � �A, the scattering process has a greater effect than the absorption-emission process.

We expect hence the Milne problem to depend exclusively on the scattering process. In the bulk, we
also expect the scattering process to be present in the diffusive equation derived for the limit problem,
but we will also show that at the interior, the leading order of the radiation intensity is still the Planck
distribution. Thus, we are again in the case of the equilibrium diffusion approximation. In this case,
the thermalization length is much larger than the Milne length, but it is also still much smaller than the
characteristic length of the domain. A second boundary layer, the so-called thermalization layer, will
therefore appear. The equation describing this new layer will depend on both absorption-emission and
scattering processes. Moreover, while the radiative energy becomes isotropic in the Milne layer, in the
thermalization layer, Iν will approach the Planck distribution.

We use again the expansion (3.2) for the radiation intensity with δ = β − �β�, that is, δ = β + 1 if
β < 0 and δ = β if β ≥ 0, and we plug it into the first equation in (1.12). We proceed as usual with the
identification of the terms with the same power of ε.

Using the notation of (2.1), the terms of order ε−1 give

H[φ0(x, ·, ν)](n) = φ0(x, n, ν).

Proposition 2.1 implies hence that φ0 is independent of n ∈ S2 and hence φ0 = φ0(x, ν).
Next, we considerβ < 0. The terms of power εβ give

αa
ν
(x)(Bν(T(x)) − φ0(x, n)) = αs

ν
(H − id)ψ1(x, n, ν).

An integration over S2 implies Bν(T(x)) = φ0(x, ν). Hence, as for φ0, we conclude that ψ1 =ψ1(x, ν) is
independent of n ∈ S2. The terms of power ε0 give

n · ∇xφ0(x, ν) = αs
ν
(x) (H[φ1](x, n, ν) − φ1(x, n, ν)) . (3.18)

Now we consider β > 0. In this case, δ= β. The terms of power εβ−1 give

H[ψ1(x, ·, ν)](n) =ψ1(x, n, ν),

which implies that ψ1(x, ν) is independent of n ∈ S2. The terms of power ε0 yield again equation (3.18),
while the terms of power εβ imply

n · ∇xψ1(x, ν) = αa
ν
(x)(Bν(T(x)) − φ0(x, n)) + αs

ν
(x)(H − id)[ψ2(x, ·, ν)](n), (3.19)

for which an integration over S2 and the isotropy of both φ0 and ψ1 give Bν(T(x)) = φ0(x, ν).
Finally, it remains to study the case β = 0. In this case, there is no expansion

∑
k≥0 ε

δψk+1. Therefore,
the terms of order ε0 give the equation

n · ∇xφ0(x, ν) = αa
ν
(x) (Bν(T(x)) − φ0(x, ν))+ αs

ν
(x) (H[φ1](x, n, ν) − φ1(x, n, ν))

which integrated over S2 implies

φ0 = Bν(T),

due to the isotropy of φ0, as for (3.19).
Hence, for all β ∈ (−1, 1), the identification of all terms of power ε−1, εβ , εβ−1 (if β > 0) and ε0 gives

φ0 = Bν(T), ψ1 =ψ1(x, ν) and

− 1

αs
ν
(x)

n · ∇xBν(T(x)) = (Id − H)[φ1(x, ·, ν)](n). (3.20)

We now study equation (3.20). As we know from Proposition 2.1, the kernel of the operator (Id − H) is
given by the constant functions, and its range consists of all functions with zero mean integral, that is,
Ran(Id − H) = {ϕ ∈ L∞(S2):

∫
S2 ϕ = 0}. Hence, the following linear operator is bijective

(Id − H):L∞(S2)
/N (Id − H) → Ran(Id − H),
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where L∞(S2)
/N (Id − H) denotes the quotient space. Let ei ∈R3 be the unit vector; we consider the

equation

n · ei = (Id − H)ϕ(n). (3.21)

Since n · ei ∈ Ran(Id − H), for any c ∈R, the function ϕ(n) = (Id − H)−1(n · ei) + c is a solution to
(3.21). Therefore, using the notation

(Id − H)−1 (n) =
⎛
⎜⎝
(Id − H)−1 (n · e1)

(Id − H)−1 (n · e2)

(Id − H)−1 (n · e3)

⎞
⎟⎠

and using the linearity of (Id − H), we see that φ2 is given by

φ2(x, n, ν) = − 1

αs
ν
(x)

(Id − H)−1(n) · ∇xBν(T(x)) + c(x, ν) (3.22)

where c(x, ν) is independent of n ∈ S2. The isotropic function c(x, ν) does not contribute to the
divergence-free condition of (1.12). Therefore, we will not compute the exact value of c(x, ν). Equation
(3.22) implies that the first three terms in the expansion of Iν are given for all β ∈ (−1, 1) by

Iν(x, n) = Bν(T(x)) + εβ−�β�ψ1(x, ν) − ε

αs
ν
(x)

(Id − H)−1(n) · ∇xBν(T(x)) + εc(x, ν) + · · ·

The divergence-free condition in (1.12) implies in the same manner as in the derivation of (3.15) the
following equation, which yields the limit problem in the interior of the domain �

div
(∫ ∞

0

dν
1

αs
ν
(x)

(∫
S2

dn n ⊗ (Id − H)−1 (n)

)
∇xBν(T(x))

)
= 0. (3.23)

The behaviour of Iν close to the boundary ∂� is described by two nested boundary layer equations.
As anticipated at the beginning of Subsection 3.3, since �M � �T � L, we observe the formation of two
distinct boundary layers. The first one, the Milne layer, has a thickness of size �M, and it is described by
the Milne problem, whose derivation is similar to the derivation of the Milne problems (3.8) and (3.16).
The next boundary layer, which we will denote by thermalization layer, has a thickness of size �T , and
it is described by a new boundary layer equation, which we will denote as thermalization equation and
which we will construct immediately after deriving the Milne problem.

Following the same procedure as in Subsection 3.1, we can derive the Milne problem for this scaling
limit under the rescaling (3.7). In this case, we obtain a closed equation for Iν , which depends only on
the scattering process, since this is the largest term. Indeed, rescaling the space variable, we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−(n · np)∂yIν(y, n, p) = αs
ν (p +O(ε))

(∫
S2

K(n, n′)Iν(y, n′, p) dn′ − Iν(y, n, p)

)

+εβ+1αa
ν (p +O(ε)) (Bν(T(y; p)) − Iν(y, n; p)) y> 0 , n ∈ S2

∫ ∞

0

dν
∫
S2

dn (n · np)∂yIν(y, n, p) = 0 y> 0, n ∈ S2

Iν(0, n, p) = gν(n) n · np < 0.
(3.24)

Hence, for every p ∈ ∂�, the Milne problem is given by
⎧⎨
⎩

−(n · np)∂yIν(y, n, p) = αs
ν
(p)

(∫
S2

K(n, n′)Iν(y, n′, p) dn′ − Iν(y, n, p)

)
y> 0 , n ∈ S2

Iν(0, n, p) = gν(n) n · np < 0.
(3.25)
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On the other hand, we also obtain an equation for the temperature. Indeed, plugging the first equation
of (3.24) into the second one, we obtain to the leading order

∫ ∞

0

dν
∫
S2

dn αa
ν
(p) (Bν(T(y; p)) − Iν(y, n; p))= 0. (3.26)

This equation has a steady distribution for the temperature T completely determined. At first glance, this
appears strange since in the limit equation (3.25), the absorption coefficient αa

ν
(p) does not appear, and

the only processes able to modify the temperature are the absorption and emission of photons. However,
the solution of this apparent paradox is that since (3.25) describes a stationary solution, it is implicitly
understood that the system was running for an infinite amount of time before and the absorption/emission
process had time to bring the system to a steady state, even when this process is very small.

The Milne problem for the pure scattering case has been studied in several papers such as [7, 9, 28,
51] in the context of neutron transport. Although all these results are actually obtained for functions αs

independent of the frequency, since the one-speed approximation for the neutron transport (cf. (1.13))
was considered, they are expected to hold pointwise for every frequency ν. For example, in [7], it is
shown that there exists a unique solution to (3.25) for strictly positive bounded and rotationally sym-
metric scattering kernels. Moreover, as y → ∞, the solution approaches a function I(ν; p) independent
of n ∈ S2. Hence, in the Milne layer, the radiation intensity becomes isotropic.

We now turn to the thermalization layer. In this layer, we expect the radiation intensity to approach
the Planck equilibrium distribution. Moreover, the boundary value for the problem (3.23) can also be
found analysing the thermalization layer. In order to construct the new boundary layer equation, that is,
the thermalization equation, we rescale the space variable according to the one-dimensional variable
η= − x−p

�T
· np for p ∈ ∂�, and we obtain the following equation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ε 1+β
2 (n · np)∂ηIν(η, n, p) = αa

ν

(
p + ε

1−β
2 Rotp(η)

)
ε1+β(Bν(T(η, p)) − Iν(η, n, p))

+αs
ν

(
p + ε

1−β
2 Rotp(η)

) ((∫
S2

dn′K(n, n′)Iν(η, n′, p)

)
− Iν(η, n, p)

)
η > 0 , n ∈ S2

div
(∫ ∞

0

dν
∫
S2

dn (n · np)Iν(η, n, p)

)
= 0 η > 0, n ∈ S2

Iν(0, n, p) = I(ν; p) p ∈ ∂�,
(3.27)

where I(ν; p) = lim
y→∞

IM(y, n, ν; p) for IM the solution to the Milne problem (3.25). In order to find the
thermalization equation, we proceed in a way similar to the derivation of the outer problem. We hence
expand the radiation intensity according to

Iν(η, n; p) = ϕ0(η, n, ν; p) + ε
1+β

2 ϕ1(η, n, ν; p) + ε1+βϕ2(η, n, ν; p) + · · ·
and we identify in (3.27) all terms of the same power of ε, namely, ε0, ε 1+β

2 and ε1+β . We remark first that
the functions ϕi for i ∈N could depend on ε. Moreover, the choice of the powers of ε in the expansion
of Iν is motivated by the order of magnitude of the sources in (3.27).

The terms of order ε0 give ∫
S2

K(n, n′)ϕ0dn′ = ϕ0

and hence by Proposition 2.1, ϕ0(η, n, ν; p) = ϕ0(η, ν; p) is independent of the direction n ∈ S2. The
isotropy of ϕ0 was expected as it is matched with the solution of the Milne problem, which becomes
isotropic. Moreover, we also see that ϕ0 does not depend on ε.

The terms of order ε 1+β
2 give

(n · np)∂ηϕ0 = αs
ν (pε) (Id − H)(ϕ1),
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where we defined pε = p + ε
1−β

2 Rotp(η). Thus, arguing as in the derivation of (3.22), Proposition 2.1
implies

ϕ1(η, n, ν; p) = 1

αs
ν (pε)

(Id − H)−1(n) · np∂ηϕ0 + c(η, ν),

for some function c(η, ν). Finally, identifying the terms of order ε1+β implies after an integration
over S2

− 1

αs
ν (pε)

(∫
�

S2

(n · np)(Id − H)−1(n) · np dn

)
∂2
η
ϕ0(η, ν; p)

= αa
ν (pε) (Bν(T(η; p)) − ϕ0(η, ν; p)) .

We now consider the limit as ε→ 0, and we obtain by the continuity of the absorption and scattering
coefficient

− 1

αs
ν (p)

(∫
�

S2

(n · np)(Id − H)−1(n) · np dn

)
∂2
η
ϕ0(η, ν; p) = αa

ν (p) (Bν(T(η; p)) − ϕ0(η, ν; p)) . (3.28)

Moreover, the second equation in (3.27) yields∫ ∞

0

dν
1

αs
ν
(p)

(∫
�

S2

(n · np)(Id − H)−1(n) · np dn

)
∂2
η
ϕ0(η, ν; p) = 0, (3.29)

where we again considered the limit ε→ 0. Thus, the thermalization layer equation is given for every
p ∈ ∂� by⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ϕ0(η, ν; p) − 1

αa
ν
(p)αs

ν
(p)

(∫
�

S2

(n · np)(Id − H)−1(n) · np dn

)
∂2
η
ϕ0(η, ν; p) = Bν(T(η; p)) η > 0∫ ∞

0

dν αa
ν
(p)Bν(T(η; p)) =

∫ ∞

0

dν αa
ν
(p)ϕ0(η, ν; p) η > 0

ϕ0(0, ν; p) = I(ν; p) p ∈ ∂�,
(3.30)

where the second equation is implied by (3.29) taking the integral over the frequency of (3.28). As far as
we know, the thermalization problem has not been studied so far in the literature, and its well-posedness
properties have not been described in detail. Nevertheless, we claim that the problem is well-posed under
suitable assumptions and that the solution ϕ0 to (3.30) converges to the Planck distribution, that is,

lim
η→∞

ϕ0(η, ν; p) = ϕ(ν, p) = Bν(T∞(p)).

From the second equation in (3.30), we recover the relation (2.3) between the temperature and the
radiation intensity ϕ0. Hence, T(η; p) = F−1

((∫ ∞
0

dν αa
ν
(p)ϕ0(η, ν; p)

)
, η; p

)
for F defined in (2.4). In

particular,

T∞(p) = F−1

((∫ ∞

0

dν αa
ν
(p)ϕ(ν, p)

)
, p

)
. (3.31)

We remark that since I(ν; p), the limit as y → ∞ of the solution IM(y, n, ν; p) of the Milne problem
(3.25), is a functional of the boundary condition gν , so are ϕ(ν, p) and T∞(p) functionals of the boundary
condition gν . Summarizing, in the case of �M � �T � L, the solution to (1.12) is expected to solve in
the limit problem the following equilibrium diffusion approximation given by the stationary boundary
value problem⎧⎨

⎩
div

(∫ ∞

0

dν
1

αs
ν
(x)

(∫
S2

dn n ⊗ (Id − H)−1 (n)

)
∇xBν(T(x))

)
= 0 x ∈�

T(p) = T∞(p) p ∈ ∂�,

where T∞ is defined in (3.31)
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3.4. Case 3: �M � �T = L. Transition from equilibrium to non-equilibrium

Since �M = ε and �T = √
ε�A = L = 1, we have to consider �S = ε and �A = ε−1.

This case is intriguing, because as we will see, it yields the transition between the equilibrium approx-
imation and the non-equilibrium approximation, that is, the case where in the limit the radiation intensity
is not given by the Planck distribution at the leading order in the bulk of the domain �.

As usual, we plug the expansion (3.2) for δ= 0, thus without termsψk, into the first equation of (3.1),
and we identify all terms of the same power of ε, namely, ε−1, ε0 and ε1.

The terms of order ε−1 give

φ0(x, n, ν) = H[φ0(x, ·, ν)](n),

and hence by Proposition 2.1, the leading order is independent of n ∈ S2, that is, φ0 = φ0(x, ν).
The terms of order ε0 give

n · ∇xφ0(x, ν) = αs
ν
(x) (H[φ1(x, ·, ν)](n) − φ1(x, n, ν)) .

Due to the isotropy of φ0, Proposition 2.1 implies that φ1 is given by

φ1(x, n, ν) = − 1

αs
ν
(x)

(Id − H)−1 (n) · ∇xφ0(x, ν) + c(x, ν),

where c(x, ν) is some function independent of n ∈ S2. As in Subsection 3.3, the isotropic function c(x, ν)
will not contribute to the divergence-free condition; hence, it will not be explicitly computed.

Finally, the terms of order ε1 yield, after an integration over S2,

4παa
ν
(x)φ0(x, ν) − div

(
1

αs
ν
(x)

(∫
S2

n ⊗ (Id − H)−1 (n) dn

)
∇xφ0(x, ν)

)
= 4παa

ν
(x)Bν(T(x)), (3.32)

where we used the invariance under rotations of the scattering kernel K and the identity n · ∇xf = div(nf ).
Moreover, plugging the expansion

Iν(x, n) = φ0(x, ν) − ε

αs
ν
(x)

(Id − H)−1 (n) · ∇xφ0(x, ν) + εc(x, ν) + ε2 · · ·

into the divergence-free equation in (3.1), we obtain at the leading order

div
(∫ ∞

0

dν
1

αs
ν
(x)

(∫
S2

n ⊗ (Id − H)−1 (n) dn

)
∇xφ0(x, ν)

)
= 0,

which implies integrating (3.32) the following equation for the temperature∫ ∞

0

dν αa
ν
(x)φ0(x, ν) =

∫ ∞

0

dν αa
ν
(x)Bν(T(x)).

Hence, using the definition of F in (2.4), we obtain the limit problem for φ0 in the interior, namely,

φ0(x, ν) − 1

4παa
ν
(x)

div
(

1

αs
ν
(x)

(∫
S2

n ⊗ (Id − H)−1 (n) dn

)
∇xφ0(x, ν)

)

= Bν

(
F−1

((∫ ∞

0

dν αa
ν
(x)φ0(x, ν)

)
, x

))
.

Once more the boundary condition for the diffusion equation is given by the matching of the outer
solution with the solution to a suitable boundary layer equation. Since �T = L = 1, the thermalization
layer corresponds to the outer problem. Indeed, the radiation intensity is out of equilibrium in the limit as
ε→ 0. Hence, there is only one boundary layer, namely, the Milne layer. The Milne problem describing
the boundary layer for (3.1) as �M � L = �T is given once more by (3.25). Indeed, the scattering term
is the term of larger order with �M = �S. Therefore, the computations in Subsection 3.3 also hold in this
case. Summarizing, if �M � �T = L, the radiation intensity and the temperature satisfy the following
equation
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φ0(x, ν) − 1

4παa
ν
(x)

div
(

1
αs
ν (x)

(∫
S2

n ⊗ (Id − H)−1 (n) dn

)
∇xφ0(x, ν)

)
= Bν (T(x)) x ∈�∫ ∞

0

dν αa
ν
(x) (Bν(T(x)) − φ0(x, ν))= 0 x ∈�

φ0(p, ν) = I∞
ν

(p) p ∈ ∂�,

where I∞
ν

(p) = lim
y→∞

Iν(y, n; p) for Iν(y, n; p) the solution to (3.25), which converges to the isotropic func-
tion I∞

ν
. It is important to remark here that in this case, we are not obtaining an equilibrium diffusion

regime. Indeed, the leading order φ0 is not the Planck distribution, and therefore, this case is an example
of the non-equilibrium diffusion approximation.

3.5. Case 4: �M � L � �T . Non-equilibrium approximation

Since �M = ε, the case where �T = √
ε�A 	 L = 1 corresponds to �S = ε and �A = ε−β for β > 1. Under

this assumption, we obtain �T = ε
1−β

2 → ∞ as ε→ 0. Therefore, in this last subsection, we study the
case when the thermalization length �T is growing to infinity as ε→ 0. In this case, we do not expect
the solution to (1.12) to approach at the interior the Planck distribution. We will indeed see that in this
case, we obtain the so-called non-equilibrium diffusion approximation.

In order to derive the outer problem for (3.1), we plug expansion (3.2) with δ = β − �β� into the
first equation of (3.1), and we identify all terms of the same power of ε, namely, ε−1, εβ−�β�−1, ε0, εβ−�β�

and ε1.
The terms of order ε−1 and εβ−�β�−1 yield

∫
S2 K(n, n′)f (n′)dn′ = f (n) for f ∈ {φ0,ψ1}, respectively.

Therefore, at the leading order, the radiation intensity is isotropic, that is, φ0 = φ0(x, ν). Moreover, also
ψ1 =ψ1(x, ν).

The terms of power ε0 give

− 1

αs
ν
(x)

n · ∇xφ0 = (Id − H)[φ1(x, ·, ν)](n).

Hence, Proposition 2.1 implies the existence of some function c(x, ν) independent of n ∈ S2 such that

φ1(x, n, ν) = − 1

αs
ν
(x)

(Id − H)−1(n) · ∇xφ0 + c(x, ν). (3.33)

Similar to the terms of order ε0, the terms of power εβ−�β� give ψ2 = − 1
αs
ν (x)

(Id − H)−1(n) · ∇xψ1 +
c(x, ν). As in Subsection 3.3, the isotropic function c(x, ν) does not contribute to the divergence-free
condition, and it will not be explicitly computed.

Finally, the terms of order ε1 imply

n · ∇xφ1 = αs
ν
(x)(H − Id)[φ2(x, ·, ν)](n).

Hence, using (3.33) and integrating over S2, we obtain the desired interior limit problem for φ0

div
(

1

αs
ν
(x)

(∫
S2

n ⊗ (Id − H)−1 (n) dn

)
∇xφ0(x, ν)

)
= 0.

Plugging now the first equation of (1.12) into the second one, we also obtain the following equation
solved by the leading order of the temperature∫ ∞

0

dν αa
ν
(x) (Bν(T(x)) − φ0(x, ν))= 0.

We remark that φ0 does not need to be the Planck distribution. This is also implied by the asymptotic
expansion of the radiation intensity. Indeed, the comparison of the terms of order εβ gives

n · ∇xψk(x, n, ν) = αa
ν
(x)(Bν(T(x)) − φ0(x, ν)) + αs

ν
(x)(H − Id)[ψk+1(x, ·, ν)](n),

https://doi.org/10.1017/S0956792525100168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525100168


22 E. Demattè and J. J. L. Velázquez

where k = �β� + 1 ≥ 2. Since ψk does not need to be isotropic for k ≥ 2, an integration over the sphere
implies the orthogonality condition

div
(∫
�

S2

nψ�β�+1(x, n, ν) dn

)
= αa

ν
(x) (Bν(T(x)) − φ0(x, ν)) .

As in Subsection 3.3, the Milne problem for the Milne layer is given by (3.25). As in Subsection 3.4, there
is no thermalization layer since the radiation intensity does not approach the equilibrium distribution.
Hence, denoting by Iν(y, n, p) the solution to (3.25) and by I∞

ν
(p) = lim

y→∞
Iν(y, n; p), we obtain for this

case the following limit stationary boundary value problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

div
(

1

αs
ν
(x)

(∫
S2

n ⊗ (Id − H)−1 (n) dn

)
∇xφ0(x, ν)

)
= 0 x ∈�∫ ∞

0

dν αa
ν
(x) (Bν(T(x)) − φ0(x, ν))= 0 x ∈�

φ0(p, ν) = I∞
ν

(p) p ∈ ∂�.

4. Time-dependent diffusion approximation: the case of infinite speed of light (c = ∞)

We turn now to the time-dependent case. In physical applications, the order of magnitude of the speed
of light c is so large compared with the speed of heat transfer that it is often considered infinite (cf. [58]).
This approximation is valid if the distance travelled by the light in the time scale in which meaningful
changes of the temperature take place is much larger than the characteristic length of the body L. We
consider in this section the diffusion approximation for the time-dependent radiative transfer equation
(1.10) when c = ∞, and in the next sections, we will consider other choices of c. Under this assump-
tion, the initial-boundary value problem (1.10) reduces to (1.11). This is the case when the radiation
is instantaneously transported in the domain �. Notice that, since under this assumption in equation
(1.11), there is no term containing ∂tIν , we do not need to impose any initial value for Iν .

We recall that the diffusion regime holds if �M = ε� 1. We will consider different choices of �A and
�S given as powers of ε. We will construct the resulting initial-boundary value limit problems as follows.
We will first derive the outer problems valid in the interior of�. Afterwards, we will construct the initial
layer problems describing the transient behaviour of the radiation intensity for very small times. We will
also formulate boundary layer equations describing Iν near the boundary of�. It turns out that the latter
are the Milne problems and the thermalization problems derived in Section 3. Finally, the matching
between the outer, the boundary layer and the initial layer solutions will provide the initial value and the
boundary conditions for the limit problem in the diffusion approximation under consideration.

4.1. Outer problems

In this subsection, we derive the outer problems arising from equation (1.11) under the assumption
�M = ε� 1 and for different choices of �A = ε−β and �S = ε−γ . As in the stationary case analysed in
Section 3, there are five different cases to be considered which yield five different diffusive problems.

In order to determine the outer problems yielding the form of the solutions in the bulk of �, we use
the expansion

Iν(t, x, n) = φ0(t, x, n, ν) +
∑
k≥0

εδ+kψk+1(t, x, n, ν) +
∑
l>0

εlφl(t, x, n, ν) (4.1)

for δ defined as in (3.3) depending on �A and �S, plugging (4.1) into (1.11) and identifying all terms of the
same power of ε. It turns out that the diffusive problems are in this case the time-dependent version of
the stationary outer problems of Section 3. Indeed, since c = ∞ the first equation in (1.11) is a stationary
equation for the intensity Iν . Therefore, the same computations of Section 3 show that for any choice of

https://doi.org/10.1017/S0956792525100168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525100168


European Journal of Applied Mathematics 23

�A and �S, the first order term φ0 is isotropic, and the next non-isotropic term arising in the expansion of
Iν is of order ε1.

Hence, in the case �T ≤ 1, that is, τh = 1
ε
, since the time derivative of the temperature in the second

equation of (1.11) is a term of order ε0, which is balanced by the divergence of the flux of energy, we
obtain the following outer problems

(i) for �M = �T � �S

∂tT(t, x) − 4π

3
div

(∫ ∞

0

∇xBν(T(t, x))

αν(x)
dν

)
= 0, (4.2)

(ii) for �M = �T = �S

∂tT(t, x) = div
(∫ ∞

0

dν
1

αa
ν
(x) + αs

ν
(x)

(∫
S2

dn n ⊗ (
Id − Aν,x

)−1
(n)

)
∇xBν(T(t, x))

)
, (4.3)

(iii) for �M � �T � L

∂tT(t, x) = div
(∫ ∞

0

dν
1

αs
ν
(x)

(∫
S2

dn n ⊗ (Id − H)−1 (n)

)
∇xBν(T(t, x))

)
, (4.4)

(iv) for �M � L = �T⎧⎪⎪⎨
⎪⎪⎩

− 1

αa
ν
(x)

div
(

1

αs
ν
(x)

(∫
�

S2

n ⊗ (Id − H)−1 (n) dn

)
∇xφ0(t, x, ν)

)
= Bν (T(t, x))− φ0(t, x, ν)

∂tT(t, x) − div
(∫ ∞

0

dν
1

αs
ν
(x)

(∫
�

S2

n ⊗ (Id − H)−1 (n) dn

)
∇xφ0(t, x, ν)

)
= 0.

(4.5)

In the case �M � L � �T , namely, when τh = 1
εβ

for β > 1 the outer problem is⎧⎪⎪⎨
⎪⎪⎩

div
(

1

αs
ν
(x)

(∫
�

S2

n ⊗ (Id − H)−1 (n) dn

)
∇xφ0(t, x, ν)

)
= 0

∂tT(t, x) −
∫ ∞

0

dν αa
ν
(x) (Bν (T(t, x))− φ0(t, x, ν))= 0.

(4.6)

Indeed, plugging the expansion (4.1) with δ= β − �β� into the first equation in (1.11), we obtain,
arguing as in Section 3.5, that the leading order φ0 is isotropic and solves the stationary equation

div
(

1

αs
ν
(x)

(∫
�

S2

n ⊗ (Id − H)−1 (n) dn

)
∇xφ0(t, x, ν)

)
= 0.

Moreover, plugging the second equation of (1.11) into the second one yields

∂tT(t, x) −
∫ ∞

0

dν αa
ν
(x) (Bν (T(t, x))− φ0(t, x, ν))= 0.

These are the equations describing the radiation intensity and the temperature in the bulk away from the
boundary and for positive times.

We remark that as for the stationary problem, the regimes of equilibrium diffusion approximations are
for �T � L and correspond to the problems (4.2), (4.3) and (4.4), while the regimes of non-equilibrium
approximations are for �T � L and are described by (4.5) and (4.6).

4.2. Initial layer equations and boundary layer equations

As in the case of the stationary diffusion approximation, the radiation intensity Iν and the temperature T
can change abruptly near the boundaries; that is, boundary layers might arise. In addition, in the time-
dependent case, the behaviour of (T , Iν) could also change quickly for small times. We will denote the
latter as initial layers. In this subsection, we construct the initial layers for distances to the boundary
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of order 1 and boundary layers for positive times of order 1. We denote by initial layer equations the
problems derived for times t � 1 and solved at the interior of�. Similarly, the boundary layer equations
are problems derived from rescaling the space variable only and solved for any t> 0.

In the considered case, that is, c = ∞, there are no initial layers for the temperature appearing in the
bulk, that is, for distances to the boundary of order 1. To see this, we have to consider two different cases.
We recall that the second equation in (1.11) is

∂tT(t, x) + τhdiv
(∫ ∞

0

dν
∫
S2

dn nIν(t, x, n)

)
= 0. (4.7)

Hence, if �T ≤ 1, the heat parameter is τh = 1
ε
. Therefore, in equation (4.7), the divergence of the flux

of radiative energy is multiplied by ε−1. As indicated before, φ0 is isotropic. In addition to that, since
the first non-isotropic term is of order ε, it follows that in (4.7), the term containing the divergence is
of order 1 in the bulk. Therefore, ∂tT is of order 1 and as a consequence T � T0 for small times t � 1
and no initial layer appears. On the other hand, in the case �T 	 1, the heat parameter is τh = �A = 1

εβ
for

β > 1. In this case, the leading term of the divergence of the total flux of energy is of order εβ , and it is
given by

εβ
∫ ∞

0

dν
∫
S2

dn αa
ν (Bν(T) − φ0) .

This implies again that ∂tT is of order 1, and hence, there are also in this case no initial layers.
We now examine the boundary layers appearing for times of order 1. In this case, similarly as in

the stationary case, Milne and thermalization layers arise. It turns out that the equations describing the
radiation intensity near the boundary are given either by the stationary Milne problems (3.8), (3.16) and
(3.25) or by the thermalization problem (3.30) or by a combination of both of them depending on the
choice of �A and �S.

We begin by describing first the Milne layers. We rescale the space variable according toy = − x−p
ε

· np,
where �M = ε and p ∈ ∂�. We also express the absorption and scattering lengths according to �A = ε−β ,
�S = ε−γ with min{β, γ } = −1. With this notation, (1.11) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(n · np)∂yIν(t, y, n; p) = εβ+1αa
ν (p +O (ε)) (Bν(T) − Iν)

+εγ+1αs
ν (p +O (ε))

(∫
S2

K(n, n′)Iν dn′ − Iν

)
y> 0

∂tT(t, y; p) − τh

ε

(∫ ∞

0

dν
∫
S2

dn (n · np)∂yIν

)
= 0 y> 0

T(0, y; p) = T0(y; p) y> 0

Iν(t, 0, n; p) = gν(t, n) n · np < 0.

(4.8)

Letting ε→ 0, we obtain different Milne problems for different choices of β and γ . With similar argu-
ments as in Section 3, we can see that the Milne problems are the same as the one derived for the
stationary case, except for the fact that the unknowns also depend on the variable t. However, the vari-
able t appears only as a parameter, and the Milne problems are stationary. These are given by (3.8) in
the case γ >−1, by (3.16) if γ = β = −1 and finally by (3.25) if β >−1. Notice that we are assuming
that, if the incoming radiation gν depends on time, it does so only for times t of order one.

We remark that when β >−1, the Milne problem (3.25) is a closed problem involving only the
radiation intensity Iν . If �T � L, in order to determine the temperature close to the boundary, we have to
solve the stationary equation∫ ∞

0

dν
∫
S2

dn αa
ν
(p) (Bν(T(t, y; p)) − Iν(t, y, n; p))= 0.

This is the same equation that we obtained in the stationary case in (3.26). On the other hand, if �T � L,
the temperature is related to the radiation intensity by a time-dependent equation similar to the second
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one in (4.5) and (4.6), namely, the equations describing the temperature in the bulk, that is,

∂tT(t, y; p) +
∫ ∞

0

dν
∫
S2

dn αa
ν
(p) (Bν(T(t, y; p)) − Iν(t, y, n; p))= 0. (4.9)

Besides the Milne layer in the case �M � �T � L, we also observe the formation of a thermalization layer
at a distance �T to the boundary. The equation describing this layer is obtained with a change of variable
η= − x−p

�T
· np for p ∈ ∂�. Recall that in this case, we consider �S = ε and �A = ε−β for β ∈ (−1, 1) and

hence �T = ε
1−β

2 and τh = 1
ε
. Thus, (1.11) becomes under this rescaling

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−ε 1+β
2 (n · np)∂ηIν(t, η, n; p) = αa

ν

(
p +O

(
ε

1−β
2

))
εβ+1(Bν(T) − Iν)

+αs
ν

(
p +O

(
ε

1−β
2

)) (∫
S2

K(n, n′)Iν dn′ − Iν

)
η > 0

∂tT(t, η; p) − ε
β−3

2

(∫ ∞

0

dν
∫
S2

dn (n · np)∂ηIν

)
= 0 η > 0.

(4.10)

We see once more that the thermalization layer equation is equation (3.30), the equation constructed for
the stationary problem in Section (3.3).

Finally, matching the solution of the boundary layer equations with the outer problem, we can con-
struct the boundary condition for the diffusive initial-boundary limit problem. We will summarize these
problems in the following subsection.

4.3. Limit problems in the bulk

We summarize now the time-dependent partial differential equation problems that we obtain for the
equation (1.11) as �M → 0 for all different choices of �’s. They are given by the outer problems (4.2)–
(4.6), valid in the bulk for positive times. Since there are no initial layers appearing for times t � 1, the
initial condition is T(t, x) = T0(x) for any choice of �A and �S. Moreover, the boundary condition is given
by the matching of the solution of the boundary layer problems with the outer solution.

(i) If �M = �T � �S, then the problem is given by⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tT(t, x) − 4π

3
div

(∫ ∞

0

∇xBν(T(t, x))

αν(x)
dν

)
= 0 x ∈�, t> 0

T(0, x) = T0(x) x ∈�

T(t, p) = lim
y→∞

F−1

((∫ ∞

o

dναa
ν
(p)Iν(t, y, n; p)

)
, y, p

)
p ∈ ∂�, t> 0,

(4.11)

where Iν(y, n; p) is the solution to the Milne problem (3.8).
(ii) If �M = �T � L, we obtain the following limit problem⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tT(t, x) = div
(∫ ∞

0

dν
1

αa
ν
(x) + αs

ν
(x)

(∫
S2

dn n ⊗ (
Id − Aν,x

)−1
(n)

)
∇xBν(T(x))

)
x ∈�, t> 0

T(0, x) = T0(x) x ∈�

T(t, p) = lim
y→∞

F−1

((∫ ∞

0

dν
∫
�

S2

dn αa
ν
(p)Iν(t, y, n, p)

)
, y, p

)
p ∈ ∂�, t> 0,

(4.12)
where Iν(y, n, p) solves the Milne problem (3.16).

(iii) We turn now to the case �M � �T � L, which corresponds to the case �M = ε= �S and �A = ε−β

for β ∈ (−1, 1). We obtain the following limit problem
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tT − div
(∫ ∞

0

dν
1

αs
ν
(x)

(∫
S2

dn n ⊗ (Id − H)−1 (n)

)
∇xBν(T(x))

)
= 0 x ∈�

T(0, x) = T0(x) x ∈�

T(t, p) = lim
η→∞

F−1

((∫ ∞

0

dν
∫
�

S2

dn αa
ν
(x)ϕ0(t, η, ν; p)

)
, y, p

)
p ∈ ∂�, t> 0,

(4.13)

where ϕ0(t, η, ν; p) solves the thermalization equations (3.30) with boundary value ϕ0(t, 0, ν; p) =
lim
y→∞

Iν(t, y, n, ν; p) for Iν the solution to the Milne problem (3.25) with boundary value gν(t, n).

(iv) We consider now the last two cases where �M � L � �T . The limit problem in the case �T = L is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1

αa
ν
(x)

div
(

1

αs
ν
(x)

(∫
�

S2

n ⊗ (Id − H)−1 (n) dn

)
∇xφ0(t, x, ν)

)

= Bν (T(t, x))− φ0(t, x, ν) x ∈�, t> 0

∂tT(t, x) +
∫ ∞

0

dν
∫
S2

dn αa
ν
(x) (Bν (T(t, x))− φ0(t, x, ν))= 0 x ∈�, t> 0

T(0, x) = T0(x) x ∈�
φ0(t, p, ν) = lim

y→∞

∫
�

S2

Iν(t, y, n, p) p ∈ ∂�, t> 0,

(4.14)

where Iν(t, y, n, p) solves the Milne problem (3.25) for the boundary value gν(t, n). Notice that in
problem (3.25), the time t appears just as a parameter.

(v) Finally, if L � �T with the same notation as above, the limit problem in this case is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

div
(

1

αs
ν
(x)

(∫
�

S2

n ⊗ (Id − H)−1 (n) dn

)
∇xφ0(t, x, ν)

)
= 0 x ∈�, t> 0

∂tT(t, x) +
∫ ∞

0

dν
∫
S2

αa
ν
(x) (Bν(T)(t, x) − φ0(t, x, ν))= 0 x ∈�, t> 0

T(0, x) = T0(x) x ∈�
φ0(t, p, ν) = lim

y→∞

∫
�

S2

Iν(t, y, n, p) p ∈ ∂�, t> 0.

(4.15)

Also for this case, the boundary condition is obtained by the solution of the boundary layer
described by the Milne problem (3.25).

4.4. Initial-boundary layers

It is important to note that in regions very close to the boundary and for a time t � 1, new layers could
appear. These are the regions where the radiation intensity Iν and the temperature T change from the
solution of the initial layer equation to the solution of the boundary layer equation. For this reason, we
denote these layers as initial-boundary layers. In this section, we will derive the equations describing
them for any choice of �A and �S. In the following, we will always denote by p a point belonging to the
boundary, that is, p ∈ ∂�.

(i) If �M = �T � �S, we observe the formation of only one initial-boundary layer. It is described
by an equation, which can be constructed rescaling the space variable as y = − x−p

ε
· np and the

time by t = ε2τ . Indeed, since in this case β = −1 (because �A = ε) and τh = ε−1, we see that
the leading term of divergence of the flux of energy is of order ε−2 in the following equation

∂tT(t, y; p) + τhε
β

∫ ∞

0

dν
∫
S2

dn αa
ν
(p) (Bν(T(t, y; p)) − Iν(t, y, n; p))= 0. (4.16)
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This equation is obtained by plugging the first equation in (4.8) into the second one. We recall
that equation (4.8) is obtained after a rescaling of only the space variable. Hence, the time
rescaling t = ε2τ gives a non-trivial equation for the temperature. Thus, the radiation intensity
Iν and the temperature T solve the following initial-boundary layer equation⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−(n · np)∂yIν(τ , y, n; p) = αa
ν
(p)(Bν(T(τ , y)) − Iν(τ , y, n; p)) y> 0, τ > 0

∂tT(τ , y) −
(∫ ∞

0

dν
∫
S2

dn (n · np)∂yIν(τ , y, n; p)

)
= 0 y> 0, τ > 0

T(0, y; p) = T0(p) y> 0

Iν(τ , 0, n; p) = gν(0, n) n · np < 0, τ > 0.

(ii) In the case �M = �T = �S under the scaling y = − x−p
�M

· np and t = ε2τ , we obtain as above the
following initial-boundary layer equation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(n · np)∂yIν(τ , y, n; p) = αa
ν
(p)(Bν(T(τ , y)) − Iν(τ , y, n; p))

+ αs
ν

(∫
S2

K(n, n′)Iν(τ , y, n′; p) dn′ − Iν(τ , y, n; p)

)
y> 0, τ > 0

∂τT(τ , y) + div
(∫ ∞

0

dν
∫
S2

dn nIν

)
= 0 y> 0, τ > 0

T(0, y; p) = T0(p) y> 0

Iν(τ , 0, n; p) = gν(0, n) n · np < 0, τ > 0.

(iii) If �A � �T � L, we obtain two different initial-boundary layers. This is consistent with the fact
that there are two boundary layers appearing, namely, the Milne layer, in which Iν becomes
isotropic, and the thermalization layer, in which Iν approaches to the Planck distribution. We
now notice that rescaling the space variable by y = − x−p

ε
· np and the time variable according

to t = ε1−βτ equation (4.16) gives the following initial-boundary Milne layer equation⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−(n · np)∂yIν(τ , y, n; p) = αs
ν
(p)

(∫
S2

K(n, n′)Iν(τ , y, n′; p)dn′ − Iν(τ , y, n, ν; p)

)
y> 0, τ > 0

∂tT(τ , y) +
∫ ∞

0

dν
∫
S2

dn αa
ν
(p) (Bν(T)(τ , y; p) − Iν(τ , y, n; p))= 0 y> 0, τ > 0

T(0, y; p) = T0(p) y> 0

Iν(τ , 0, n; p) = gν(0, n) n · np < 0, τ > 0.

(4.17)

Moreover, rescaling the space variable according to η= − x−p
�T

· np and the time by t = ε1−βτ
from equation (4.10), we obtain the following initial-boundary thermalization layer equation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ0(τ , η, ν; p) − 1

αa
ν
(p)αs

ν
(p)

(∫
�

S2

(n · np)(Id − H)−1(n) · np dn

)
∂2
η
ϕ0(τ , η, ν; p)

= Bν(T(τ , η; p)) η > 0, τ > 0

∂τT −
∫ ∞

0

dν
∫
S2

dn αa
ν
(p) (Bν(T)(τ , η; p) − Iν(τ , η, n; p))= 0 η > 0, τ > 0

T(0, η; p) = T0(p) y> 0

ϕ0(τ , 0, ν; p) = I(0, ν; p) p ∈ ∂�, τ > 0.

This is the initial-boundary layer equation describing the transition from the initial value to
the boundary value in the limit problem (4.13).
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(iv)+(v) Finally, in the last two considered cases, namely, when �T � L, we do not obtain an initial-
boundary layer. However, under the space variable rescale y = − x−p

ε
· np for the Milne problem

(3.25), we also obtained an evolution equation for the temperature valid for all t> 0 given as
we saw in (4.9) by⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−(n · np)∂yIν(t, y, n; p) = αs
ν
(p)

(∫
S2

K(n, n′)Iν(t, y, n′; p)dn′ − Iν(t, y, n, ν; p)

)
y> 0, t> 0

∂tT(t, y) +
∫ ∞

0

dν
∫
S2

αa
ν
(p) (Bν(T)(t, y; p) − Iν(t, y, n; p))= 0 y> 0, t> 0

T(0, y; p) = T0(p) y> 0

Iν(t, 0, n; p) = gν(t, n) n · np < 0, t> 0.

5. Time-dependent diffusion approximation: the case of speed of light of order 1

In this section, we construct the limit problem solved by the solution of the time-dependent equation
(1.10) when �M → 0 and the speed of light is finite. Without loss of generality, we consider first the
case c = 1. Physically, this means that the characteristic time for the propagation of light is similar to
the time of the heat transfer process. This situation can be expected to be relevant only in astrophysical
applications. The strategy is the same as in Section 4. We will first formulate the limit problem valid
at the interior of the domain � for positive times. In Subsection 5.2, we will consider the formation
of initial and boundary layers. In this case, we will obtain non-trivial initial layer equations. On the
other hand, as in Section 4, the boundary layer equations are stationary and are the same equations we
constructed in Section 3. Finally, in Subsections 5.3 and 5.4, we will summarize the initial-boundary
value problem that we have obtained, and we will construct the initial-boundary layer equations that
we have to consider in order to describe the behaviour of the solution in a small neighbourhood of the
boundary for times t � 1.

5.1. Outer problems

We consider equation (1.10) in the case c = 1 and under the assumption �M = ε for the different choices
of �A = ε−β and �S = ε−γ . Expanding Iν according to (4.1) and identifying in (1.10) all terms of the same
order, we conclude as we computed in Section 3 and Section 4 that the first order φ0(t, x, n, ν) of the
intensity Iν is isotropic and the first non-isotropic term is of order ε1. Moreover, as long as �T � L, we
have φ0(t, x, ν) = Bν(T(t, x)). The outer problems in the case �T ≤ 1, that is, τh = 1

ε
, are given

(i) for �M = �T � �S by

∂tT(t, x) + 4πσ∂tT
4(t, x) − 4π

3
div

(∫ ∞

0

∇xBν(T(t, x))

αν(x)
dν

)
= 0,

(ii) for �M = �T = �S by

∂tT(t, x) + 4πσ∂tT
4(t, x)

= div
(∫ ∞

0

dν
1

αa
ν
(x) + αs

ν
(x)

(∫
S2

dn n ⊗ (
Id − Aν,x

)−1
(n)

)
∇xBν(T(t, x))

)
,

(iii) for �M � �T � L by

∂tT(t, x) + 4πσ∂tT
4(t, x) = div

(∫ ∞

0

dν
1

αs
ν
(x)

(∫
S2

dn n ⊗ (Id − H)−1 (n)

)
∇xBν(T(t, x))

)
,
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(iv) for �M � L = �T by⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tφ0(t, x, ν) − div
(

1

αs
ν
(x)

(∫
�

S2

n ⊗ (Id − H)−1 (n) dn

)
∇xφ0(t, x, ν)

)

= αa
ν
(x) (Bν (T(t, x))− φ0(t, x, ν))

∂tT(t, x) + 4π
∫ ∞

0

dν αa
ν
(x) (Bν(T(t, x)) − φ0(t, x, ν))= 0.

(5.1)

In the case �T 	 1, that is, τh = �A = ε−β for β > 1, a similar computation to the one for the derivation
of the problem (4.6) yields⎧⎪⎪⎨

⎪⎪⎩
div

(
1

αs
ν
(x)

(∫
�

S2

n ⊗ (Id − H)−1 (n) dn

)
∇xφ0(t, x, ν)

)
= 0

∂tT(t, x) + 4π
∫ ∞

0

dν αa
ν
(x) (Bν(T(t, x)) − φ0(t, x, ν))= 0.

(5.2)

Indeed, in the first equation of (1.10), the leading order of the term containing the time derivative of Iν
is of power ε0 as the emission-absorption term. On the other hand, the leading order φ0 of the radiation
intensity is isotropic, and the first non-isotropic term is of order ε1. Therefore, the identification in the
first equation of (1.10) of the terms of order ε1−β 	 ε0 gives the stationary equation in (5.2) solved by φ0.
Finally, plugging the first equation of (1.10) into the second one yields the equation for the temperature
as in (5.2).

5.2. Initial layer equations and boundary layer equations

In this subsection, we will describe the initial layers and the boundary layers appearing for time scales
smaller than the heat parameter τh and for regions close to the boundary, respectively. We start with
the initial layers, and we will see that, similarly to the boundary layers considered in Sections 3 and
4, there are two nested initial layers appearing. Indeed, in a first layer, that is, for a very small time
scale, the radiation intensity becomes isotropic, while in a second initial layer, it becomes eventually the
Planck distribution for the temperature. We will denote the first layer as the initial Milne layer and the
second one as the initial thermalization layer, due to their analogy with the boundary layers considered
in Sections 3 and 4. We will also see that while the initial Milne layer appears for every choice of �A and
�S, the initial thermalization layer coincides with the initial Milne layer (if �M = �T), appears after the
initial Milne layer (if �M � �T � L) or is not present at all (if �T � L).

We recall that under the assumption �A = ε−β and �S = ε−γ for min{β, γ } = −1 equation (1.10) writes

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tIν(t, x, n) + τhn · ∇xIν(t, x, n) = αa
ν
(x)εβτh (Bν(T(t, x)) − Iν(t, x, n))

+ αs
ν
(x)εγ τh

(∫
S2

K(n, n′)Iν(t, x, n′) dn′ − Iν(t, x, n)

)
x ∈ ∂�, n ∈ S2, t> 0

∂tT + ∂t

(∫ ∞

0

dν
∫
S2

dn Iν(t, n, x)

)
+ τhdiv

(∫ ∞

0

dν
∫
S2

dn nIν(t, n, x)

)
= 0 x ∈ ∂�, n ∈ S2, t> 0

Iν(0, x, n) = I0(x, n, ν) x ∈ ∂�, n ∈ S2

T(0, x) = T0(x) x ∈ ∂�
Iν(t, n, x) = gν(t, n) x ∈ ∂�, n · nx < 0, t> 0.

(5.3)
Notice that the leading term in the first equation is of order ε

τh
. Therefore, under a time rescaling t = ε

τh
τ ,

the first equation writes

∂τ Iν = εβ+1αa
ν
(x) (Bν(T) − Iν)+ εγ+1αs

ν
(x)

(∫
S2

K(n, n′)Iν dn′ − Iν

)
+ εn · ∇xIν
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while the second one is

∂τT + ∂τ

(∫ ∞

0

dν
∫
S2

dn Iν

)
+ εdiv

(∫ ∞

0

dν
∫
S2

dn nIν

)
= 0.

It is hence easy to see that for any choice of �M and �S, there is an initial layer with thickness of order ε

τh
.

Notice that as long as �T � 1 (i.e. τh = ε−1), this initial layer has a thickness of order ε2, while in the case
�T 	 1 (i.e. τh = ε−β for β > 1), the order is ε1+β . This layer plays the role of the Milne boundary layer
in the time-dependent case, as in this layer, the radiation intensity becomes isotropic. For this reason,
we will denote it as the initial Milne layer.

(i) In the case �M = �T � �S, the initial Milne layer is described by the following initial Milne
equation for the leading order of the radiation intensity⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂τϕ0(τ , x, n, ν) = αa
ν
(x) (Bν(T(τ , x)) − ϕ0(τ , x, n, ν)) τ > 0

∂τT(τ , x) +
∫ ∞

0

dν
∫
S2

dn αa
ν
(x) (Bν(T(τ , x)) − ϕ0(τ , x, n, ν))= 0 τ > 0

ϕ0(0, x, n, ν) = I0(x, n, ν)

T(0, x) = T0(x).

(5.4)

This equation plays the same role as the Milne problem, and we expect T → T∞ and ϕ0 →
Bν(T∞) as τ → ∞. Indeed, given a bounded solution to the equation (5.4), assuming T∞(x) =
lim
τ→∞

T(τ , x) and using simple ODE’s arguments, we have

ϕ0(τ , x, n, ν) = I0e
−αa

ν (x)τ +
∫ τ

0

αa
ν
(x)e−αa

ν (x)(τ−s)Bν(T(s, x) ds −→
τ→∞

Bν(T∞(x)). (5.5)

(ii) We turn now to the case �M = �T = �S � L. The initial Milne equation is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂τϕ0(τ , x, n, ν) = αa
ν
(x) (Bν(T(τ , x)) − ϕ0(τ , x, n, ν))

+ αs
ν
(x)

(∫
S2

K(n, n′)ϕ0(τ , x, n′, ν) dn′ − ϕ0(τ , x, n, ν)

)
τ > 0

∂τT(τ , x) +
∫ ∞

0

dν
∫
S2

dn αa
ν
(x) (Bν(T(τ , x)) − ϕ0(τ , x, n, ν))= 0 τ > 0

ϕ0(0, x, n, ν) = I0(x, n, ν)

T(0, x) = T0(x).

(5.6)

Again, assuming T∞(x) = lim
τ→∞

T(τ , x) for a bounded solution to (5.6), we can write an explicit
formula for ϕ0, and we also obtain

ϕ0(τ , x, n, ν) = I0e
−(αa

ν (x)+αs
ν (x))τ +

∫ τ

0

αa
ν
(x)e−(αa

ν (x)+αs
ν (x))(τ−s)Bν(T(s, x)) ds

+
∫ τ

0

αs
ν
(x)e−(αa

ν (x)+αs
ν (x))(τ−s)H[ϕ0](τ , x, n, ν)

= e−(αa
ν (x)+αs

ν (x))τ

∞∑
n=0

(αs
ν
(x)τ )n

n! Hn[I0](x, n, ν)

+
∫ τ

0

αa
ν
(x)e−αa

ν (x)(τ−s)Bν(T(s, x)) ds

−→
τ→∞

Bν(T∞(x)).
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(iii) For the case �M � �T � L, similarly to the boundary layers, we expect the solution to the initial
Milne layer equation to become isotropic but not necessarily to become the Planck distribution.
In this case, the initial Milne equation is

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂τϕ0(τ , x, n, ν) = αs
ν
(x)

(∫
S2

K(n, n′)ϕ0(τ , x, n′, ν) dn′ − ϕ0(τ , x, n, ν)

)
τ > 0

∂τT(τ , x) = 0 τ > 0

ϕ0(0, x, n, ν) = I0(x, n, ν)

T(0, x) = T0(x).

(5.7)

On the one hand, we have T(τ , x) = T0(x) for all τ > 0, and on the other hand, we have

ϕ0(τ , x, n, ν) = exp ( − αs
ν
(x)τ (Id − H))I0.

Using standard spectral theory for the compact self-adjoint operator H ∈L (
L2(S2), L2(S2)

)
,

we see that the greatest eigenvalue of H is 1 with eigenfunctions being the constants. Hence,
an application of the spectral gap theory and of the continuous functional calculus (cf. [47])
yields the limit

lim
τ→∞

ϕ0(τ , x, n, ν) = ϕ(x, ν),

where ϕ is independent of n ∈ S2. Moreover, ϕ(x, ν) =
ffl
S2
I0(x, n, ν). Indeed, integrating

over S2 the first equation of (5.7), we obtain using that
∫
S2 K(n, n′)dn = 1 the equation

⎧⎪⎨
⎪⎩
∂τ

∫
�

S2

ϕ0(τ , x, n, ν)dn = 0 τ > 0∫
�

S2

ϕ0(0, x, n, ν)dn =
∫
�

S2

I0(x, n, ν)dn.

Hence, we conclude by the isotropy of ϕ
∫
�

S2

I0(x, n, ν)dn =
∫
�

S2

ϕ0(τ , x, n, ν)dn −→
τ→∞

ϕ(x, ν).

The study of the Milne initial layer described by (5.7) has been rigorously studied in the context
of the one-speed neutron transport equation in [9] and in [55], that is, when αs

ν
is independent

of ν. While in [9] the behaviour of the neutron distribution for small times is analysed for
general kernels using stochastic methods, in [55], equation (5.7) is solved for a very specific
scattering kernel, namely, the constant kernel K = 1

4π
.

Moreover, there is also an initial thermalization layer. Indeed, under the rescaling t = ε1−βτ
for β ∈ (−1, 1), γ = −1 and therefore τh = 1

ε
, equation (5.3) becomes

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂τ Iν(τ , x, n, ) + ε−βn · ∇xIν(τ , x, n) = αa
ν
(x) (Bν(T(τ , x)) − Iν(τ , x, n))

+α
s
ν
(x)

ε1+β

(∫
S2

K(n, n′)Iν(τ , x, n′) dn′ − Iν(τ , x, n)

)
τ > 0

∂τT(τ , x) +
∫ ∞

0

dν
∫
S2

dn ∂τ Iν(τ , x, n) + ε−βdiv
(∫ ∞

0

dν
∫
S2

dn Iν(τ , x, n)n

)
= 0 τ > 0

(5.8)

As we have seen several times, the leading order ϕ0 of Iν in (5.8) is isotropic. Moreover, for
β ≥ 0 the term of order εβ is also isotropic. Hence, the initial thermalization layer equation for
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the leading order of the radiation intensity is given by
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂τϕ0(τ , x, ν) = αa
ν
(x) (Bν(T(τ , x)) − ϕ0(τ , x, ν)) τ > 0

∂τT(τ , x) +
∫ ∞

0

dν
∫
S2

dn ∂τϕ0(τ , x, ν) = 0 τ > 0

ϕ0(0, x, n, ν) = ϕ(x, ν) =
∫
�

S2

I0(x, n, ν)dn

T(0, x) = T0(x).

(5.9)

As for equation (5.4) arguing as in (5.5), we expect ϕ0(τ , x, ν) → Bν(T∞(x)) as τ → ∞
denoting by T∞(x) = lim

η→∞
T(τ , x).

(iv)+(v) Finally, in both cases �M � �T = L and �M � L � �T , that is, in the non-equilibrium diffusion
case, we observe the formation of only the initial Milne layer in which the radiation intensity
becomes isotropic. In both cases, the initial Milne layer equation is once again (5.7).

We study now the boundary layers. We notice that in (5.3), ∂tIν has relative order τ−1
h compared to

n · ∇xIν . Therefore, any rescaling of the space variable by ξ = − x−p
εα

· np for εα ∈ {�M = ε, �T} � L and
p ∈ ∂� yields the boundary layer equations constructed in Section 4.2. Indeed, under such a procedure,
the system becomes
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εα

τh

∂tIν(t, ξ , n; p) − (n · np)∂ξ Iν(t, ξ , n; p) = αa
ν
(p +O(εα))εβ+α (Bν(T(t, ξ ; p)) − Iν(t, ξ , n; p))

+ αs
ν
(p +O(εα))εγ+α

(∫
S2

K(n, n′)Iν(t, ξ , n′; p) dn′ − Iν(t, ξ , n; p)

)

∂tT(t, ξ ; p) + ∂t

(∫ ∞

0

dν
∫
S2

dn Iν(t, ξ , n; p)

)
− ε−ατh∂ξ

(∫ ∞

0

dν
∫
S2

dn (n · np)Iν(t, ξ , n; p)

)
= 0

Iν(0, ξ , n; p) = I0(ξ , n, ν; p)

T(0, ξ ) = T0(ξ )

Iν(t, 0, n; p) = gν(t, n) n · np < 0.
(5.10)

Under these rescalings, we obtain, namely, the Milne problems (3.8) for �M = �T � �S and (3.16) for
�M = �T = �S � L. In the case �M � �T � L, there are two boundary layers appearing described by the
Milne problem (3.25) and by the thermalization equation (3.30). Finally, if �M � L � �T , the Milne
boundary layer is described by (3.25).

5.3. Limit problems in the bulk

We summarize now the PDEs, which are expected to be solved by the solution of (1.10) in the limit
�M = ε→ 0 for any different choice of �T as the speed of light is finite, that is, c = 1.

(i) In the case when �M = �T � �S, the limit problem is given by⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tT(t, x) + 4πσ∂tT4(t, x) − 4π

3
div

(∫ ∞

0

∇xBν(T(t, x))

αν(x)
dν

)
= 0 t> 0, x ∈�

T(0, x) = T∞(x) x ∈�

T(t, x) = lim
y→∞

(∫ ∞

0

αa
ν
(p)Iν(t, y, n; p)

)
p ∈ ∂�,

where Iν(t, y, n; p) is the solution to the Milne problem (3.8) for the boundary value gν(t, n) and
T∞(x) = lim

τ→∞
T(τ , x) is defined as the limit of the solution to the initial layer (5.4).
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(ii) If �M = �T = �S � L, that is, �S = �A = ε and τh = ε−1, the limit problem that describes the
temperature in the interior of � for positive times is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tT(t, x) + 4πσ∂tT4(t, x)

= div
(∫ ∞

0

dν
1

αa
ν
(x) + αs

ν
(x)

(∫
S2

dn n ⊗ (
Id − Aν,x

)−1
(n)

)
∇xBν(T(t, x))

)
t> 0, x ∈�

T(0, x) = T∞(x) = lim
τ→∞

T(τ , x) x ∈�

T(t, x) = lim
y→∞

(∫ ∞

0

αa
ν
(p)Iν(t, y, n; p)

)
p ∈ ∂�,

where Iν(t, y, n; p) is the solution to the Milne problem (3.16) for the boundary value gν(t, n) and
T(τ , x) is the solution to the initial layer (5.6).

(iii) We move now to the case �M � �T � L; hence, we consider �S = ε and �A = ε−β for β ∈ (−1, 1)
and τh = ε−1. The limit problem is
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tT(t, x) + 4πσ∂tT4(t, x)

= div
(∫ ∞

0

dν
1

αs
ν
(x)

(∫
S2

dn n ⊗ (Id − H)−1 (n)

)
∇xBν(T(t, x))

)
t> 0, x ∈�

T(0, x) = T∞(x) = lim
τ→∞

T(τ , x) x ∈�

T(t, p) = lim
y→∞

(∫ ∞

0

dν αa
ν
(p)ϕ0(t, η, ν; p)

)
p ∈ ∂�,

where T(τ , x) solves the initial layer (5.9) and ϕ0 is the solution to the thermalization problem
(3.30).

(iv) If �M � L = �T , the limit problem is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tφ0(t, x, ν) − div
(

1

αs
ν
(x)

(∫
�

S2

n ⊗ (Id − H)−1 (n) dn

)
∇xφ0(t, x, ν)

)

= (Bν (T(t, x))− φ0(t, x, ν)) x ∈�, t> 0

∂tT(t, x) + 4π
∫ ∞

0

dν αa
ν
(x) (Bν(T(t, x)) − φ0(t, x, ν))= 0 x ∈�, t> 0

φ(0, x, ν) = ϕ(x, ν) =
∫
�

S2

I0(x, n, ν)dn

T(0, x) = T0(x) x ∈�
φ0(t, p, ν) = lim

y→∞

∫
�

S2

Iν(t, y, n, p) p ∈ ∂�, t> 0,

(5.11)

where Iν(t, y, n, p) solves the Milne problem (3.25) for the boundary value gν(t, n) and ϕ(p, ν) =
lim
τ→∞

ϕ0(τ , p, n, ν) for the solution to (5.7).

(v) Finally, if �M � L � �T , the limit problem is with the same notation as in (5.11)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

div
(

1

αs
ν
(x)

(∫
�

S2

n ⊗ (Id − H)−1 (n) dn

)
∇xφ0(t, x, ν)

)
= 0 x ∈�, t> 0

∂tT(t, x) + 4π
∫ ∞

0

dν αa
ν
(x) (Bν(T(t, x)) − φ0(t, x, ν))= 0 x ∈�, t> 0

T(0, x) = T0(x) x ∈�
φ0(t, p, ν) = lim

y→∞

∫
�

S2

Iν(t, y, n, p) p ∈ ∂�, t> 0.

(5.12)
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5.4. Initial-boundary layers

We conclude Section 5 by considering the initial-boundary layer equations, which can be found by
studying (5.10). This equation shows that, on the one hand, under the space rescale ξ = − x−p

εα
· np for

p ∈ ∂� and εα ∈ {�M, �T}, the time derivative term ∂tIν becomes of the same order of ∂ξ Iν rescaling
the time by t = εα

τh
τ , and on the other hand, it becomes of the same order of the absorption-emission

term if we consider t = τ

εβ τh
. It is not difficult to see that rescaling the space variable according to the

Milne length �M = ε, we obtain a non-trivial equation of the leading order of Iν in both time and space
variables only rescaling the time by t = ε

τh
τ . In the case �M � �T � L, that is, when �S = ε and �A = ε−β

with β ∈ (−1, 1) and τh = 1
ε
, a thermalization layer also appears. It is described for small times and for

x ∈� close to ∂� by the equation obtained by rescaling the space variable by �T = ε
1−β

2 and the time
variable in a suitable way so that the resulting equation is non-trivial in both variables. This is the case
when t = ε1−βτ .

(i) If �M = �T � �S, that is, if β = −1 and γ >−1 and τh = ε−1, rescaling the spatial variable by
y = − x−p

ε
· np for p ∈ ∂� and under the time rescaling t = ε2τ , we obtain the initial-boundary

layer equation
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂τ Iν(τ , y, n; p) − (n · np)∂yIν(τ , y, n; p) = αa
ν
(p)(Bν(T(τ , y)) − Iν(τ , y, n; p)) y> 0, τ > 0

∂tT(τ , y) +
∫ ∞

0

dν
∫
S2

dn ∂τ Iν(τ , y, n; p)

− ∂y

(∫ ∞

0

dν
∫
S2

dn (n · np)Iν(τ , y, n; p)

)
= 0 y> 0, τ > 0

Iν(0, y, n; p) = I0(p, n, ν) y> 0

T(0, y; p) = T0(p) y> 0

Iν(τ , 0, n; p) = gν(0, n) n · np < 0, τ > 0.

(ii) In the case �M = �T = �s, we rescale again the variables according to y = − x−p
�M

· np for p ∈ ∂�
and t = ε2τ , and we obtain the following initial-boundary layer equation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂τ Iν(τ , y, n; p) − (n · np)∂yIν(τ , y, n; p) = αa
ν
(p)(Bν(T(τ , y)) − Iν(τ , y, n; p))

+ αs
ν

(∫
S2

K(n, n′)Iν(τ , y, n′; p) dn′ − Iν(τ , y, n; p)

)
y> 0, τ > 0

∂τT(τ , y) +
∫ ∞

0

dν
∫
S2

dn ∂τ Iν(τ , y, n; p)

− ∂y

(∫ ∞

0

dν
∫
S2

dn (n · np)Iν(τ , y, n; p)

)
= 0 y> 0, τ > 0

Iν(0, y, n; p) = I0(p, n, ν) y> 0

T(0, y; p) = T0(p) y> 0

Iν(τ , 0, n; p) = gν(0, n) n · np < 0, τ > 0.

(iii) If �M � �T � L, there are two initial-boundary layers appearing. In order to find the initial-
boundary layer equation describing the transition from T∞ to lim

y→∞

(∫ ∞
0

dν αa
ν
(p)ϕ0(t, η, ν; p)

)
,

we rescale first the space variable according to η= x−p
�T

· np for p ∈ ∂� with �T = ε
1−β

2 and the
time variable according to t = ε1−βτ , and following the same computations as we did in Section
4 in equation (4.17), we obtain the initial-boundary layer equation
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂τϕ0(τ , η, ν; p) − 1

αs
ν
(p)

(∫
�

S2

(n · np)(Id − H)−1(n) · np dn

)
∂2
η
ϕ0(τ , η, ν; p)

= αa
ν
(p) (Bν(T(τ , η; p)) − ϕ0(τ , η, ν; p)) η > 0, τ > 0

∂τT(τ , y; p) +
∫ ∞

0

dν
∫
S2

dn αa
ν
(p) (Bν(T(τ , η; p)) − ϕ0(τ , η, ν; p))= 0 η > 0, τ > 0

ϕ0(0, η, ν; p) = ϕ(p, ν) =
∫
�

S2

I0(p, n, ν)dn η > 0

T(0, η; p) = T0(p) η > 0

ϕ0(τ , 0, ν; p) = I(0, ν; p) n · np < 0, τ > 0,

where we used I(0, ν; p) = lim
y→∞

Iν(0, y, n; p) for the solution to the Milne problem (3.25) and
also ϕ(p, ν) = lim

τ→∞
ϕ0(τ , p, n, ν) for the solution to (5.7).

Rescaling now both space and time variables according to y = x−p
ε

· np for p ∈ ∂� and t = ε2τ ,
we obtain another initial-boundary layer equation, which explains the transition from I(0, ν; p)
to ϕ(p, ν). This is given by the following equation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂τ Iν(τ , y, n; p) − (n · np)∂yIν(τ , y, n; p)

= αs
ν

(∫
S2

K(n, n′)Iν(τ , y, n′; p) dn′ − Iν(τ , y, n; p)

)
y> 0, τ > 0

∂τT(τ , y) = 0 y> 0, τ > 0

Iν(0, y, n; p) = I0(p, n, ν) y> 0

T(0, y; p) = T0(p) y> 0

Iν(τ , 0, n; p) = gν(0, n) n · np < 0, τ > 0.
(5.13)

(iv)+(v) If �T � L under the rescaling y = x−p
ε

· np for p ∈ ∂� and t = ε2τ , we obtain the problem (5.13)
as initial-boundary layer equation.

(v) Moreover, in the case �T 	 L, we notice in equation (5.12) that the leading order φ0 of the
radiation intensity solves a stationary equation. The transition from the solution of a time-
dependent equation, as in the original problem, to the solution of a stationary equation happens
in times of order εβ−1. Indeed, under a time rescaling t = εβ−1τ = τ

τhε
, we obtain the following

equation solved by the leading order φ0 in the bulk
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂τφ0(τ , x, ν) − div
(

1

αs
ν
(x)

(∫
�

S2

n ⊗ (Id − H)−1 (n) dn

)
∇xφ0(τ , x, ν)

)
= 0 x ∈�, τ > 0

∂τT(τ , x) = 0 x ∈�, τ > 0

φ(0, x, ν) = ϕ(x, ν) =
∫
�

S2

I0(x, n, ν)dn x ∈�
T(0, x) = T0(x) x ∈�
φ0(τ , p, ν) = lim

y→∞

∫
�

S2

Iν(τ , y, n, p) p ∈ ∂�, τ > 0,

(5.14)
where ϕ(x, ν) is defined by the initial layer equation (5.7). This equation can be derived in
the same way as the outer problem (5.2), taking into account that under this time scale, the
term containing ∂τ Iν is of order ε1−β 	 ε0. Moreover, the second equation in (1.10) also gives
∂τT = 0 since the absorption-emission terms are of order ε0 � ε1−β .
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6. Time-dependent diffusion approximation: the case of non-dimensional speed of light scaling
as a power law of the Milne length

In this last section, we repeat all the procedures used in Sections 3, 4 and 5, and we construct the limit
problem solved by the solution of the time-dependent equation (1.10) when �M = ε→ 0 and in the case
in which the speed of light is a power-law of the form c = ε−κ for κ > 0. The strategy is the same as in
Section 5. It will turn out that the limit problems valid at the interior of the domain � and for positive
times are the same as the one we found in the case of infinite speed of light. On the other hand, unlike
the case of infinite speed of light, in this case, time layers also appear in regions far from the boundary.
Similarly as in Sections 4 and 5, the boundary layer equations are stationary and are the same equations
constructed in Section 3. Finally, we will summarize the initial-boundary value problems that we have
obtained, and we will construct the initial-boundary layer equations that we have to consider in order to
describe the behaviour of the solution for small times in regions close to the boundary.

6.1. Outer problems

We consider equation (1.10) in the case c = ε−κ , κ > 0. In order to find the outer problems solved in
the limit, we proceed as we did in the previous three sections. It turns out that the outer problems are
the same evolution equations obtained for the infinite speed of light case. Indeed, under the assumption
c = ε−κ and �A = ε−β , �S = ε−γ with min{α, γ } = −1, equation (1.10) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εκ∂tIν(t, x, n) + τhn · ∇xIν(t, x, n) = αa
ν
(x)εβτh (Bν(T(t, x)) − Iν(t, x, n))

+ αs
ν
(x)εγ τh

(∫
S2

K(n, n′)Iν(t, x, n′) dn′ − Iν(t, x, n)

)
x ∈�, n ∈ S2, t> 0

∂tT + εκ∂t

(∫ ∞

0

dν
∫
S2

dn Iν(t, n, x)

)

+ τhdiv
(∫ ∞

0

dν
∫
S2

dn nIν(t, n, x)

)
= 0 x ∈�, n ∈ S2, t> 0

Iν(0, x, n) = I0(x, n, ν) x ∈�, n ∈ S2

T(0, x) = T0(x) x ∈�
Iν(t, n, x) = gν(t, n) x ∈ ∂�, n · nx < 0, t> 0.

(6.1)
Then, plugging the usual expansion (4.1) for Iν into equation (6.1) and identifying all terms of the same
power of ε give the same results as in Section 4. This is due to the fact that in the first equation of
(6.1), the term involving the time derivative of the radiation intensity is of order εκ , and hence, it is
much smaller than ε0 � ε−1 � τhε

−1, that is, the orders of magnitude which lead to the first terms in the
expansion Iν(t, x, n) = φ0(t, x, ν) + εφ1(t, x, n, ν) + εδψ1 + · · · if δ < 1. As we noticed in the previous
sections, φ0 is isotropic, and as long as �T � L, it is the Planck distribution Bν(T). Since, in the second
equation of (6.1), the leading term containing ∂tT is also of order 1, the term εκ∂t

∫ ∞
0

dν
∫
S2 dn Iν is

negligible. Hence, the outer problems are, as in Section 4, equation (4.2) for �M = �T � �S, equation
(4.3) for �M = �T = �S, equation (4.4) for �M � �T � L, the system (4.5) for �M � L = �T and the system
(4.6) for �M � L � �T .

6.2. Initial layer equations and boundary layer equations

In contrast to Section 4 (i.e. the case c = ∞), besides the formation of boundary layers, time layers also
appear. The equations describing them can be obtained similarly as in Section 5. The first equation in
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(6.1) has leading order τhε
−1; hence, a time rescaling t = ε1+κ

τh
τ gives

∂τ Iν = εβ+1αa
ν
(x) (Bν(T) − Iν)+ εγ+1αs

ν
(x)

(∫
S2

K(n, n′)Iν dn′ − Iν

)
− εn · ∇xIν

and

ε−κ∂τT + ∂τ

(∫ ∞

0

dν
∫
S2

dn Iν

)
+ εdiv

(∫ ∞

0

dν
∫
S2

dn nIν

)
= 0,

which implies ∂τT = 0 at the leading order. Hence, an initial layer of thickness of order ε1+κ
τh

is appearing
for any choice of �A and �S. This is the so-called initial Milne layer.

(i) If �M = �T � �S, the initial Milne layer is described by⎧⎨
⎩
∂τϕ0(τ , x, n, ν) = αa

ν
(x) (Bν(T0(x)) − ϕ0(τ , x, nν)) if τ > 0

ϕ0(0, x, n, ν) = I0(x, n, ν).
(6.2)

Therefore, as τ → ∞, we obtain using a simple ODE argument lim
τ→∞

ϕ0(τ , x, n, ν) = Bν(T0(x)).

(ii) In the case �M = �T = �S and hence τh = 1
ε

with the scaling t = τε2+κ , we obtain on the one
hand ∂τT = 0 and on the other hand for the first order ϕ0 the identity

∂τϕ0(τ , x, n, ν) = αa
ν
(x) (Bν(T0(x)) − ϕ0(τ , x, nν))

+ αs
ν
(x)

(∫
S2

K(n, n′)ϕ0(τ , x, n′, ν) dn′ − ϕ0(τ , x, n, ν)

)
.

Again, using semigroup theory, we can write the solution as

ϕ0 = e−αa
ν (x)τ

(
e−αs

ν τ (Id−H)I0

) + (
1 − eα

a
ν (x)τ

)
Bν(T0).

Hence, we have once more lim
τ→∞

ϕ0(τ , x, n, ν) = Bν(T0(x)).

(iii) For all cases �M � �T � L, that is, �S = ε and �A = ε−β for β ∈ (−1, 1) and τh = 1
ε
, under the

scaling t = τε2+κ , we have the initial Milne layer equation⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂τϕ0(τ , x, n, ν) = αs
ν
(x)

(∫
S2

K(n, n′)ϕ0(τ , x, n′, ν) dn′ − ϕ0(τ , x, n, ν)

)
τ > 0

∂τT(τ , x) = 0 τ > 0

ϕ0(0, x, n, ν) = I0(x, n, ν)

T(0, x) = T0(x).

(6.3)

This is exactly the same equation as (5.7). Thus, an application of spectral theory implies again
lim
τ→∞ϕ0(τ, x, n, ν) = ϕ(x, ν) =

ffl
S2
I0(x, n, ν)dn.

However, as for the finite speed of light case, there is also a thermalization layer appearing.
Indeed, with a time rescaling t = ε1−β+κτ , the term involving ∂tIν becomes of the same order
as the emission-absorption term according to⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂τ Iν(τ , x, n) + ε−βn · ∇xIν(τ , x, n) = αa
ν
(x) (Bν(T(x)) − Iν(τ , x, n))

+ αs
ν
(x)

ε1+β

(∫
S2

K(n, n′)Iν(τ , x, n′) dn′ − Iν(τ , x, n)

)

1

εκ
∂τT(τ , x) +

(∫ ∞

0

dν
∫
S2

dn ∂τ Iν(τ , x, n)

)
+ ε−βdiv

(∫ ∞

0

dν
∫
S2

dn nIν(τ , x, n)

)
= 0.

(6.4)
Hence, as we have seen in (5.8), the leading order ϕ0 of Iν in (6.4) is isotropic, as well as the term
of order εβ for β ≥ 0. Moreover, once more, the temperature T is just the initial temperature
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T0(x) to the leading order. This yields the initial thermalization layer equation⎧⎨
⎩
∂τϕ0(τ , x, ν) = αa

ν
(x) (Bν(T0(x)) − ϕ0(τ , x, ν)) τ > 0

ϕ0(0, x, ν) = ϕ(x, ν).

Hence, similarly to (6.2), we have lim
τ→∞

ϕ0 = Bν(T0(x)) as τ → ∞.

(iv)+(v) For the cases �M � L � �T , the initial Milne layer equation is obtained again by rescaling the
time variable by t = ε1+κ

τh
τ , and it is given by equation (6.3).

For the boundary layer equations, we argue similarly as in the case c = ∞ and c bounded. Rescaling
the space variable by ξ = − x−p

εα
· np for εα ∈ {�M, �T} and p ∈ ∂�, equation (6.1) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(n · np)∂ξ Iν(t, ξ , n; p) = αa
ν (p +O(εα))

εα

�A

(Bν(T) − Iν)

+ε
α

�S

αs
ν (p +O(εα))

(∫
S2

K(n, n′)Iν dn′ − Iν

)
− εα+κ

τh

∂tIν(t, ξ , n) + ε2α · · · ξ > 0

∂tT(t, ξ ; p) + εκ
(∫ ∞

0

dν
∫
S2

dn∂tIν

)
+ ε−ατhdiv

(∫ ∞

0

dν
∫
S2

dn nIν

)
= 0 ξ > 0

Iν(0, ξ , n; p) = I0(p, n, ν)

T(0, ξ ; p) = T0(p)

Iν(t, 0, n; p) = gν(t, n) n · np < 0.

(6.5)

Therefore, the boundary layers are described by the same stationary equations that we constructed in
Section 3. Indeed, we obtain for �M = �T � �S the Milne problem (3.8) and for �M = �T = �S � L the
Milne problem (3.16). The two boundary layers appearing in the case �M � �T � L are described by
the Milne problem (3.25) and by the thermalization equation (3.30). Finally, if �M � L � �T , the Milne
problems are given by (3.25).

6.3. Limit problems in the bulk

We now summarize the PDE problems which are expected to be solved by the solution of (1.10) when
c = ε−κ , κ > 0 in the limit �M = ε→ 0 for any choice of �A and �S. Matching the solution to the outer
problems valid in the bulk for positive times t> 0 with the solution to the initial layer equations and
boundary layer equations, we obtain as a limit equation exactly the same PDE problems in Section 4.
Indeed, on the one hand, the boundary layer problems are exactly the Milne and thermalization problems
constructed for the stationary problem and are also valid for the time-dependent problem. On the other
hand, in the initial layer equations derived in the previous Subsection 6.2, the temperature is constant;
hence, it is T = T0, the same result that we obtained in the case c = ∞ in Subsection 4.2. Therefore,
since the outer problems coincide in both cases when c = ∞ and c = ε−κ with κ > 0 and ε→ 0, we
conclude as in Section 4 that the limit PDE problems are given by (4.11) if �M = �T � �S, by (4.12) if
�M = �T = �S, by (4.13) if �M � �T � L, by (4.14) if �M � L = �T and finally by (4.15) if �M � L � �T .

6.4. Initial-boundary layers

As in Sections 4 and 5, we will derive the initial-boundary layer equations, which describe the behaviour
of the solutions for very small times and in regions close to the boundary. The initial-boundary layer
equations are obtained by rescaling in a suitable way the space and time variables. Considering equation
(6.5) resulting from the space rescale according to the Milne length or the thermalization length, we
notice that the term involving the time derivative of the radiation intensity has order εα+κ

τh
. Hence, the

initial-boundary Milne layer equation is obtained by the rescaling y = − x−p
ε

· np and t = ε1+κ
τh
τ for p ∈ ∂�.
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In the case �M � �T � L (i.e. when �A = εβ for β ∈ (−1, 1), �S = ε and τh = 1
ε
), the initial-boundary

thermalization equation is obtained by rescaling η= − x−p
�T

· np and t = ε1−β+κ , where �T = ε− 1−β
2 and

p ∈ ∂�.

(i) If �M = �T � �S, rescaling the spatial variable by y = − x−p
ε

· np for p ∈ ∂� and the time variable
by t = ε2+κτ , we see that the initial-boundary layer equation is given by
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂τ Iν(τ , y, n; p) − (n · np)∂yIν(τ , y, n; p) = αa
ν
(p)(Bν(T0(p)) − Iν(τ , y, n; p)) y> 0, τ > 0

Iν(0, y, n; p) = I0(p, n, ν) y> 0, τ > 0

Iν(τ , 0, n; p) = gν(0, n) n · np < 0, τ > 0,

where we used that equation
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

εκ
∂tT(τ , y) + ∂τ

(∫ ∞

0

dν
∫
S2

dn Iν(τ , y, n; p)

)

= ∂y

(∫ ∞

0

dν
∫
S2

dn (n · np)Iν(τ , y, n; p)

)
y> 0, τ > 0

T(0, y; p) = T0(p) y> 0,

(6.6)

implies T(τ , y; p) = T0(p).
(ii) If �M = �T = �S, rescaling the variables according to y = − x−p

ε
· np for p ∈ ∂� and t = ε2+κτ , we

obtain the following initial-boundary layer equation
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂τ Iν(τ , y, n; p) − (n · np)∂yIν(τ , y, n; p) = αa
ν
(p)(Bν(T0(p)) − Iν(τ , y, n; p))

+ αs
ν

(∫
S2

K(n, n′)Iν(τ , y, n′; p) dn′ − Iν(τ , y, n; p)

)
y> 0, τ > 0

Iν(0, y, n; p) = I0(p, n, ν) y> 0

Iν(τ , 0, n; p) = gν(0, n) n · np < 0, τ > 0,

where we used (6.6) again.
(iii) If �M � �T � L, there are again two different initial-boundary layers. We consider first the ther-

malization problem. We hence rescale the space variable according to η= x−p

ε
1−β

2
· np for p ∈ ∂�

and the time variable according to t = εκ+1−βτ . Following the same computations as we did in
Section 4 in equation (4.17) and using a similar argument as in (6.6), we obtain the following
initial-boundary layer equation
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂τϕ0(τ , η, ν; p) − 1

αs
ν
(p)

(∫
�

S2

(n · np)(Id − H)−1(n) · np dn

)
∂2
η
ϕ0(τ , η, ν; p)

= αa
ν
(p) (Bν(T0(p)) − ϕ0(τ , η, ν; p)) η > 0, τ > 0

ϕ0(0, η, ν; p) = ϕ(p, ν) η > 0

ϕ0(τ , 0, ν; p) = I(0, ν; p) p ∈ ∂�, τ > 0,

where I(0, ν; p) = lim
y→∞

Iν(0, y, n; p) for the solution to the Milne problem (3.25) for the boundary
value gν(t, n) and ϕ(p, ν) = lim

τ→∞
ϕ0(τ , p, n, ν) for the solution to (6.3).

As we have seen in Section 5, there is another initial-boundary value equation that describes
the transition from the initial value ϕ(x, ν) to the boundary value I(0, ν; p). This is obtained by
rescaling the space variable according to y = x−p

ε
· np for p ∈ ∂� and the time variable according

https://doi.org/10.1017/S0956792525100168 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525100168


40 E. Demattè and J. J. L. Velázquez

to t = εκ+2τ . Hence, using (6.6), we obtain
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂τ Iν(τ , y, n; p) − (n · np)∂yIν(τ , y, n; p)

= αs
ν

(∫
S2

K(n, n′)Iν(τ , y, n′; p) dn′ − Iν(τ , y, n; p)

)
y> 0, τ > 0

Iν(0, y, n; p) = I0(p, n, ν) y> 0

Iν(τ , 0, n; p) = gν(0, n) n · np < 0, τ > 0.

(iv) In the case �M � �T = L, rescaling η= x−p
ε

· np for p ∈ ∂� and t = ε2+κτ , we also obtain the initial-
boundary layer equation for this case
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂τ Iν(τ , y, n; p) − (n · np)∂yIν(τ , y, n; p)

= αs
ν

(∫
S2

K(n, n′)Iν(τ , y, n′; p) dn′ − Iν(τ , y, n; p)

)
y> 0, τ > 0

Iν(0, y, n; p) = I0(p, n, ν) y> 0

Iν(τ , 0, n; p) = gν(0, n) n · np < 0, τ > 0.

(6.7)

Similar to the case where �T 	 1 and c = 1 in Section 5, we notice that the radiation intensity Iν
has a transition from a solution of a time-dependent equation, as it was in the original problem
(1.10), to a solution of a stationary equation, as it is in (4.14). This transition takes place at times
of order εκ . Indeed, under the time rescaling t = εκτ , we obtain the following equation for the
leading order φ0 of Iν for all x ∈�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂τφ0(τ , x, ν) − div
(

1

αs
ν
(x)

(∫
�

S2

n ⊗ (Id − H)−1 (n) dn

)
∇xφ0(τ , x, ν)

)

= (Bν (T(τ , x))− φ0(τ , x, ν)) x ∈�, τ > 0

∂τT(τ , x) = 0 x ∈�, τ > 0

φ(0, x, ν) = ϕ(x, ν) x ∈�
T(0, x) = T0(x) x ∈�
φ0(τ , p, ν) = lim

y→∞

∫
�

S2

Iν(0, y, n, p) p ∈ ∂�, τ > 0,

(6.8)

where Iν(0, y, n, p) solves the Milne problem (3.25) for the boundary value gν(0, n), and we used
the notation ϕ(x, ν) = lim

τ→∞
ϕ0(τ , x, n, ν) for the solution to (6.3). In order to derive equation (6.8),

we notice that under the time rescale t = εκτ , the term in the first equation of (1.10) containing
∂τ Iν becomes of order ε0 as the absorption-emission term. This implies the first equation in (6.8)
as we did in Section 5 for (5.1). On the other hand, in the second equation of (6.8), the leading
term is ∂τT of order ε−κ 	 ε0.

(v) Finally, if �M � L � �T , the initial-boundary layer equation is again (6.7). Also, for this last case,
we notice that the leading order φ0 of Iν , which solves a time-dependent equation (1.10), solves in
the limit a stationary equation (4.15). The transition from time-dependent solution to stationary
solution takes place at times of order εβ−1+κ . Under the time rescale t = εβ−1+κτ , we derive, in the
same way as for equation (5.14), the equation solved by φ0 in the bulk describing this transition.
It turns out that it is exactly given by (5.14) for the initial condition φ(0, x, ν) = ϕ(x, ν) given by
the solution to (6.3).
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7. Concluding remarks

In this paper, we considered the problem of describing the temperature distribution in a body where the
heat is transported only by radiation. We considered the case where the mean free path of the radiative
process tends to zero, that is, �M → 0. Therefore, we coupled the radiative transfer equation (1.1) with
the energy balance equation (1.2), and we studied the diffusion approximation for the time-dependent
equations (1.10) and (1.11) and the stationary equation (1.12).

For all different scaling limit regimes, using the method of asymptotic expansions, we derived the full
limit models describing the temperature of the body and the radiation intensity. The resulting models
have been classified depending on the form of the radiation intensity at the leading order in the bulk of
the domain. The cases where the isotropic leading order of the radiation intensity is given by the Planck
distribution for the temperature yield the equilibrium diffusion approximation, while the models in which
the radiation intensity is not approximated by the Planck distribution are denoted by non-equilibrium
diffusion approximation. Notice that the diffusion approximation is valid only in the bulk of the domain
� where the leading order of the radiation intensity is isotropic. On the other hand, at the boundary
layers and at the initial layers, the diffusion approximation fails. We also described for each considered
case the boundary and initial layers appearing. Moreover, a summary of the available results about the
diffusion approximation and the boundary layer problems for similar settings is included. Many of the
derived problems in this article still need to be studied.

For the time-dependent problem, we studied three different cases. First, we analysed the problem
for the speed of light assumed to be c = ∞, that is, when the transport of radiation can be assumed to
be instantaneous. We then considered the case where the speed of light is of order 1, that is, when the
time used by the light for spanning distances of order 1 is of the same order as the time needed by the
temperature for having meaningful changes. Finally, we studied the case where the speed of light scales
as a power law of the Milne length, that is, c = ε−κ for κ > 0 and �M = ε.

7.1. A numerical simulation showing the Milne layer

We have not attempted in this paper to do systematic numerical simulations of all the asymptotic regimes
considered in these pages. However, we have computed a particular example. This corresponds to a
stationary one-dimensional problem for which scattering and absorption lengths are comparable, the
scattering kernel is constant and the scattering and absorption coefficients are constant, that is, the
so-called grey approximation. In this case, the problem is equivalent to a one-speed neutron transport
equation (cf. equation (1.13)), and it is given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n∂xJ(x, n) = 1

ε

(
1

2

∫ 1

−1

J(x, n′) dn′ − J(x, n)

)
x ∈ (0, 1), n ∈ [ − 1, 1],

J(0, n) = n n> 0,

J(1, n) = 0 n< 0,

(7.1)

where J(x, n) = ∫ ∞
0

Iν(x, n) dν. Problem (7.1) can be solved numerically by discretizing both variables
x and n and using an upwind scheme in order to approximate the transport term. For more details on the
problem and on the numerical scheme, we refer to Appendix B.

The numerical result exhibits the expected behaviour, that is, the onset of a Milne layer close to the
boundary x = 0 in which J(x, n) becomes isotropic. Moreover, in the bulk of the domain, J(x, n) is linear,
solving the Laplace equation. This is due to the fact that in this region, the diffusion approximation holds.
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Appendix A. Proof of Proposition 2.1
We prove now Proposition 2.1. To this end, we need the following auxiliary Lemma.

Lemma A.1. Let K ∈ C
(
S2 × S2

)
, invariant under rotations, non-negative and satisfying∫

S2

K(n, n′)dn = 1.

Let n,ω ∈ S2. Then there exists finitely many n1, · · · , nN ∈ S2 such that

K(ni−1, ni)> 0 for all i ∈ {1, · · · , N + 1}, (A.1)

where we defined n0 = n and nN+1 =ω.

Proof. Since K ≥ 0 but it is not equal zero, there exists a pair n′, n′′ ∈ S2 such that K(n′, n′′)> 0. Hence,
applying the rotation Rn,n′ yields the existence of n∗ such that K(n, n∗)> 0. By continuity, the set Bn =
{ñ ∈ S2:K(n, ñ)> 0} is open. Hence, there exists δ > 0 and n1 ∈ S2 such that Bδ(n1) ⊂ Bn. We remark that
δ > 0 is independent of the choice of n ∈ S2. Indeed, for any n′ ∈ S2, there exists some n′′ ∈ S2 such that
Bδ(n′′) ⊂ Bn′ . This is a consequence of the invariance under rotations of K. Indeed, it is not difficult to
see that Rn,n′(Bn) = Bn′ and so Rn,n′(Bδ(n1)) = Bδ(Rn,n′(n1)) ⊂ Bn′ .

Let us consider the set

An = {ñ ∈ S2: there exists n1, · · · , nN ∈ S2 such that (A.1) holds for n0 = n and nN+1 = ñ}.
By the previous consideration, we know that An is not empty. We claim now that Bδ(n′) ⊂ An for any
n′ ∈ An. Indeed, let δ > 0 as above. Since n′ ∈ An, then Bn′ is not empty, and there exists some n1 ∈ S2

such that Bδ(n1) ⊂ Bn′ . It is easy to see that n1 ∈ An. Let now ñ ∈ Bδ(n′), then Rn′ ,n1 (ñ) ∈ Bδ(n1). Hence,
K(n′, Rn′ ,n1 (ñ)) = K(n1, ñ)> 0. Since also K(n′, n1)> 0, we conclude that Bδ(n′) ⊂ An for all n′ ∈ An.
Hence, An is open, and it is the whole sphere S2. Indeed, assume An �= S2. Then, since An is open, the
boundary ∂An = An \ An is not empty. Let n∗ ∈ ∂An and let n0 ∈ An with d(n∗, n0)< δ

3
, where d(n∗, n0) is

the distance on S2 between the two points n∗, n0 ∈ S2. Since n∗ ∈ ∂An, it is true that

B δ
3
(n∗) ∩ An �= ∅ and B δ

3
(n∗) ∩ Ac

n �= ∅.

On the other hand, we know that Bδ(n0) ⊂ An and therefore

B δ
3
(n∗) ⊂ B δ

2
(n∗) ⊂ Bδ(n0) ⊂ An.

This contradiction concludes the proof of Lemma A.1.

Proof of Proposition 2.1. We first show that ϕ is continuous. Let ε > 0. By the continuity of the kernel
K, there exists some δ > 0 such that

∣∣K(n1, n′
1) − K(n2, n′

2)
∣∣< ε

4π‖ϕ‖∞

for all n1, n2, n′
1, n′

2 ∈ S2 with d(n1, n2) + d(n′
1, n′

2)< δ. Let hence n1, n2 ∈ S2 with d(n1, n2)< δ, then it is
easy to see that ϕ is continuous since

|ϕ(n1) − ϕ(n2)| = |H[ϕ](n1) − H[ϕ](n2)|

≤
∫
S2

∣∣K(n1, n′) − K(n2, n′)
∣∣ |ϕ(n′)| dn′ < ε.

We move now to the proof of claim (ii). Let M = maxn∈S2 (ϕ(n)). By continuity, there exists some
n∗ ∈ S2 such that M = ϕ(n∗). We define the set AM = {

n ∈ S2: ϕ(n) = M
}
. Thus, AM is not empty, and by

continuity, it is also closed. We claim that AM is also open, which implies claim (ii). Let n ∈ AM. Consider
Bn = {ñ ∈ S2:K(n, ñ)> 0}. Let ε > 0 and Bε

n = {ñ ∈ Bn:ϕ(ñ)<M − ε}. We show ϕ(ñ) = M for all ñ ∈ Bn.
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It is easy to see that this is true if Bε
n = ∅ for all ε > 0. If not, let ε > 0 so that Bε

n �= ∅. Then

M = ϕ(n) =
∫

Bεn

K(n, n′)ϕ(n′)dn′ +
∫
(Bεn)

c
K(n, n′)ϕ(n′)dn′ <M − ε

∫
Bεn

K(n, n′)dn′ <M.

Arguing as in the proof of Lemma A.1, there exists a δ > 0 such that Bδ(n0) ⊂ Bn for some n0 ∈ Bn.
Hence, using the same argument, since n0 ∈ AM, it is also true that ϕ(ñ) = M for all ñ ∈ Bn0 . Using the
rotation invariance of the kernel analogously as we have done in Lemma A.1, we see that

Rn,n0 (Bδ(n0))= Bδ(n) ⊂Rn,n0 (Bn) = Bn0 ⊂ AM.

We have just proved that the closed non-empty set AM is open, and hence, it must be the whole
sphere S2.

Finally, we prove claim (iii). To this end, we notice that the linear operator H maps Lp-functions to
continuous bounded functions. Analogously as in the proof of (i), this is a direct consequence of the
Hölder inequality and the fact that the scattering kernel K is continuous. Hence, (Id − H)1:L1(S2) →
L1(S2) given by (Id − H)1ϕ = ϕ − H[ϕ] is a well-defined operator, which maps integrable functions to
integrable functions. Since H[ϕ] ∈ C(S2) for any ϕ ∈ L1(S2), if (Id − H)1ϕ = 0, then (ii) also applies and
hence ϕ = const. This means that the null space of (Id − H)1 as an operator acting on L1(S2) is given by

N ((Id − H)1)= span〈1〉 = {f = c: c ∈R}.
It is not difficult to see that the dual operator (Id − H)∗

1:L∞(S2) → L∞(S2) is exactly given by (Id − H).
Indeed, let f ∈ L1(S2) and g ∈ L∞(S2). We compute using the invariance under rotations of the kernel K

∫
S2

dn g(Id − H)1[f ] =
∫
S2

dn g(n)f (n) −
∫
S2

dn
∫
S2

dn′ K(n, n′)g(n)f (n′)

=
∫
S2

dn g(n)f (n) −
∫
S2

dn′
∫
S2

dn K(n′, n)g(n)f (n′) =
∫
S2

dn (Id − H)[g]f .

Therefore, by the orthogonality of the null space to the range of the dual operator, we conclude

Ran(Id − H) =
{
ϕ ∈ L∞(S2):

∫
S2

ϕ(n)f (n) dn = 0 ∀f ∈N ((Id − H)1)

}

=
{
ϕ ∈ L∞(S2):

∫
S2

ϕ(n) dn = 0

}
.

Appendix B Details of the numerical simulation
In Section 7.1, we presented a numerical result for problem (7.1). We now explain the derivation of
(7.1) from the stationary problem (1.12), and we present the discretization used in order to solve this
problem numerically. For more details about the code, we refer to [15]. First of all, we assume αa

ν
=

αs
ν
= 1

2
; moreover, we set �A = �S = ε, and we consider the case of a constant scattering kernel, namely,

K(n, n′) = 1
4π

.
We also consider the domain [0, 1] ×R2, and we assume that the radiation intensity depends only

on the spatial coordinate x1 and on the angle between n ∈ S2 and e1. Thus, Iν(x, n) = Iν(x1, n1) solves the
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Figure 2. Plot of the approximate solution to the problem (7.1), cf. [15]. The blue line represents
J(x, −0.7), the orange line J(x, −0.2), the green line J(x, 0.15) and finally the red line J(x, 0.86). The
grey dashed line is x = 0.04 and shows the thickness of the Milne layer, which is, as expected, of the
same order of �M = ε= 0.01.

one-dimensional problem
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

n1∂x1 Iν(x1, n1) = 1

2ε

[
Bν(T(x1)) + 1

2

∫ 1

−1

Iν(x1, n′
1) dn′

1 − 2Iν(x1, n1)

]
x1 ∈ (0, 1), n1 ∈ [ − 1, 1]

∂x1

∫ ∞

0

∫ 1

−1

n1Iν(x1, n1) dn1 dν = 0 x1 ∈ (0, 1), n1 ∈ [ − 1, 1]

Iν(0, n1) = n1e−ν n1 > 0

Iν(1, n1) = 0 n1 < 0,

where we chose as boundary condition at x = 0 an anisotropic function and at x = 1 an isotropic function.
Denoting by (x, n) the coordinates (x1, n1), defining the function J(x, n) = ∫ ∞

0
Iν(x, n) dν , using the

divergence-free condition for the flux of radiation and the isotropy of the Planck distribution, we obtain

2
∫ ∞

0

Bν(T(x)) dν =
∫ 1

−1

J(x, n) dn.

This implies that J(x, n) solves (7.1), which is then discretized as follows. Let N > 0. Then, for
i, j ∈ {0, . . . , 2N − 1}, we define the grid

xi = 1 + 2i

4N
∈ (0, 1) and nj = 1 + 2j

2N
− 1 ∈ (−1, 1).
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Hence, according to the upwind scheme, we have to solve the following system of linear equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2Nnj

[
J(xi+1, nj) − J(xi, nj)

] − 1

ε

[
1

2N

∑2N−1
k=0 J(xi, nk) − J(xi, nj)

]
= 0 j<N, i �= 2N − 1,

2Nnj

[
J(xi, nj) − J(xi−1, nj)

] − 1

ε

[
1

2N

∑2N−1
k=0 J(xi, nk) − J(xi, nj)

]
= 0 j ≥ N, i �= 0,

−4NnjJ(x2N−1, nj) − 1

ε

[
1

2N

∑2N−1
k=0 J(x2N−1, nk) − J(x2N−1, nj)

]
= 0 j<N, i = 2N − 1,

4Nnj

[
J(x0, nj) − nj

] − 1

ε

[
1

2N

∑2N−1
k=0 J(x0, nk) − J(x0, nj)

]
= 0 j ≥ N, i = 0,

where we used xi+1 − xi = 1
2N

, nj+1 − nj = 1
N

and the considered boundary conditions. The results
represented in Figure 2 were obtained by solving this system with Python for N = 70 and ε= 0.01 and
plotting the results obtained for j ∈ {20, 55, 80, 130}. Finally, we remark that we observe the formation
of a Milne layer only close to x = 0 since the boundary condition at x = 1 is already isotropic.
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