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SUMMARY

The types of equilibria possible with an inversion in a two-locus system
are considered, and their stability properties investigated. With complete
suppression of crossing-over in inversion heterozygotes, there are three
possible types of stable equilibria; which of these is reached by a new
inversion depends on the fitness effects of the two loci concerned. With one
of these equilibria, basically involving cumulative overdominance of the
selected loci, the inverted and standard sequences are genetically homo-
geneous and differ with respect to both loci. With the other types of equi-
librium, the standard sequence remains heterogeneous for one or both loci.
Itisshown that this situation may lead to variations in karyotypic fitnesses
when the inversion is changing in frequency. It is also found that, with
certain fitness relationships, two alternative stable equilibria may coexist;
the final frequency reached by an inversion may therefore depend on the
population’s history.

The effects of double crossing-over in inversion heterozygotes were also
investigated, and it was shown that the equilibria with double crossing-
over are closely related to the corresponding equilibria without it, except
that both sequences are more ‘heterogeneous genetically. Within each
sequence there is almost complete linkage equilibrium between the
selected loci, although both are in linkage disequilibrium with the inver-
sionitself. It was also found that, with double crossing-over, the population
tends to remain for many thousands of generations in a state of quasi-
equilibrium. In this state, the inversion tends not to return to its original
frequency after a perturbation; also, it may remain for a long time
relatively homogeneous genetically, especially when rare.

These results were compared with those from experiments and observa-
tions on inversion polymorphisms.

I. INTRODUCTION

Fisher (1930) suggested that natural selection favours an increase in the degree
of linkage between two polymorphic loci maintained heterozygous by interactive
selection. He did not develop any detailed model, but later work by many geneticists
has largely substantiated this idea and clarified the conditious under which reduc-
tion in crossing-over will be favoured in multi-locus systems. The work of Feldman
(1972) is especially noteworthy in this respect. He considered the fate of a genic
modifier of crossing-over, introduced at alow frequency into a population at a stable
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equilibrium with two loci heterozygous. Only modifiers reducing crossing-over can
spread; there will be selection for such modifiers if, and only if, the original two-
locus polymorphism is such that the gamete frequencies deviate from those expected
on the basis of random combination of alleles (i.e. if there is linkage disequilibrium).
A similar conclusion was reached by Charlesworth & Charlesworth (1973) for the
case of a new inversion in a multi-locus system near equilibrium: the inversion will
spread if introduced into a gamete whose marginal fitness is higher than the popula-
tion mean fitness. This is possible only if there is linkage disequilibrium.

The conditions for the spread of a gene reducing crossing-over, or an inversion,
are thus fairly clear; the final state attained by the population is not so clear.
Feldman’s work suggests that a dominant or semi-dominant modifier gene will
usually spread through the population; the fate of an inversion or a gene which
completely suppresses crossing-over when heterozygous will depend on the gene-
content of the gamete in which it occurs initially, on the nature of the fitness inter-
actions between the loci concerned, and on the genetic make-up of the population
into which it is introduced.

The problem of the nature of the equilibrium attained by an inversion has been
examined previously by Haldane (1957), Turner (1970) and Deakin (1972). Haldane
assumed that the inversion would completely replace the standard sequence with
the same gene content; Turner pointed out that this is not necessarily the case.
Deakin made a more thorough-going analysis of the equilibrium states possible for
an inversion in a two-locus genetic system, and showed that several different types
of equilibria are possible. He did not, however, discuss the stability of these equi-
libria, and therelationship of this to the nature of the fitnessinteractions between the
two loci involved. This is the problem with which I shall be concerned in this paper.

I will discuss the conditions for the existence and local stability of the various
possible types of inversion polymorphism, and try to relate these to the conditions
for the maintenance of the various types of two-locus polymorphisms in the absence
of inversions. In this way, it is possible to build up a fairly complete picture of the
fate of an inversion introduced into a two-locus system, especially with low amounts
of recombination. I will pay particular attention to the symmetric fitness model
studied by Bodmer & Felsenstein (1967) and Karlin & Feldman (1970), because of
the resulting algebraic simplication. I will also consider the effects of double
crossing-over on the equilibrium attained by an inversion. An infinitely large ran-
dom mating population with discrete generations and constant genotypic fitnesses
will be assumed.

2. THE BASIC MODEL

I shall be concerned with a genetic system consisting of two loci, each with two
alleles (4, a and B, b). There will be four gametic types in such a system: 4B, 4b,
aB and ab. Let the frequencies of these in a given generation be z,, ,, z; and z,
respectively. I will also consider an inversion introduced into an 4B gamete, with
which it remains associated indefinitely (I assume that the inversion completely
suppresses crossing-over). The inversion-carrying gametes can be represented as BA,
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with frequency y. The total frequency of gametes containing genes 4 and B is
z = 2, +y. The inversion is also assumed to have no direct effect on the fitness of its
carriers, so that the fitnesses of BA genotypes are the same as for the corresponding
AB genotypes. Let the relative fitness of the genotype formed from the gametes
with frequencies x; and z; be w;;. Note that w;; = w;;, and w,4 = w3 (in the absence
of position effects on fitness). The marginal fitness for the gamete with frequency z;
is defined as 4

w;, = j;lxjwij‘*‘ywu- (1)

The mean fitness of the population, %, is given by

4
w= .Elxiwi.'*'ywl.' (2)
1=

Let the recombination fraction for the pair of loci 4 and B be R. If we define
a linkage disequilibrium parameter as D = z;x,—%,%;, we obtain the following
expressions for the gamete frequencies in the next generation, y’, xz;, etc.:

?y "=y, } (3)
wry = z;w,; + RDw,,,
where the sign of RDw,, is positive for ¢ = 2 and 3, and otherwise negative.
These expressions follow directly by straightforward modification of the standard
equations of two-locus systems (Lewontin & Kojima, 1960).
The equilibrium frequencies of the five types of gametes (§, £,, etc.) must therefore
satisfy the following equations:
ﬁg = i, , ’
8, = 2,0, + Rﬁwm} )
As discussed by Deakin (1972), it is easy to determine the nature of the possible
equilibria with BA present (1 > § > 0). It follows from the first of equations (4)
that % = ®, . This in turn implies that D = 0. This situation can arise in five
different ways:
(i) 2, =2, =2, = 0. This is an equilibrium with only B4, or with B4 and 4B,
which can be symbolized as BA[AB.
(ii) 2, =%, = 23 = 0. This equilibrium has only B4 and ab present (B4 /ab).
(iii) 2, = 2; = 0. Only BA, Ab and ab are present (BA/Ab/ab). There is also an
analogous equilibrium of type BA/aB/ab.
(iv) 23 =2,= 0. Only BA, AB and Ab are present (BA[AB/Ab). There is an
analogous equilibrium BA/4BfaB.
(V) 2y, 2y, 23, 2, > 0. All gametic types are present (BA/AB[AbjaB/[ab).
Equilibria (i) and (iv) are peculiar in that the relative frequencies of B4 and AB
are indeterminate; the inversion is not strictly maintained by selection in these
cases, and they are thus unlikely to be of any great biological importance. The possi-
bility that a new inversion may reach one of these equilibria cannot be excluded
a priori, however.
I shall now discuss the conditions for the existence and stability of these
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equilibria, with special reference to the symmetric fitness model of Table 1, intro-
duced by Bodmer & Felsenstein (1967), and whose properties have been extensively
analysed by them and by Karlin & Feldman (1970).

Table 1. The symmetric fitness model

AA Aa aa
BB 1-6 1-45 1—a
Bb 1—vy 1 1—y
bb 1—a 1-4 1-6

3. ANALYSIS OF THE EQUILIBRIA
(i) The general fitness model with small R

In addition to knowing the conditions for existence and local stability of the
inversion equilibria just deseribed, it is of great interest to know which of them can
be reached from the various possible types of two-locus polymorphisms lacking an
inversion. For small R, it is possible to obtain a fairly complete analysis of this
problem, which I shall give below before turning to a consideration of the stability
conditions with arbitrary R. The argument can be divided into four stages.

(1) Let us first consider the conditions for the existence and stability of the
two-locus equilibria in which a new B4 inversion will be selected. E will be assumed
to be small. It was shown by Charlesworth & Charlesworth (1973) that a new BA
inversion will spread (when introduced into a population at or near a stable two-
locus polymorphism) if and only if the population is in linkage disequilibrium with
AB and ab present in excess of their frequencies under random combination. For
small R, the conditions for the existence and stability of such equilibria can be
determined by considering the effects of small amounts of recombination on the
possible stable equilibria which can exist with B = 0. Using the type of argument
formalized by Karlin & McGregor (1972), all the stable equilibria with small R have
a one-to-one correspondence with neighbouring £ = 0 (multipleallele) equilibria: the
conditions for existence and stability in terms of the w,; are the same in both cases.

The following types of equilibrium with 4.8 and ab in excess of random combina-
tion are possible with low values of R:

(@) An equilibrium with 4B and ab predominating. This equilibrium is generated
from the AB/ab equilibrium with R = 0, by allowing a small amount of recom-
bination.

(b) A pair of equilibria generated from the 4B/Abjab and ABJaB[ab equilibria
with B = 0. Here, aB or Ab has a low frequency.

(¢) An equilibrium generated from the B = 0 equilibrium with all four gametes
present. If D > 0 in the R = 0 equilibrium, it will be positive for small R. This
follows by continuity.

From standard multiple allele theory, it follows that astable equilibrium of type (@)
is mutually exclusive with stable equilibria of types (b) and (c); two stable equilibria
of type (b) may coexist, but are incompatible with a stable type (c) equilibrium.
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(2) Having established the nature of the possible types of two-locus equilibria
which favour the spread of a new BA inversion, we may now consider the conditions
for existence of equilibria with B4 present. In equations (4), D = 0. The frequencies
2, 2,, 2, and 2, are thus identical to the frequencies 2, Z,, etc., in the analogous
two-locus equilibrium lacking B4, with R = 0 and the same set of fitnesses. I shall
refer to this equilibrium as the ‘associated’ R = 0 two-locus equilibrium. The
BAJAB equilibrium is thus associated with a population fixed for 4B, the B4 /ab
equilibrium with an 4 B/ab equilibrium, and so on. It should be noted that an equi-
librium with all four standard sequence gametes plus the inversion can exist if and
only if the associated R = 0 two-locus equilibrium has D > 0. This is because the
inversion equilibrium requires £, 2, — 2,2; = 0, and %, here is necessarily lower than
in the B = 0 two-locus equilibrium.

(3) The stability of the inversion equilibria can, with small R, be determined by
consideration of the properties of the associated B = 0 equilibria. The argument is
as follows. I will first consider the equilibrium where 4b, a.B and ab are each present,
and then indicate how the other cases can be treated. The stability properties can
be studied in the standard way, by considering the eigenvalues of the matrix of
partial differential coefficients of the functions y’, 2, 3, z; and z,, with respect to
the variables y, z, x,, etc., evaluated at the equilibrium point. Let this matrix be B.
Let b be a column vector with elements b, —b, —b and b (b = R2,w,,/i), and ¢’ be
a row vector with elements w,, /@, w,,/% ... w,,/%. Then we have

5 (1 5

where the elements of the 4 x 4 matrix A* are equal to those of the matrix A which
describes the stability behaviour of the associated R = 0 two-locus equilibrium,
plus terms of order R. Note that a;; = 1+w;;/w and ay; = wylw (5 + j).

The characteristic equation of B is thus

det (B — AI) = (1—A)det (A* — AI)—b (det, + det, —det; — det,) = 0, (6)

where
an—1 a, Qi3 Gy
* * * *
det, = | % app—A  ay 0O ,
an—1 @, agp Q14
% * * *
ai—A @ a a
det, = | X s . ete.
as1 Ay Gg3— A Qg

When R = 0, B has one eigenvalue equal to 1, and the others equal to those of A.
Clearly, if A has eigenvalues greater than one in absolute value, then (for small R)
the same will hold for A* and B, so that the inversion equilibrium will be unstable.
If A has all its eigenvalues less than 1, then for small R the system with the inversion
will be stable provided that the differential coefficient of A with respect to R is
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negative at the point B = 0, A = 1. This is always the case, as is demonstrated
below.
Using the rule for the differentiation of an implicit function, equation (6) gives:

9X _ _ 2det(B—2I) [2det (B —Al)
2R~ oR / -

We obtain (after some reduction):

(?E)f:{F -t @

This proves what is required: the stability properties of the inversion equili-
brium with small B are the same as those of the associated R = 0 two-locus
equilibrium.

When one or more of gametes Ab, aB and ab are absent at equilibrium, it is obvious
that (when R is small) the population is stable against the introduction of the absent
gametes only if the associated B = 0 two-locus equilibrium is also stable. If this is
the case, the gamete or gametes concerned will eventually be eliminated from both
classes of population, and it is thus sufficient to consider the stability properties of
the system in their absence. This can be done by removing from matrix B the rows
and columns corresponding to the absent gametes. The above argument is other-
wise unchanged, and leads to the same coneclusion.

(4) We have seen that, for small R, the inversion equilibria have the same exist-
ence and stability conditions as the associated B = 0 two-locus equilibria. Also (see
point (1)), with small R certain of these R = 0 equilibria generate stable two-locus
polymorphisms which favour the spread of a new B4 inversion. From what has been
said under the earlier points, those equilibria where the inversion frequency is stable
under selection (equilibria of types (ii), (iii) or (v)) are associated with stable two-
locus polymorphisms (equilibria (a), (b), and (¢) respectively, of point (1)), favouring
the spread of B4, whereas equilibria of types (i) and (iv) are not. This suggests
strongly that, with small R, the only type of equilibrium which can be reached by
anew BA inversion occurring in a population with a stable two-locus equilibrium is
that which is associated in the above sense with the two-locus polymorphism con-
cerned —a BA/ab polymorphism will be reached from a type (a) two-locus poly-
morphism, a BA[Abjab polymorphism from a type (b) population, and
BA|AB[AblaB[ab from type (c). This conclusion is borne out by all the numerical
examples which I have studied. The other types of inversion equilibria seem
unlikely to be reached, except when genetic drift is effective in changing gamete
frequencies.

I will now consider in turn each of the five possible equilibria with respect to the
conditions for their existence and local stability properties with arbitrary R.
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(ii) Local stability behaviour of the inversion polymorphisms

L with arbitrary R
BA|AB equilibrium

It is obvious that the frequencies of BA and A B are not affected by selection, in

the absence of the other types of gamete. It is possible, however, that a population
may reach this type of equilibrium from nearby points, so that it is worth deter-
mining its stability to the introduction of 4b, aB and ab at small frequencies. If the
linearized recurrence relations for the system are written out, it can be shown that
the system is stable if and only if:
> wi(1—2R) wy, wy

T A (8)

Wi Wy Wy

1

It is easy to see from this expression that equilibria with the inversion present are
stable to the introduction of 4, aB and ab only when the equilibrium with 4 B only
present is stable (2,=1), and may be unstable (when 2, is low enough) even if
this equilibrium is stable. As discussed above, with small R it is unlikely that this
type of equilibrium will be reached by an inversion introduced into a population
with a stable two-locus polymorphism but it is just coneeivable that this could
happen with large R. This type of equilibrium is therefore of little importance, and
certainly cannot correspond to any of the observed cases of inversion poly-
morphisms stabilized by selection.

BA/ab equilibrium

This case has previously been discussed by Haldane (1957). It is obvious that, for
this polymorphism to exist and be stable, homozygotes for AB and ab must have
lower fitnesses than A Bfab, i.e. w,;, w,y < w,,. In the case of the symmetric fitness
model, this means ¢ > 0. The stability of this equilibrium, against the introduction
of gametes AB, Ab and aB at low frequencies can be tested in the standard way.
We find that the system is unstable if either

Gwip +Bywyy > TZ’:} (9)
or Jwia+ Bywey > w.

If the converse inequalities hold, the system is stable, provided that w,,, ws, < wy,.
These conditions are identical with those derived by Haldane (1957), who only con-
sidered the effects of the introduction of Ab or aB singly, however.

These conditions have been fully discussed by Haldane. With the symmetric
fitness model, they reduce to y+ 8 > 8, i.e. the effect on fitness of making both
A4 and B homozygous is less than the sum of the effects of making each homozygous
on its own.

The conditions w,,, w,, < w,, and the converse of inequalities (9) correspond to
the conditions for the equilibrium 4B/ab to be stable with R = 0. As discussed
earlier, this implies that for small R there will be a single stable two-locus equilibrium
favouring the spread of a B4 inversion introduced at a low frequency, and that such
an inversion will end up at the BA/ab equilibrium. Numerical examples support
this, and suggest that it may often be true with high values of R as well.
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BA[Abjab equilibrium

The analysis of the conditions for the existence and local stability of this equi-
librium is set out in Appendix (@). For the symmetric fitness model, the conclusions
can be expressed in a relatively simple form, as follows: there will be a locally stable
equilibrium of this sort if and only if

0< 8>13+y7 ﬁ”y <a, ﬂ[a_(ﬂ—)’)] < 031

Y-(r—p1 <0, ad<(B-yr. |

These conditions can be only satisfied when either § and y are opposite in sign, or
when «, £ and y are all negative. This implies that this type of equilibrium can be
stable only when the double heterozygote is not the fittest possible genotype,
i.e. when at least one of the genes shows underdominance when the other is
heterozygous.

Returning to the general fitnesses case, it has already been shown that a stable
equilibrium of this type is associated (for small R) with a stable two-locus poly-
morphism favouring the spread of a new B4 inversion, and located near the
AB|Abjab equilibrium. The only other such two-locus polymorphism which is
possible under these circumstances is one near the A BJaB/ab equilibrium, which is
agsociated with a BA [aB/ab inversion equilibrium. This suggests that, with small R,
this type of inversion equilibrium will be reached when B4 gametes are introduced
into a population at or near the associated two-locus equilibrium.

It should be noted that, since the conditions for the existence of a stable inversion
polymorphism of this type are independent of R, such a stable inversion equilibrium
may eXxist even when the associated two-locus polymorphism is unstable or non-
existent because R is too large. An inversion can only arrive at this equilibrium in
such a case from a population which is initially not in equilibrium.

(10)

BA|aBlab equilibrium

This can be analysed in the same way as the BA/Ab/ab case, with suitable changes
in the relevant fitness parameters. With the symmetric fitness model, it is easy to
see that the existence and stability criteria are the same as for the BA4/Abjab
equilibrium, except that # and 7y are interchanged in the equations for the equi-
librium gamete frequencies. In this case, therefore, the inversion equilibrium and
its associated two-locus polymorphism will co-exist with the corresponding
BA[Ab/ab equilibrium and its associated two-locus polymorphism. The fate of a B4
gamete introduced into a population will therefore depend on which two-locus
equilibrium the population is situated at.

Numerical examples of these types of equilibria were investigated. Using a
symmetric fitness model with & = 0-5, # = 0-25, y = —0-15 and & = 0-30, it was
found that the two-locus equilibria lacking the inversion were stable provided that
R < 0-021. For E = 0-020, there was a selection coefficient of 0-001 (calculated by
the method of Charlesworth & Charlesworth (1973)) for aninversion introduced into
an AB gamete in the AB[Ab/ab equilibrium population. There was rather stronger
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selection (0-009) for an inversion in the 4 BfaB/ab population, although the final
frequency of the inversion was only 0-09 as compared with 0-56 in the former.

BA|AB|Ab and BA[AB/|aB equilibria

Reasons have been given earlier for regarding these equilibria as being of little
biological interest. As with the B4 /A B type of equilibrium, it is possible that these
equilibria could be reached from nearby points, so that it is worth discussing their
stability to the introduction of the other gametic types. We need only consider the
BA[AB|ADb equilibrium in detail. Let @5 = 2w, 3+ 2,w,, be the marginal fitness of
newly-introduced a.B gametes, and @, = 2w, + Z,w,, be the same for ab. Following
the method of analysis of Bodmer & Felsenstein (1967) for the stability of similar
equilibria in two-locus systems, it is easy to show that the population will be stable
to the introduction of 4b and ab if @, , @, < w, and unstable if ¥, ,®, > w. If
3 > w > M, or vice-versa, the equilibrium will be unstable only if

R{i— (8,0 +8,0, )] < (g, —) (W10, ). (11)

This may be compared with the corresponding expression for the equilibrium
AB[Ab, where £, is necessarily larger than when BA is present, but the other
quantities have the same values. It is therefore possible for the equilibrium A4 B/4b
to be unstable while the BA/AB|Ab equilibrium is stable, for £, small enough and
Rlarge enough. If the two-locus equilibrium is stable, then the inversion equilibrium
will be stable also.

In the case @, ,®, < %, AB/Abis stable; in the converse case, it is unstable.

These results imply that an inversion may be attracted to a BA/AB[Ab type
equilibrium if random events, or the population’s history, have carried gamete
frequencies to a suitable point in its neighbourhood.

BA[AB|AbjaB|ab equilibrium _

For small R, the arguments developed previously demonstrate that this equi-
librium will exist and be stable under the same fitness conditions as must be satisfied
by the 4-allele system made up of alleles corresponding to B4 + AB, Ab, aB and ab.
If these conditions are satisfied, there will be an associated two-locus stable equi-
librium, with linkage disequilibrium in favour of 4B.

For large R, the existence of this inversion equilibrium is unaffected, but the
stability properties may be. Unfortunately, I have been unable to obtain a complete
stability analysis. A useful necessary condition can, however, be derived for the
symmetric fitness case. I shall now consider this case in detail.

The equilibrium frequencies of the gametes follow from the two-locus equilibrium
frequencies with R = 0. With the symmetric fitness model, the gene frequencies of
A and B must both be }, and the gamete frequencies such that 2 = 2, and 2, = 25.
Equation (7) of Bodmer & Felsenstein (1967) shows that the equilibrium value of
£ = zx,— 2,2, is given by the expression

641£3 — 16mE2 — 4lE +m + 0, (12)
where l = 2(f+y)—(a+d)and m = 8§ — .
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Equation (12) has solutions £ = + 1 and (provided [ 4 0) £ = m/4l. We are only
interested in the second type of equilibrium, since the £ = } case corresponds to the
BA[ab equilibrium already considered, and £ = — } corresponds to 2 =2, = 0.
Noting that 2 =2, = }+£, we can use the relation 2,2, = 2,2; to obtain the
equilibrium frequencies:

§ =m[(l+m),

8, = (1—m)al(l +m),
By =23 = (l—m)/4,

By = (I +m)/4l.

It can be shown that the only possible sets of selection coefficients which are
compatible with these relations, and with § > 0, are those with & < é < f#+7 or
a>6>f+7y.

The stability of this type of equilibrium can, in prineiple, be tested in the standard
way by determining the eigenvalues of the linearized system. Unfortunately, this
leads to a quartic equation. A necessary condition for stability for arbitrary R can
be obtained by considering perturbations which conserve the symmetry of the
frequendies z, z;, etc., i.e. which leave gene frequencies unchanged. The analysis of
this case is given in Appendix (b). The conclusion reached is that the equilibrium can
be stable only if #+y < §: the system is unstable to perturbations which conserve
gene frequencies if f+y > 4.

This type of stable equilibrium cannot, therefore, co-exist with a stable BA4/ab
equilibrium, which requires § +7y > 8, regardless of the value of R. For small R, it
has been shown previously that stable BA/Abjab and BA/[aB/ab equilibria are
incompatible with a stable equilibrium of the present type; for large R, it is possible
that they may be compatible. I have, however, been unable to find a numerical
example of this. It is easy to find numerical examples in which the associated
two-locus equilibrium is stable for all R, and where a new B4 inversion increases
towards its expected equilibrium frequency.

(13)

4. THE EFFECTS OF DOUBLE CROSSING-OVER
(1) General considerations

Up tonow, I have assumed that theinversion completely suppresses crossing-over
when heterozygous, so that the gametes carrying it are always genetically 4B. In
practice, all the products of two-strand double crossing-over and one of the cross-
over strands produced by three-strand double crossing-over are recoverable from
inversion heterozygotes, so that it is possible for genetic material to be exchanged
between the inverted (In) and standard (S7') sequences. This means that the In
gametes will gradually acquire representatives of all the gametic typesin the system
and, as will be seen, linkage equilibrium between loci 4 and B within both sequences
tends to develop. This considerably complicates the analysis of the population
genetics of an inversion. But, as I will show below, it is possible to achieve at least
a qualitative understanding of what happens with double crossing-over in terms of
the equilibria attained in its absence. I will only consider the equilibria where the
inversion is actively maintained by selection (cases (ii), (iii) and (v) above).
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In the first place, it is clear from genetic studies of crossing-over in inversion
heterozygotes (Sturtevant, 1926; Sturtevant & Beadle, 1936; Philip et al. 1944;
Levine, 1956) that double cross-overs within inversions of the size normally
encountered in natural populations of Drosophila are extremely rare events. For
example, Philip et al. report a frequency of 1 in 8000 for a long inversion of the
X chromosome of Drosophila subobscura. Since there is no crossing-over in males of
many Drosophila species, the effective rate of double crossing-over as far as popula-
tion dynamics is concerned will be half this amount (Charlesworth & Charlesworth,
1973).

Since the production by mutation of a new inversion is a unique event, gamete
types Ab, aB and ab can enter In gametes only as a result of double crossing-over in
heterozygotes for B4 and ST (ignoring mutation). Because of the extreme rarity of
double cross-overs, as just discussed, the initial frequencies of b4, ete., will be an
order of magnitude lower than that of BA. It will therefore take much longer for
these to increase in frequency under selection than for B4, so that the population
will move into the neighbourhood of the equilibrium which it would attain without
double crossing-over, before they can reach appreciable frequencies.

This implies that the effect of double crossing-over on inversion polymorphisms
can be understood by considering the perturbations produced by introducing b4,
etc., into the equilibrium with only B4 represented in In gametes, ignoring the very
small effect of the process of double crossing-over itself. Write 7,, 75 and 9, for the
frequencies of b4, Ba and ba respectively. Neglecting second-order terms, we get:

o = N2Dq. + N Bjwy,
s = 305, + N3 Bjwy,,
Wiy = 1y(Dy, — Bjw,,).

These equations imply that the fate of the new gametic types depends on the type
of equilibrium into which they are introduced.

(a) BA/ab equilibrium. For the original equilibrium to be stable, it was found
that we need @, , M, < % = @, . All three types of gamete will therefore tend to be
eliminated under the influence of selection or of crossing-over in homokaryotypes.
With double crossing-over producing them at a low rate, we can expect there to be
an equilibrium with In overwhelmingly BA and 87 mostly ab, with a sprinkling of
the other types of gamete in each sequence.

(b) BA[Abjab equilibrium. Analysis of equations (14) shows that in this case
73 and 7, tend to decrease under the influence of selection, and crossing-over in
homokaryotypes, whereas b4 becomes neutral with respect to first-order terms. The
results of Appendix () show that 4 B and aB are selected against in the ST gametes,
if the original equilibrium is stable. With double crossing-over, b4 can increase in
frequency at a rate of the order of the amount of double crossing-over, while Ba and
ba will tend to low equilibrium frequencies, as will AB and aB. Now Deakin (1972)
showed that, in the absence of double crossing-over but with more than one gamete
type in Iz, there is a neutral curve of equilibria. This curve is such that the
frequencies of AB+BA, Ab+bA, etc., are equal to their equilibrium values with

18 GRH 23
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only BA present in In, and that there is linkage equilibrium within both the In and
8T sets of gametes (in this case because In and ST segregate only at a single locus).
Furthermore, with small R it is easy to see from the recurrence relations derived by
Deakin that the population will return to a point on the neutral curve after a
perturbation from it, if the original equilibrium with only B4 in In is stable. It
follows that (certainly with small R, and probably with arbitrary R) the gamete
frequencies with double crossing-over will move slowly along a path close to the
appropriate curve of equilibria, until the various forces come into balance. In the
present case, we have seen that 4B is kept at a low frequency, so that B4 will be
present at equilibrium in a relatively high frequency, to give the required total
frequency of 4B+ BA. Ab and b4 will be present in relatively high frequencies;
aB and Ba will have low frequencies; ab will have a high frequency, but ba a low
one.

(c) BA|AB|AbjaB|ab equilibrium. In this case, equations (14) show that b4 and
Ba are neutral as far as first-order terms are concerned, while ba tends to be elimi-
nated. With double crossing-over, therefore, we may expect a low equilibrium
frequency of ba, and a relatively high frequency of ab. In order for linkage equi-
librium to be maintained within the In and ST gametes, there must be a high
frequency of BA, and a low frequency of AB at equilibrium. A fuller analysis
of this case for the symmetric fitness model, using the equations developed
below, is given in Appendix (c).

(i) Numerical results

These conclusions can be compared with the results of direct calculations of
population trajectories with double crossing-over. Such trajectories are calculated
as follows. Double cross-overs will produce different results depending on where
they fall inside the inversion with respect to the locations of 4 and B. The inversion
is assumed to be paracentric, with loci 4 and B included in it, 4 being to the left
of B. Call the stretch of chromosome between the left breakpoint and 4, region 1;
that between 4 and B, region 2, and that between B and the right breakpoint,
region 3.

Cross-overs in regions 1 and 2 result in the exchange of alleles at locus 4 between
ST and In; cross-overs in regions 2 and 3 result in the exchange of locus B alleles;
cross-overs in 1 and 3 result in the exchange of alleles at both loci. Let the proba-
bilities of these three classes of events be Rf, R¥ and R} respectively. Let y,
(¢ = 1 to 4) represent the frequencies of BA, b4, etc. Define linkage disequilibrium
parameters

D, =z z,— xzxa,} (15)
D, = 4195~ Y25
and marginal fitnesses
Wiy = %x:i Wy
Wiy = 25, (16)

Wy, = Wi+ Wy,
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The new frequency of the ith type of ST gamete is given by the expression
3
wx, = x;w; + w RD,+ 3, D5RY (17)
i=1

where the sign of w;, RD, is positive for 2 = 2 and 3 and otherwise negative; the D
are given as the matrix of coefficients in Table 2.

To calculate the new frequencies of the In gametes, x; and y, are simply inter-
changed in equation (17) and in the expressions in Table 2.

Table 2. Coefficients D}; for calculating the effect of double crossing-over
on gamete frequencies

3 (12)-1 (34) 2 (13)-1 (24) 1
4 (12)-2 (34) 1 (24)-2 (13) 2
1(34)-3 (12) 4 (13)-3 (24) 3
2 (34)-4 (12) 3 (24)-4 (13) 4

The terms of form i(jk) refer to z;(y; Wi+ ¥, W) ; the terms of form < refer to y;w, — z;wyy.

Computer calculations based on these equations were used to determine the
trajectory of a population with a BA inversion introduced with an initial frequency
of 0-005 into a two-locus system at one of the stable equilibria described earlier.
The results were found to be in broad agreement with the theoretical predictions
made above. With the B4 [ab type of equilibrium, equilibrium is reached fairly fast
and, even with a high rate of double crossing-over, selection is effective in keeping
the double cross-over gametes down to very low frequencies. With the B4 /aB/[ab
type of equilibrium, the fitness values used earlier (p. 266), with R = 0-02, were used
in calculations. Populations with the R all equal to 10~4or 10-5 were run. In both
cases, it was found that after 25 000 generations bA and ba are still present at very
low frequencies. The population is evidently in a state of quasi-equilibrium, and is
moving slowly (changing only in the 5th decimal place) along a path near the curve
with D, = D, = 0, as predicted. With double crossing-over at a total rate of 3 x 104
the frequency of 4 in In is reduced to about 0-5 by generation 25 000, whereas B is
unaffected. After a further 25000 generations, the equilibrium was reached, with
only slightly different frequencies from those at generation 25000. Among the In
gametes, B4, Ba and ba predominate, with frequencies of 0-09, 0-13 and 0-01
respectively, whereas among S7' gametes we have chiefly a B and ab, with frequencies
of 0-23 and 0-54. As would be expected, the effect of double crossing-over is less
marked with the lower rate and the system is nowhere near equilibrium after
25 000 generations, although changing very slowly. With this type of system, Iz is
more heterozygous than ST for 4, but less so for B.

Part (a) of Table 3 shows the results at generation 25 000 for a symmetric fitness
model which generates a BA[AB/AbjaB/ab type of equilibrium in the absence of
double crossing-over, with a high inversion frequency (0-43). With the higher rate
of double crossing-over, the system reaches equilibrium after about 5000 genera-
tions; it is virtually at equilibrium at 25 000 generations with the lower rate. It will

18-2
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be seen that the conclusions of Appendix (c) are confirmed by this example: B4 and
ab are the predominant gametes, and the frequencies 2,, 2,, 9, and 4, are all equal as
a result of the fact that R¥ = R}. In runs with R} + R¥, it was found that these
frequencies become modified in the way predicted by Appendix (c): with Rf > RY,
we find 2, = 9, > 2, = §,, and with R} < R}, the opposite inequality. As can be
seen from the table, at equilibrium in this case both In and ST are moderately
heterozygous at both loci, and there is almost complete linkage equilibrium within
gene arrangements (D, = D, = 0).

Table 3. Equilibrium and quasi-equilibrium with double crossing-over
(@) & = 0-70, f = 0-25, ¥ = 0-10, § = 0-40 (high frequency inversion)

Gamete frequencies Gene frequencies Heterozygosities*
r A M - A Bl 4 —A— A
AB A4b aB ab A B A B

R = 0-10, R} = 0-0001 (i = 1, 2, 3)

In 0431 0033 0033 0003 0928 0928 0134  0-134
ST 0003 0033 0033 0431 0072 0072 0134 0134
D, = D, = 0-0001
R = 0-10, R} = 0-00001 (s = 1, 2, 3)

In 0-435 0-031 0-030 0-002 0-936 0-934 0-120 0-123
8T 0-002 0-032 0-033 0-435 0-068 0-070 0-127 0:130

D, = 00001, D, = 0-0002

(b) @ = 071, f# = 040, y = 0-21, § = 0-70 (low frequency inversion)

Gamete frequencies Gene frequencies Heterozygosities

A A Al
r Al r Al r hl

AB Ab aB ab A B A B
R = 010, R} = 0-0001 (¢ = 1, 2, 3)

In 0-112 0-053 0-051 0-025 0-685 0-676 0-432 0-438
ST 0-149 0-186 0-188 0-236 0-441 0-444 0-493 0-494

D, = 0-0001, D, = 0-0002
R = 0-10, R} = 0-0001 (¢ = 1, 2, 3)

In 0-066 0-011 0-010 0-002 0-865 0-854 0-234 0-250
ST 0-197 0-226 0:227 0-261 0-464 0-465 0-497 0-498

D, = 00000, D, = 0-0001

* The heterozygosities are calculated by treating the In and ST gametes as if drawn from
two separate populations in Hardy—Weinberg equilibrium.

Part (b) of Table 3 shows the results at generation 25000 for a fitness matrix
which generates the same type of equilibrium, but with a low (0-05) inversion
frequency, in the absence of double crossing-over. As might be expected, double
crossing-over takes longer to produce an effect in this case, and the system is far from
equilibrium after 25 000 generations. With the low rate of double crossing-over, it can
be seen that at this point 7 is much less heterozygous for both loci than S7'. This
picture is not altered much after a further 25 000 generations, although the frequency
of In increases from 0-09 to 0-12 as the double cross-over gametes accumulate.
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The results of this section show that the nature of inversion equilibria with double
crossing-over can be fairly well understood in terms of the corresponding equilibria
without. A similar type of analysis can, of course, be applied to the case where either
one or both loci are situated outside the inversion, but close enough for crossing-over
between them and the inversion to be greatly reduced. If 4 is located outside the
inversion, and B inside, then the only events to occur with non-negligible frequency
are the exchange of alleles at locus 4 between In and ST and the exchange of B,
i.e. Rf > R > R¥.If both A and B are located to the left of the inversion, then the
commonest events will be the exchange of 4 and the exchange of both 4 and B,
i.e. Rf,R¥ > RS.

DISCUSSION

The results derived in the previous parts of this paper have a direct bearing on
some of the results obtained from experimental studies of inversion polymorphism.
(It should, however, be stressed that two-locus theory is without doubt grossly
inadequate as a model of the genetic systems underlying inversion polymorphism,
and can be at most only a guide to the possible sorts of behaviour of real
systems.)

In the first place, it has been shown that there are systems of fitness interactions
which can generate more than one stable equilibrium with the inversion present (see
the discussion of the BA/Ab/ab and BA[aB[ab equilibria); which final frequency
the inversion arrives at is determined by the initial conditions of the population.
This finding is of interest in the light of experimental results such as those of
Dobzhansky & Pavlovsky (1957), which demonstrate the existence of alternative
stable equilibrium inversion frequencies in the same population. The present results
imply that interactions between genes contained in the inversion and the genetic
background outside it need not be involved in this phenomenon.

The fact that the standard sequence may be genetically heterogeneous at equi-
librium even without double crossing-over in inversion heterozygotes, and that
both the inversion and the standard sequences may be heterogeneous when double
crossing-over occurs, suggests that if the frequency of the inversion is perturbed
experimentally from equilibrium, there will be consequent shifts in the frequencies
of the various gamete types as the system returns to equilibrium. The fitnesses of
the inversion and standard homokaryotypes (relative to that of the heterokaryo-
type), which are weighted averages of the appropriate genotypic fitnesses, may
therefore change as the gamete frequencies move back to their equilibrium levels.
A numerical example of this (for a BA/AB/Abj/aB[ab equilibrium without double
crossing-over) is shown in Table 4. It can be seen that there are, in fact, quite sub-
stantial changes in karyotypic fitnesses with changes in inversion frequency. The
fitness of the inversion homokaryotype is highest when the inversion is below its
equilibrium frequency, and lowest when it is much higher. The fitness of the stan-
dard homokaryotype, on the other hand, seems to have a maximum below the
equilibrium point, and to fall off on either side. Changes in karyotypic fitnesses in
cage experiments with Drosophila populations have been reported several times
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(Dobzhansky & Levene, 1951; Kojima & Tobari, 1969; Watanabe et al. 1970), and
it is possible that this type of mechanism may be involved in some of these cases.
When double crossing-over is non-negligible, perturbation experiments may give
peculiar results which are superficially similar to the effects discussed in the first
point. Because of the existence of neutral curves of equilibria, with fitness matrices
other than those which generate BA/ab type equilibria double crossing-over results
in quasi-equilibria, with gamete frequencies changing slowly along the equilibrium
curve. If the system is perturbed from the curve, for example by experimentally
changing the frequencies of Iz and ST without altering the relative frequencies of

Table 4. Variation in fitnesses of the homokaryotypes as a result of
genetic heterogeneity of the standard sequence

a =085 8= 0257y = 010, 5 = 0-65
9 = 0-200, £, = 0-113, &, = #, = 0-187, £, = 0-313

Fitnesses
r - Y
Inversion Inversion Standard
Gen. frequency homokaryotype homokaryotype
(a) Initial inversion frequency 0-85

5 0-476 0-383 0-694
25 0-294 0-398 0-763
45 0-259 0-407 0-800
65 0-239 0-412 0-816
85 0-227 0-415 0-829
105 0-219 0-418 0-838

The final homokaryotypic fitnesses are 0-423 and 0-856 for the inversion and standard
sequences respectively.
(b) Initial inversion frequency 0-05

5 0-069 0-442 0-912
25 0-094 0-450 0-933
45 0-110 0-447 0-923
65 0-125 0-443 0-913
85 0-139 0-439 0-904

105 0-151 0-436 0-895

the various gamete types within each gene arrangement, it seems likely that the
population will merely return to the nearest point on the equilibrium curve, and
not to the original inversion frequency. (In any case, it can only return to the
original state when the population was initially in true equilibrium rather than
quasi-equilibrium.) Within the time ordinarily available for experimental studies,
the same population perturbed to different inversion frequencies may apparently
stabilize at different ‘ equilibrium’ frequencies. This type of behaviour may theoreti-
cally be distinguished from that discussed under the first point by two criteria. First,
in this casethere is probably a continuum of ‘ equilibria’ rather than a number of dis-
crete stable points. Secondly, no new gamete types need be introduced (for example,
by using a population of mixed geographic origin), in order to shift the population
to a new equilibrium, but this will often be the case with the earlier type of effect.
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Two examples of this type of behaviour are shown in Fig. 1. The upper graph
shows the behaviour of the equilibrium population of Table 3 (a) (with the higher
level of double crossing-over), when the inversion is increased to a frequency of 0-8
or decreased to 0-2 from its equilibrium level of 0-5. It will be seen that, within the
sort of time-interval usual in experiments on artificial populations of Drosophilea,
the inversion appears to stabilize at two different frequencies according to its
starting frequency. Only very gradually does it approach its true equilibrium level.
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Fig. 1. The results of pertubation of an inversion, subject to double crossing-over
when heterozygous, from its equilibrium or quasi-equilibrium point (indicated by
the dashed line). Further details in text.

More striking behaviour is exhibited by systems which have not reached equi-
librium under double crossing-over initially. This is illustrated by the lower graph
of Fig. 1, where the quasi-equilibrium population of Table 3 (b) (with the lower level
of double crossing-over) is perturbed from an initial inversion frequency of 0-09 to
0-8 and 0-05. In the first case, the inversion appears to stabilize at 0-62; in the
second, it barely moves from the frequency to which it was perturbed.

If this type of fitness interaction is at all common, therefore, we would expect to
find that experimental populations of Drosophila started with different initial
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inversion frequencies might reach different, apparently stable frequencies. The most
thorough investigation known to me which sheds light on this point is that of
Watanabe et al. (1970) on Drosophila pseudoobscura. Populations were started with
different initial frequencies of the gene arrangements 87, AR, CH and PP. The
population trajectories indicated that at most only 87" and 4R would remain
segregating. One population became fixed for AR. Among the others, three were
started with a low (approx. 0-05) frequency and had final frequencies, predicted
from the population’s trajectory, of 0-40, 0-29 and 0-36. Two were started with a
high frequency (approx. 0-50) of AR, and had predicted final frequencies of 0-50
and 0-60. Two which were started with an intermediate frequency (0-25) had
predicted final frequencies of 0-42 and 0-35. While it is perfectly possible that these
results are due to statistical fluctuations, the differences between the three classes
of population are in the direction predicted on this theory. It would clearly be of
great interest to examine this question on a larger scale, particularly using low-
frequenecy inversions which are more likely to be in quasi-equilibrium only, since
a certain amount can be inferred about the nature of the fitness interactions among
the genes involved in the inversion polymorphism from this type of behaviour. If
the inversion is maintained as a result of selective differences which generate a
cumulative advantage of heterozygosity, then one would not expect such behaviour.
If the advantage of heterozygosity falls off with increasing heterozygosity, then this
type of behaviour is to be expected. '

We can now turn to a rather different aspect of inversion polymorphism. Recent
work on the relations between protein variation and inversion polymorphism
(Prakash & Lewontin, 1968, 1971; Prakash & Merritt, 1972; Kojima, Gillespie &
Tobari, 1970; Mukai, Mettler & Chigusa, 1971) has demonstrated that loci located
in or near inversions tend to show non-random associations of alleles with poly-
morphicinversions. It isinteresting to compare the results of such observations with
the theoretical conclusions derived in this paper.

In the first place, it is easy to see how differentiation in gene content between
different gene arrangements can arise as a result of non-allelic interactions in fitness.
Any of the classes of inversion polymorphism discussed in this paper would show
this effect for at least one of loci 4 and B if they could be followed experimentally.
With double crossing-over, it is also easy to see that this differentiation need not be
absolute, provided that the fitness interactions are not of the type giving BA/ab
equilibria. As we have seen, the double cross-over gametes are selected against with
this sort of interaction, and are rare at equilibrium. If it turns out usually to be the
case that geneslocated in or near inversions do not show almost absolute associations
of alleles with gene arrangements, it can perhaps be considered unlikely that this
form of interactive selection (which involves a cumulative advantage of over-
dominance on a linear scale) is commonly involved in maintaining gene frequencies.

Another feature of the equilibria or quasi-equilibria when double crossing-over is
taken into account is that, although alleles show non-random associations with gene
arrangements, within a given sequence there is almost complete linkage equilibrium
between 4 and B (see Table 3). Failure to detect linkage disequilibrium for protein
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variants within a given gene arrangement when there are significant associations
between alleles and gene arrangements (e.g. Prakash & Merritt, 1972), is thus quite
consistent with the maintenance of the latter by selection.

Prakash & Merritt (1972) comment on the fact that low frequency inversions tend
to be less heterozygous than the standard sequence. This is explicable in terms of the
kind of result displayed in the last entry of Table 3. With low double cross-over
frequencies and the appropriate type of fitness matrix, the system may take an
enormous number of generations to get any where near the final equilibrium, where
In is as heterozygous as 87. Furthermore, in a real population, stochastic events
will considerably retard the operation of a slow process such as double crossing-over;
as we have seen, the double cross-over gametes are at best neutral (with respect to
the first order of their frequencies), and so will require many repeated occurrences
before having a reasonable chance of establishing themselves. The assumption that
the population is not at equilibrium in these cases is therefore a reasonable one,
particularly for a low frequency inversion where the effect of double crossing-over
is minimal. Again, if this type of observation turns out to be the rule, it would
suggest that the BA4/ab type of fitness interaction is rarely involved in the main-
tenance of variation.

These considerations demonstrate that the observations which have been made
on associations between inversions and protein variants are consistent with a
selective basis for the maintenance of the latter. They do not, of course, necessarily
exclude a ‘neutral mutation’ interpretation of the data.

APPENDIX
(a) Analysis of the BA[Ab|ab equilibrium

The system with only these 3 gametes present behaves like a 3-allele system, and
any equilibria must therefore satisfy the same conditions of existence and stability,
as given, for example, by Crow & Kimura (1970, p. 277). The equilibrium frequencies
(9, 2, and 2,) can thus be obtained straightforwardly. The 3-allele stability condi-
tions provide only necessary conditions for stability of the inversion polymorphism.
Given that they are met, we can investigate its stability to the introduction of AB
and aB at low frequencies. This yields the condition that the population is stable

to this perturbation if and only if #, < % where

Wy = Jwig+ 2o wyy+ £y W3y,

With the symmetric fitness model, the conditions become somewhat simplified.
The 3-allele conditions reduce to:

Ay =8(a~y)+B(y—F)> 0,

A, =80~ (B+7)]>0,

Ay=0(a~p)+y(f-7y) >0,
é>0,

(A1)
with 9, 2, and 2, being in the ratio A, : A,: A,.
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The second and fourth inequalities together imply f+v < 6. The condition
Wy < w yields, after some reduction, the condition:

ad < (y—pB)% (A.2)
Combination of this condition with those of (A. 1) gives the remainder of the set
of equations (10).

(b) Stability analysis of the BA|AB[AbjaB/[ab equilibrium
(symmetric fitness model)

It will be assumed that gene frequencies at both loci remain constant at 1/2. (It
is easily shown by a local analysis that gene frequencies remain constant if the
system is subjected to a perturbation from equilibrium which conserves gene
frequencies in the initial generation.) Given this assumption, the system reduces to
one of two dimensions, and the following matrix of coefficients governing the local
stability behaviour is obtained:

1+(,6’+z—6) (ﬁ+1—6)
w w
(B+y—0)—B(& +28) , (B+y—8)—R(1-§) )
W W

This matrix can be shown to havereal eigenvalues, at least one of which is greater
in modulus than 1 if #+vy > &, proving that #+v < & is a necessary condition for
stability. -

(¢) Effect of double crossing-over on the BA|AB|Ab[ab equilibrium
with the symmetric fitness model

A constraint on the nature of the equilibrium is provided by the econditions for the
changes in the total frequencies of the various gene combinations (the frequencies
x,+y; = z;) to be zero. Let D* = w, (2,93 + X3y, — ¥4 — 2, %,)- Then we have, from
equation (17) and Table 2, the equilibrium conditions:

2(Dy,~ W) = 24(d, ) = B(D, +D,) — (B} + Bf) D*,
By, ~ W) = 2@y, — W) = — (D, + D,) + (BY + BY) ﬁ*.}

It follows from these equations that, if the R} are small and we neglect squared
terms in them, we obtain the approximate relations:

7?’1. = 12‘)4.,} (A. 4)

A
Dy, = Dy

(A. 3)

It can be shown that these equations imply that 2, = 2, and 2, = 2,, except in the
unlikely event ad = (y — f)2.

A further constraint can be derived from the condition for there to be no change
in the total frequencies of the Iz and ST gametes at equilibrium. Equation (17) and
Table 2 imply that at equilibrium:

a0, _X9,b,
=% Zf;

(A. 5)
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Using equations (A.4), (A. 5) reduces to
2+2, — Zp+25
ht8s 9485

We also have (from the nature of the neutral curve of equilibria) the approximate

relationships
2,2, = Qzﬁs,} (A.7)

(A. 6)

919s = §:95-
The first of these gives:

(21— 8a) 21— F1) = (22— §2) (2. —Fs).
Using the second of equations (A. 7), this gives

G2+ 85 = (BB —2D) + 21(91 + 92))/20. (A.8)

Substituting into equation (A. 6) and rearranging, we obtain

h+9. =2
Sinee by definition 2, = £, - #,, this implies that

) 21 = 94’}
Ky (A.9)

22 = ga’}
2, = 0. (A. 10)

The equilibrium is thus highly symmetrical, with the frequency of the inversion
being 0-5. (This conclusion is of course dependent on the symmetric fitness model
assumed.) Furthermore, we may expect £, and §, to have small values since equa-
tions (14) imply that the initial progress of ba is retarded by the effects of single
crossing-over. Since 2, > 2,, the majority of effective double cross-overs will take
place in BA/ab individuals. If Rf and Rj are approximately equal (i.e. if the two
genes are roughly equal distances from the nearest breakpoints), it is easily seen that
double crossing-over contributes about equally to x; and z3. At equilibrium, there-
fore, we may expect 2, = 9, & 2; = §,. If RY > RJ, then z; receives larger contribu-
tions than z}, so that we expect £, = §, > 2, = §;. The reverse holds if Rf < RJ.

Similarly, we also have
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