
RESEARCH ARTICLE

Projection-based model-order reduction via graph
autoencoders suited for unstructured meshes

LiamMagargal1, Parisa Khodabakhshi1 , Steven Rodriguez2, Justin Jaworski3 and John Michopoulos4

1Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA, USA
2Computational Multiphysics Systems Laboratory, US Naval Research Laboratory, Washington, DC, USA
3Kevin T. Crofton Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, VA, USA
4Principal Scientist for Material Innovation (Retired), US Naval Research Laboratory, Washington, DC, USA
Corresponding author: Parisa Khodabakhshi; Email: pak322@lehigh.edu

Received: 23 April 2025; Revised: 11 September 2025; Accepted: 19 October 2025

Keywords: deep least-squares Petrov–Galerkin; geometric deep learning; graph autoencoders; projection-based model-order
reduction; unstructured mesh

Abstract

This paper presents the development of a graph autoencoder architecture capable of performing projection-based model-
order reduction (PMOR) using a nonlinear manifold least-squares Petrov–Galerkin (LSPG) projection scheme. The
architecture is particularly useful for advection-dominated flows modeled by unstructured meshes, as it provides a robust
nonlinearmapping that canbe leveraged in aPMORsetting.Thepresentedgraph autoencoder is constructedwith a two-part
process that consists of (1) generating a hierarchy of reduced graphs to emulate the compressive abilities of convolutional
neural networks (CNNs) and (2) training a message passing operation at each step in the hierarchy of reduced graphs to
emulate the filtering process of a CNN. The resulting framework provides improved flexibility over traditional CNN-based
autoencoders because it is readily extendable to unstructured meshes. We provide an analysis of the interpretability of the
graph autoencoder’s latent state variables, where we find that the Jacobian of the decoder for the proposed graph
autoencoder provides interpretable mode shapes akin to traditional proper orthogonal decomposition modes. To highlight
the capabilities of the proposed framework,which is named geometric deep least-squares Petrov–Galerkin (GD-LSPG),we
benchmark the method on a one-dimensional Burgers’ model with a structured mesh and demonstrate the flexibility of
GD-LSPG by deploying it on two test cases for two-dimensional Euler equations that use an unstructured mesh. The
proposed framework is more flexible than using a traditional CNN-based autoencoder and provides considerable
improvement in accuracy for very low-dimensional latent spaces in comparison with traditional affine projections.

Impact Statement

This work presents a novel graph autoencoder architecture designed for nonlinear dimensionality reduction of
advection-dominated systems, resulting in very low-dimensional, yet interpretable, representations of the high-
dimensional system. We demonstrate the autoencoder’s applicability to a projection-based model-order reduction
framework. The graph autoencoder’s natural ability to represent unstructured meshes offers greater flexibility
compared to convolutional neural network-based autoencoders, which are inherently suited for structured meshes.

©TheAuthor(s), 2025. Published byCambridgeUniversity Press. This is anOpenAccess article, distributed under the terms of the Creative Commons
Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the
original article is properly cited.

This research article was awarded Open Materials badge for transparent practices. See the Data Availability Statement for
details.

Data-Centric Engineering (2025), 6: e52
doi:10.1017/dce.2025.10030

Downloaded from https://www.cambridge.org/core. 21 Nov 2025 at 18:35:23, subject to the Cambridge Core terms of use.

https://orcid.org/0000-0001-8807-8192
mailto:pak322@lehigh.edu
http://creativecommons.org/licenses/by/4.0
https://doi.org/10.1017/dce.2025.10030
https://crossmark.crossref.org/dialog?doi=10.1017/dce.2025.10030&domain=pdf
https://www.cambridge.org/core

1. Introduction

Methods in computational mechanics aim to simulate complex physical phenomena via numerical
methods. Specifically, approximate solutions are sought by spatially and temporally discretizing the
governing equations of a physical system (LeVeque, 2002; Mazumder, 2015). In many engineering
applications, spatial and temporal resolution must be refined to obtain a sufficiently detailed solution,
ultimately resulting in extremely high-dimensional discretized systems. Dimensional compression aims
to embed such high-dimensional discretized systems into low-dimensional representations, while retain-
ing essential information.

Projection-based model-order reduction (PMOR) is a class of approximation methods that aims to
reduce the computational cost associated with many-query tasks in computational mechanics, such as
design optimization, uncertainty quantification, real-time rendering, etc., while preserving sufficient
accuracy of the quantities of interest (Benner et al., 2015). PMOR achieves cost savings by projecting the
original high-dimensional computational model (known in this context as the full-order model, or FOM in
short) onto a precomputed low-dimensional latent space, which is computed using data recovered from
the FOM in an offline stage. In the online stage, the projected form of the governing equations can be used
to compute low-dimensional solutions, thereby reducing the operation count complexity and achieving
cost savings.

In this study, our primary interest is on the dimensionality reduction capabilities of PMOR approaches
for methods in computational mechanics that employ unstructured meshes. Two such methods are the
finite volumemethod (FVM) and the finite elementmethod (FEM), which are widely used in the realms of
science and engineering for their ability to conduct high-fidelity simulations of complex physical
phenomena (LeVeque, 2002; Reddy, 2005; Mazumder, 2015). Spatial discretization of a domain is
typically achieved using one of two main mesh types: structured and unstructured meshes. Structured
meshes employ a periodic, grid-like structure to discretize the domain. Conversely, unstructured meshes
do not require a grid-like structure and allow mesh components to be arbitrarily ordered (Bern and
Plassmann, 2000; Mazumder, 2015). This departure from a grid-like structure often makes spatial
discretization of physical domains more convenient, allowing for the generation of a higher quality mesh
with favorable features. The advantage of unstructured meshes over structured meshes becomes more
prominent in domains with complex geometries.

Traditionally, PMORmethods rely on projecting the solution onto a low-dimensional latent space via a
subspace approximation method, such as proper orthogonal decomposition (POD) (Sirovich, 1987),
rational interpolation (Baur et al, 2011), or balanced truncation (Moore, 1981; Rezaian and Duraisamy,
2023). Although affine latent spaces have been leveraged extensively to achieve cost savings for a wide
variety of linear and nonlinear models (Lieu et al., 2006; Bui-Thanh et al., 2008; Wentland et al., 2023),
PMOR procedures employing affine solution manifolds often fail to accurately model advection-
dominated solutions. Such solutions often exhibit features, such as sharp gradients, moving shocks
and boundaries, and bulk motion, which will be smoothed out using affine solution manifolds. It is well
known that these models exhibit a slowly decaying Kolmogorov n-width. The Kolmogorov n-width
serves as ameasure for the error introduced by approximating the solutionmanifold of a partial differential
equation (PDE) with a linear trial manifold of dimension n (Welper, 2017; Ahmed and San, 2020;
Peherstorfer, 2020, 2022; Franco et al., 2023). When the decay of the Kolmogorov n-width is slow, the
affine latent space used to approximate the solution must be constructed with a high dimension, leading to
marginal model reduction. As a result, a great amount of effort has been made to develop reduced-order
models (ROMs) for advection-dominated flows, such as adaptive reduced basis schemes (Drohmann
et al., 2011; Ohlberger and Rave, 2013), segmentation of the domain into multiple reduced-order bases
(Dihlmann et al., 2011; Amsallem et al., 2012; Geelen and Willcox, 2022), quadratic manifolds (Barnett
and Farhat, 2022; Geelen et al., 2023), modified POD bases (Welper, 2017; Nair and Balajewicz, 2019),
and neural-network augmented latent spaces (Fresca and Manzoni, 2022; Barnett et al., 2023). None of
these methods, however, have direct knowledge of the geometric structure and topology of the spatially
discretized domain. Additionally, many are still fundamentally based on affine latent spaces. In this work,

e52-2 Liam Magargal et al.

Downloaded from https://www.cambridge.org/core. 21 Nov 2025 at 18:35:23, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

our graph autoencoder aims to leverage knowledge of the geometric structure and topology of the spatially
discretized domain to construct a robust nonlinear mapping from the high-dimensional space to the low-
dimensional latent space.

Achieving cost-savings via PMOR for linear systems often comes directly from dimensional com-
pression alone (Antoulas, 2005; Benner et al. 2017). However, for nonlinear dynamical systems,
projection of the nonlinear term often has an associated operation count complexity that scales directly
with the dimension of the FOM, which often results in minimal (if any) cost savings. As a remedy, some
studies employ hyper-reduction methods, where the nonlinear terms are computed for a selection of
sample points and used to update the corresponding low-dimensional states. Such methods include the
discrete empirical interpolation method (Barrault et al., 2004; Chaturantabut and Sorensen, 2010; Drmac
and Gugercin, 2016), Gauss-Newton with approximated tensors method (Carlberg et al., 2011, 2013),
energy conserving sampling and weighing method (Farhat et al., 2015), and projection tree reduced-order
modeling (PTROM) for non-local methods with dense adjacency matrices (Rodriguez et al., 2022).
Alternatively, operator inference is often used to learn low-dimensional operators of a nonlinear equation
of polynomial form from a regression problem (Peherstorfer and Willcox, 2016; Benner et al., 2020;
McQuarrie et al., 2021). Furthermore, somemethods have coupled the operator inference framework with
a lifting transformation suited for nonlinear problemswith general nonlinearity by introducing a change of
variables to obtain a polynomial form of the model equations (Qian et al., 2020; Khodabakhshi and
Willcox, 2022).

Recently, machine learning has been adopted to overcome the limitations of traditional model
reduction when applied to advection-dominated flows with slowly decaying Kolmogorov n-widths.
Historically, autoencoders have been developed to compress and reconstruct input information, such as
images (Bank et al., 2023), but recently autoencoders have been leveraged in engineering applications.
Specifically, the model reduction community has used autoencoders to identify a nonlinear mapping
between the high-dimensional system and a low-dimensional latent space (Wiewel et al., 2019; Hasegawa
et al., 2020) from state solution data alone. Once an autoencoder is trained, the mapping is leveraged to
perform online time integration using one of two main classes of approaches. The first class involves
learning the low-dimensional dynamics without knowledge of the dynamics of the high-dimensional
system. Some studies train a neural network to approximate the low-dimensional update at each time step
(Kim et al., 2019; Wiewel et al., 2019; Fresca et al., 2021; Maulik et al., 2021; Dutta et al., 2022), while
others aim to obtain a low-dimensional system of semi-discrete ordinary differential equations (ODEs)
(Fries et al., 2022; He et al., 2023). The second class, and the approach that we adopt in this paper, aims to
project the governing equations of the semi-discrete high-dimensional dynamical system onto the low-
dimensional latent space using the autoencoder, thereby embedding the physics into the resulting ROM
(Kashima, 2016; Hartman and Mestha, 2017; Lee and Carlberg, 2020, 2021; Kim et al., 2022).

A commonmethod used across both classes ofmachine learning-based ROMs is the convolutional neural
network (CNN), which is used to construct low-dimensional solution manifolds (Kim et al., 2019; Wiewel
et al., 2019; Hasegawa et al., 2020). Because CNNs require inputs to be constructed as a grid, the direct
application of CNNs to unstructured meshes for the purpose of model reduction is currently untenable. As a
result, a commonworkaround is to interpolate the unstructuredmesh solution onto a structuredmesh that can
be provided to a CNN (Fresca et al., 2021). In recent years, graph neural networks (GNNs) have been
developed to extract information of interest to the user from sets of unstructured and relational data (Battaglia
et al., 2018; Zhou et al., 2020),making theman appropriatemethod to generate low-dimensional embeddings
of models that use unstructured meshes. While dimensionality reduction and compression using GNNs has
been achieved by graph U-nets (Gao and Ji, 2019) and multiscale graph autoencoders (Barwey et al., 2023),
such approaches do not have a decoder that maps directly from the latent state vector to the approximate
solution. Instead, they require knowledge of the encoder and cannot be directly used in PMOR.Alternatively,
graph autoencoders have been used for fully data-driven model reduction (Gruber et al., 2022; Pichi et al.,
2024), but such approaches do not include any knowledge of the governing equations.

The main focus of this study is to investigate the abilities of graph autoencoders to perform
dimensionality reduction upon unstructured mesh solutions. Toward this end, we present a hierarchical

Data-Centric Engineering e52-3

Downloaded from https://www.cambridge.org/core. 21 Nov 2025 at 18:35:23, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

graph autoencoder architecture tailored to generate nonlinear mappings to very low-dimensional latent
spaces. Once the low-dimensional latent space is obtained, we embed knowledge of the governing
equations into the latent space representation to perform time integration by leveraging a nonlinear
manifold least-squares Petrov–Galerkin (LSPG) projection. Traditionally, a nonlinear manifold LSPG
projection that leverages a CNN-based autoencoder is referred to as deep LSPG (dLSPG; Lee and
Carlberg, 2020, 2021). In this study, instead, we use a hierarchical graph autoencoder architecture, and the
resulting method is named geometric deep LSPG (GD-LSPG). The proposed method is capable of
performing PMORwhen deploying unstructured meshes and is particularly useful in modeling the highly
nonlinear behavior found in advection-dominated flows, while achieving significant dimensionality
reduction. We analyze GD-LSPG from two different perspectives. First, we assess GD-LSPG’s ability
to generate low-dimensional solutions to parameter sets not seen during training. Second, we investigate
the interpretability of the nonlinear manifold LSPG scheme. From this perspective, we discover highly
interpretable mode shapes from the Jacobian of the decoder for the graph autoencoder, which can be
directly related to the POD modes for a classical POD-LSPG projection (Carlberg et al., 2011, 2013).
Furthermore, we find that the Jacobian of the decoder is closely related to saliency maps (Simonyan et al.,
2013), a method commonly used in image classification to identify features in the image that are most
indicative of the image’s classification. Ultimately, the proposed method is capable of accurately
modeling highly nonlinear behavior found in advection-driven problems while providing interpretable
mode shapes to the user.

The paper is organized in the following manner. Section 2 describes the background and preliminaries
of the GD-LSPG framework, which includes the FOM and its corresponding residual minimization
scheme, a general formulation of performing nonlinear dimension reduction via autoencoders, and a brief
overview of graph theory. Section 3 presents the graph autoencoder deployed in GD-LSPG. Section 4
presents the nonlinear manifold LSPG projection and analyzes the interpretability of the graph auto-
encoder’s latent state variables by relating the Jacobian of the decoder for the graph autoencoder to the
POD modes used in POD-LSPG. Section 5 includes a set of numerical experiments to investigate the
capabilities of our proposedmethod. Specifically, we applyGD-LSPG to the benchmark one-dimensional
(1D) Burgers’model using a structured mesh and to two test cases that use an unstructured mesh to solve
the two-dimensional (2D) Euler equations. Namely, the first test case models a setup for a Riemann
problem, while the second models a bow shock generated by flow past a cylinder. Finally, Section 6
presents conclusions and discusses avenues for future work.

2. Background and preliminaries

This section lays the foundation for the introduction of the GD-LSPGmethod by providing a formulation
of the FOM and summarizing preliminaries related to autoencoders and graph theory. Specifically,
Section 2.1 introduces the first-order PDE and residual-minimizing time integration scheme on which
we develop theGD-LSPGmethod. Section 2.2 provides a general introduction to performing PMORwith
an autoencoder, along with some of the current limitations of autoencoders in the literature. Finally,
Section 2.3 presents the basics of graph theory to the reader.

2.1. Full-order model

Consider a system of nq ∈ℕ PDEs where nq depends on the number of state variables. Using a mesh to
spatially discretize the physical domain into Nc ∈ℕ points, the semi-discrete system of the FOM is
described by a system of time-continuous ODEs:

dx
dt

= f x, t;μð Þ, x 0;μð Þ= x0 μð Þ, (2.1)

where x∈RN is the semi-discrete state vector, N = nqNc denotes the dimension of the FOM, μ∈D

denotes the parameters, and f :RN × 0,Tf

� �
×D!RN is the semi-discretized velocity function.

e52-4 Liam Magargal et al.

Downloaded from https://www.cambridge.org/core. 21 Nov 2025 at 18:35:23, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

To approximate the time evolution of the state vector, x, from the system of ODEs, we use the general
form in Eq. (2.2),

r : ξ;μð Þ↦α0ξ +
Xτ
i= 1

αix
n+ 1�i + β0f ξ, tn+ 1;μð Þ+

Xτ
i = 1

βif xn+ 1�i, tn+ 1�i;μ
� �

, (2.2)

in which the value of the state vector, xn+ 1, at time step n+ 1ð Þ∈ℕ is determined byminimizing the time-
discrete residual r :RN ×D!RN given the state vector at a number of previous time steps. In Eq. (2.2),
αi ∈R and βi ∈R, i= 0,1,…,τ, are constants defined by the time integration scheme, ξ ∈RN is the sought-
after solution of the minimization scheme for the state vector at the n+ 1ð Þth time step, the superscript
n+ 1� i denotes the value of the variable at time step n+ 1� i∈ℕ, where the time step size Δt∈R + is
chosen to be fixed, that is, ti = iΔt, and τ ∈ℕ is the number of time steps associated with the time
integration scheme. We note that the time integration scheme is implicit in cases where β0 ≠ 0. The state
vector at the n + 1ð Þth time step, xn+ 1, is defined as the solution of the minimization problem,

xn+ 1 = argmin
ξ ∈RN

r ξ;μð Þk k2, n= 0,⋯,Nt�1: (2.3)

where Nt ∈ℕ denotes the total number of time steps. With an appropriate selection of coefficients αi and
βi, the general formulation of Eq. (2.2) will cover linear multistep schemes, where specific examples are
provided in Section 5.

2.2. Nonlinear dimension reduction via autoencoders

Awide variety of nonlinear mappings have been adopted in the literature in recent years to obtain a low-
dimensional latent space for PMOR on nonlinear problems. The focus of this study is on the use of
autoencoders to approximate a mapping between the high-dimensional system and the low-dimensional
latent space (Lee and Carlberg, 2020, 2021; Barnett and Farhat, 2022; Chen et al., 2022; Eivazi et al.,
2022; Pan et al., 2023). Autoencoders are a class of deep learning architecture in which the basic idea is to
perform dimensional compression on a dataset down to a latent space with an encoder, Enc : x↦x̂ with
Enc :RN!RM , and to reconstruct the dataset by decoding the latent space with a decoder, Dec : x̂↦~x
withDec :RM!RN , whereM ≪N . The former is a nonlinear mapping from the high-dimensional state
vector, x, to the low-dimensional latent representation, x̂, and the latter is a nonlinear mapping from the
low-dimensional embedding to the reconstructed high-dimensional state vector, ~x.

The encoder and decoder are constructed by a series of layers in which each layer applies a set of
predefined functions to the output of the previous layer. The nonlinearity associated with the mapping is
introduced through an appropriate selection of functions. General forms of the encoder and decoder,
consisting of nh ∈ℕ and ng ∈ℕ layers, respectively, are,

Enc : x;θð Þ↦hnh � ;Θnhð Þ ∘ hnh�1 � ;Θnh�1ð Þ ∘… ∘ h2 � ;Θ2ð Þ ∘ h1 x;Θ1ð Þ, (2.4)

Dec : x̂;ωð Þ↦gng � ;Ωng

� �
∘ gng�1 � ;Ωng�1

� �
∘… ∘ g2 � ;Ω2ð Þ ∘ g1 x̂;Ω1ð Þ, (2.5)

where hi � ;Θið Þ, i= 1,…,nh and gi � ;Ωið Þ, i= 1,…,ng denote the function(s) acting on the input of the
ith layer of the encoder and decoder networks, respectively, (or equivalently the output of the corres-
ponding i�1ð Þth layer). As will be explained later in Sections 3.2 and 3.3, some layers encompass a
number of functions, depending on their objective, which will collectively form hi � ;Θið Þ or
gi � ;Ωið Þ. In Eq. (2.4) and Eq. (2.5), Θi, i= 1,…,nh and Ωi, i= 1,…,ng, denote the weights and biases
of the ith layer of the encoder and decoder networks, respectively. The set of all the weights and biases of
the autoencoder, that is, θ≔ Θ1,…,Θnhf g andω≔ Ω1,…,Ωng

� �
, are trained to minimize an appropriately

defined error norm between the input to the encoder and the output of the decoder. In this manuscript, we
use an equal number of layers for the encoder and decoder, that is, nh = ng = nℓ.

Due to their remarkable ability to filter grid-based information, in an extensive amount of literature on
autoencoder-based PMOR (Kim et al., 2019; Wiewel et al., 2019; Fukami et al., 2020; Hasegawa et al.,

Data-Centric Engineering e52-5

Downloaded from https://www.cambridge.org/core. 21 Nov 2025 at 18:35:23, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

2020; Lee and Carlberg, 2020, 2021), CNNs have been heavily relied upon as the backbone for the
development of autoencoder architectures. However, since CNNs were primarily developed to analyze
pixel-based images, they are dependent upon the inputs being a structured grid. As a result, PMOR
methods leveraging CNNs are not readily applicable to unstructured meshes (see Figure 1).

A common approach to enable the use of CNNs on unstructured meshes is to interpolate the
unstructured mesh onto a structured grid, thereby creating a pixel-based representation suitable for
deployment in CNN-based autoencoders (Fresca et al., 2021). As will be demonstrated in Section 5, this
strategy often fails to have strong generalization performance. Our proposed method overcomes the need
for structuredmeshes for the sake of autoencoder-based PMOR such that both structured and unstructured
meshes can be inputs to the proposed autoencoder. Because GNNs have been developed for non-
Euclidean data, such as unstructured meshes, we aim to leverage GNNs to perform dimensionality
reduction (see Figure 2). Given that unstructured meshes are commonly used in engineering applications,
our approach can be widely extended to applications with arbitrary topology. Our proposed architecture
follows an outline that is similar to graph U-nets (Gao and Ji, 2019), multiscale graph autoencoders
(Barwey et al 2023), and graph convolutional autoencoders for parameterized PDEs (Pichi et al., 2024),
wherein a hierarchy of graphs is generated, each with fewer nodes than the previous level.

2.3. Graph theory

Extensive reading on graph theory can be found in the works of Hamilton (2020) and Battaglia et al
(2018), but a brief overview is provided in this section to provide sufficient background for our graph
autoencoder architecture. A graph is a tuple G= V,Ef g, where V denotes the node set, ∣V∣ denotes the
number of nodes in the graph, and E denotes the edge set, which is chosen to represent user-prescribed
relationships between the nodes in the node set. Depending on the application, the graph (and the
associated node and edge sets) can be used to represent a wide variety of concepts. For example,
molecules can be modeled as a graph by representing atoms as nodes and bonds as edges (Bongini
et al., 2021), while social networks can be modeled as a graph by representing people as nodes and
friendships as edges (Newman et al., 2002).

The adjacencymatrix,A = aij
� �

∈R∣V∣× ∣V∣, is another way to represent the edge set of a graph. Consider
the case where the nodes are indexed by a number, i= 1,⋯, ∣V∣. If nodes i and j in the graph are connected
via an edge, that is, if for i, j∈V, we have i, jð Þ∈E, the corresponding entry in the adjacency matrix is
aij = 1. Otherwise, we have aij = 0. In this manuscript, we consider exclusively undirected graphs,

Figure 1. Visualization of CNN kernel attempting to perform dimensional compression upon a structured
mesh (left) and an unstructured mesh (right). Note that the nature of a structured mesh enables direct
implementation into a CNN kernel for dimensionality reduction. Specifically, a structured mesh is

essentially a pixel-based image commonly found in the CNN literature. Alternatively, the unstructured
mesh is not readily formulated as a pixel-based image, meaning that the CNN kernel cannot be

immediately applied to the unstructured mesh.

e52-6 Liam Magargal et al.

Downloaded from https://www.cambridge.org/core. 21 Nov 2025 at 18:35:23, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

meaning for any edge in the graph, i, jð Þ∈E, we also have j, ið Þ∈E. With this formulation, our adjacency
matrix will be symmetric. Avisualization of the construction of the adjacency matrix for a given graph is
found in Figure 3.

A node feature matrix, X∈R∣V∣ ×NF , can be utilized to prescribe feature information to the node set of
the graph, where the ith row of X denotes the node feature vector of the ith node in the graph, and NF ∈ℕ
denotes the number of features prescribed to each node.

3. Dimension reduction via graph autoencoders

In this section, we develop the specifics of the graph autoencoder used in GD-LSPG. Upon spatial
discretization of the physical domain, each collocation point (e.g., either a cell center in the FVMmesh or
a mesh node in the FEM) is represented by a node. We take the node set V to represent the collocation
points in the discretized domain, that is, ∣V∣=Nc. To emulate themanner inwhich CNNs filter information
from neighboring grid points in the spatial discretization, we take the edge set, E, to connect the node
representation of collocation points within a user-defined radius of each other, that is,

E =Radius_Graph Pos,rð Þ= ∀ j,kð Þ : j,k ∈V, kPosj�Poskk≤ r
� �

, (3.1)

where Pos∈RNc × nd is the matrix denoting the spatial positions of the node-representation of the
collocation points in the discretization. Row j of the matrix (i.e., Posj) denotes the position of node
j∈V, nd ∈ℕ denotes the spatial dimensionality of the modeled problem, j and k denote the indices of the
corresponding nodes in the node set, r∈R denotes the user-defined radius, and k � k :Rnd!R + denotes

Figure 3. Formation of the adjacency matrix from a given graph.

Figure 2. Visualization of graph autoencoder performing dimensional compression upon a structured
mesh (left) and an unstructuredmesh (right). Note that, unlike CNNs, the GNN framework readily accepts
both structured and unstructured meshes by modeling collocation points as graph nodes and prescribing

edges between the collocation points close to each other in the domain.

Data-Centric Engineering e52-7

Downloaded from https://www.cambridge.org/core. 21 Nov 2025 at 18:35:23, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

the Euclidean norm. The adjacency matrix is used to represent the edge set in a matrix format.
Alternatively, one could choose to employ an edge set defined by a fixed number of nearest neighbors
or an edge set defined by the neighboring collocation points in the mesh. We choose here to define the
edge set by the Radius_Graph function (Eq. 3.1), as it allows for user control over the number of edges
prescribed to each node and is a notion that is not lost under the hierarchical compression used in the graph
autoencoder described in Section 3.1 (unlike an edge set defined by neighboring collocation points in the
mesh), does not prescribe unnecessary edges or skewed graph topology near boundaries (unlike a fixed
number of nearest neighbors), and ensures that the graph is undirected (a requirement for spectral
clustering).

The feature matrix,X∈RNc × nq is a matrix with the number of rows equal to the number of collocation
points in the discretization, that is,Nc, and the number of columns equal to the number of state variables in
the governing PDE, nq. In other words, the featurematrixX is thematrix version of the state vector x∈RN

(with N = nqNc) introduced in Section 2. As a result, the formulation has a direct mapping between the
state vector x and the node feature matrix X (Matricize : x↦X, with Matricize :RNcnq!RNc × nq) and a
direct mapping between the node feature matrix X and the state vector x (Vectorize :X↦x, with
Vectorize :RNc × nq!RNcnq).

Once a graph representation of a solution state is constructed, it can be encoded to a latent represen-
tation with a graph autoencoder following the general form of Eqs. (2.4) and (2.5). In the subsequent
sections, we present the graph autoencoder used in the GD-LSPG framework and the specifics of the
architecture of the encoder and the decoder. First, Section 3.1 presents a hierarchical spectral clustering
algorithm used by the autoencoder to generate a hierarchy of reduced graphs to emulate the compressive
abilities of CNNs. Next, Section 3.2 details the encoder architecture and its deployment of the hierarchy of
reduced graphs to create a low-dimensional embedding of the input graph. Then, Section 3.3 details the
decoder architecture and its deployment of the hierarchy of reduced graphs in reverse order to reconstruct
the original input graph from its latent representation. In our graph autoencoder, we include an additional
layer with no trainable parameters for preprocessing and postprocessing in the encoder (Section 3.2.1) and
the decoder (Section 3.3.3), respectively. Finally, Section 3.4 presents the training strategy deployed to
optimize the training parameters of the encoder and decoder. Figure 4 provides a visual representation of
the graph autoencoder deployed in GD-LSPG, with nℓ = 3 for demonstration purposes.

3.1. Generating a hierarchy of reduced graphs with spectral clustering

To compute a hierarchy of reduced graphs for the autoencoder used in GD-LSPG, at each level in the
hierarchy, we aim to partition the graph into a pre-defined number of non-overlapping sets of strongly
connected nodes. We then use the partitions to aggregate each cluster of nodes together into a single node
at the next layer of the hierarchy, thereby reducing the number of nodes in the graph and the total
dimension of the graph. In this study, we have chosen spectral clustering for two reasons. First, spectral
clustering leverages knowledge of graph topology to compute cluster assignments, thereby considering
the physical domain’s inherent geometry during clustering. Second, its implementation is straightforward
because it relies on the same edge sets used during message passing at each level of the hierarchy of
reduced graphs. The interested reader is directed to Von Luxburg (2007) for further discussion on the
advantages of spectral clustering for graph-structured data.

We consider the case where the encoder and the decoder each have nℓ ∈ℕ layers. As will be presented
in the subsequent sections, the encoder and decoder both have a fully connected/multi-layer perceptron
(MLP) layer along with nℓ�1 layers with compressed graphs. Therefore, in this section, we aim to
produce a hierarchy of reduced graphs composed of nℓ�1 reduced graphs that result in a hierarchy of nℓ
graphs, including the input graph of the discretized FOM (i.e., graph 0). The graphs in the encoder and
the decoder will have the same topology but with reverse ordering. This means that the ith graph in the
hierarchy of the graphs of the encoder, i= 0,⋯,nℓ�1, will be equivalent to the nℓ� i�1ð Þth graph of the
decoder (refer to Figure 4). In other words, the first graph of the decoder is the nℓ�1ð Þth (final) graph of
the encoder, and the final graph of the decoder is the zeroth (original) graph of the encoder. Hence, we

e52-8 Liam Magargal et al.

Downloaded from https://www.cambridge.org/core. 21 Nov 2025 at 18:35:23, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Figure 4.Graph autoencoder architecture deployed in GD-LSPG. Vertical dotted lines represent the separation between layers in the hierarchy of reduced
graphs. Boxes over the vertical dotted lines at the bottom of the figure represent specific layers of the autoencoderdescribed in this section. The encoder is the
trained mapping between the high-dimensional state x and the low-dimensional latent space bx. The encoder is comprised of a preprocessing layer to model
the input state vector as a graph, followed by a series of trainedmessage passing and pooling (MPP) layers to reduce the numberof nodes in the graph, then a
flattening and fully connected/multilayer perceptron (MLP) layer. The resulting low-dimensional state vector is sent to the decoder, which is the trained
mapping between the low-dimensional latent space bx and the reconstructed high-dimensional state ~x. The decoder is comprised of a fully connected/MLP
layer, followed by a series of unpooling and message passing (UMP) layers to increase the number of nodes in the graph, and then a postprocessing layer to
prepare the output for deployment in the time integration scheme. Note that the superscript i in Posi andEi represents the graph number in the hierarchy of

graphs with i= 0 denoting the original graph representing the discretized mesh.

D
ata-C

entric
E
ngineering

e52-9

D
ow

nloaded from
 https://w

w
w

.cam
bridge.org/core. 21 N

ov 2025 at 18:35:23, subject to the Cam
bridge Core term

s of use.

https://www.cambridge.org/core

focus on building the hierarchy of the graphs for the encoder. This task can be achieved byminimizing the
number of “broken” edges in the graph topology of the i�1ð Þth layer to form the clusters for the ith layer’s
graph. The graph representation of the FOM,G0 = V0,E0� �

are given from Eq. (3.1) using the discretized
mesh of the FOM. In addition, the number of nodes in the layers i= 1,⋯,nℓ�1, that is,
jV1j, jV2j,⋯, jVnℓ�1j� �

, along with the radius used in Eq. (3.1), that is, r0,r1,…,rnℓ�1
� �

, are hyperpara-
meters prescribed a priori, dictating the amount of reduction performed and the number of edges at each
layer in the hierarchy. These hyperparameters in our graph autoencoder framework can be viewed to be
equivalent to the kernel size and stride used to construct a CNN-based autoencoder.

At layer i∈ 1,⋯,nℓ�1f g of the encoder, we aim to reduce the number of nodes from ∣Vi�1∣ in layer
i�1 to ∣Vi∣ in layer i, with ∣Vi∣< ∣Vi�1∣, by clustering nodes that are strongly connected. This action is
carried out by forming ∣Vi∣ clusters, that is, Ai�1

1 ,Ai�1
2 ,⋯,Ai�1

∣Vi∣ with the following conditions,

∣Ai�1
j ∣ ≥ 1, j= 1,⋯, ∣Vi∣

Ai�1
j ⊂Vi�1, j= 1,⋯, ∣Vi∣

Ai�1
j ∩Ai�1

k = �0, j ≠ k, j,k = 1,⋯, ∣Vi∣

Ai�1
1 [Ai�1

2 [⋯[Ai�1
∣Vi∣ =V

i�1,

8>>>>><>>>>>:
(3.2)

which ensures that all clusters are a nonempty subsets of the node set of layer i�1, the intersection of any
two distinct clusters is the empty set, and the union of all clusters is equal to the node set of layer i�1. In
Eq. (3.2), ∣ � ∣ denotes the cardinality of the set. To define clusters,Ai�1

1 ,Ai�1
2 ,⋯,Ai�1

∣Vi∣ , we minimize the
RatioCut function (Wei and Cheng, 1989),

RatioCut : Vi�1,Ei�1� �
↦

1
2

X∣Vi∣

k = 1

∣∀ u,vð Þ∈Ei�1 : u∈Ai�1
k ,v∈A

i�1
k ∣

∣Ai�1
k ∣

, (3.3)

that tends to measure the number of broken edges for the given cluster choice, where Ei�1 denotes the
edge set of the graph at the i�1ð Þth level in the hierarchy, u,vð Þ represents any existing edge in Ei�1

connecting nodes u and v,Ai�1
k ⊂Vi�1 denotes a subset of nodes in the graph at the i�1ð Þth level in the

hierarchy andA
i�1
k =Vi�1\Ai�1

k denotes the complement of the setAi�1
k at the same level.Minimizing the

RatioCut from Eq. (3.3) results in clusters of locally connected nodes with relatively equal sizes
(Hamilton, 2020).

The number of distinct ways we can choose ∣Vi∣ clusters from ∣Vi�1∣ nodes while satisfying conditions
of Eq. (3.2) is determined from the Stirling number of the second kind (Rennie and Dobson, 1969),

S n,kð Þ= 1
k!

Pk
j = 0 �1ð Þj k

j

� 	
k� jð Þn with n= ∣Vi�1∣ and k = ∣Vi∣ resulting in an NP-hard minimization

problem (Von Luxburg, 2007; Hamilton, 2020). As discussed in Von Luxburg (2007), spectral clustering
introduces a relaxation on the minimization problem to eliminate its discrete nature. The departure from a
discrete set allows the user to perform an eigenvalue analysis on the graph to generate the clusters.
Specifically, spectral clustering groups nodes together based on their spectral features defined by the
eigenvectors of the Laplacian using any one of a wide variety of standard clustering techniques. In this
study,K�means clustering (MacQueen, 1967) is chosen as it is commonly used for this application in the
literature (Von Luxburg, 2007; Hamilton, 2020). The algorithm for building the hierarchy of reduced
graphs is summarized in Algorithm 1.

The method of spectral clustering from Hamilton (2020) is leveraged in this study and makes up steps
1�4 ofAlgorithm 1, wherePosi ∈R∣Vi∣× nd denotes thematrix of spatial coordinates for the graph at the ith

level in the hierarchy,Ai is the adjacency matrix of the ith layer in the hierarchy generated by the edge set,
Ei, of layer i, previously defined in Eq. (3.1), ri ∈R+ denotes a user-prescribed radius to be used in

Eq. (3.1), Si ∈R∣Vi + 1∣ × ∣Vi∣ denotes the assignment matrix of the ith layer of the hierarchy which is used to
assign each node in layer i to a cluster in layer i+ 1, and thus a portion of a single node at the layer i+ 1 in

e52-10 Liam Magargal et al.

Downloaded from https://www.cambridge.org/core. 21 Nov 2025 at 18:35:23, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

the hierarchy. The assignment matrix (defined to act as an arithmetic mean on the features of the nodes in
each cluster) is used to cluster and decrease the number of nodes in the graph at each step in the hierarchy

of reduced graphs. In Algorithm 1,Di ∈R∣Vi∣ × ∣Vi∣ is the diagonal degreematrix representing the number of
edges connected to each node in the ith layer of the hierarchy, Li =Di�Ai is the Laplacian of the graph

associated with the ith layer in the hierarchy, Bi ∈R∣Vi∣ × jVi+ 1j�1ð Þ denotes the spectral node feature matrix
formed by the eigenvectors associated with the ∣Vi + 1∣�1 smallest eigenvalues of Li, excluding the
smallest. According to Von Luxburg (2007), the smallest eigenvalue of the unnormalized Laplacian is
simply zero and can therefore be neglected. As dimensional compression is performed in the hierarchy of
reduced graphs, the nodes of the graphs deeper in the hierarchy tend to become closer together due to the
nature of the positions of each node being computed based on the arithmetic mean of the positions of their
corresponding cluster in the previous layer. To avoid the natural accumulation of the nodes to a smaller

spatial domain, a rescaling operator, that is, Rescale :R∣Vi+ 1∣ × nd!R∣Vi+ 1∣× nd is used at each layer to
rescale Posi + 1 such that the maximum and minimum values of the coordinates match that of the previous
layer in the hierarchy. This algorithm is visually represented in Figure 5.

The construction of the hierarchy of reduced graphs is performed in the offline stage. While the
hierarchy of graphs will be utilized in the encoder and decoder, the architecture of the encoder and

Figure 5. A visual representation of Algorithm 1 for generating a hierarchy of reduced meshes. In this
figure, it is assumed that the collocation points are cells in the FVM discretization, however the same
principles apply for discretization used in various other methods in computational mechanics. The input
mesh (top left, generated for a domain V and its boundary ∂V represented by the solid black box) is

modeled as the layer“0” graph inwhich the collocation points of the discretized domain form the node set
V0, and the edge set E0 (and subsequently the associated adjacency matrix A0) are determined from
Eq. (3.1) by determining the nodes that fall within r0 distance of each other. At layer i (i = 0,⋯,nℓ�2),
nodes are partitioned into clusters using a spectral clustering algorithm to achieve a dimensionally
reduced graph from that of layer i. The nodal positions of the graph of layer i+ 1, obtained from the
arithmetic mean position of node clusters from layer i, are rescaled to ensure that the maximum and

minimum coordinates of the nodes in graph layer i+ 1 are equal to those of layer i, where the maximum
andminimum values of the x and y coordinates are represented by the grey dotted box. Finally, the edge set

of the reduced graph of layer i+ 1, that is, Ei+ 1, is determined from Eq. (3.1).

Data-Centric Engineering e52-11

Downloaded from https://www.cambridge.org/core. 21 Nov 2025 at 18:35:23, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

decoder does not influence the spectral clustering step. The graph autoencoder must use only the
exact hierarchy of graph topologies seen during training, that is, if the original mesh is changed or if
the hyperparameters of the hierarchy of reduced graphs are modified, the graph autoencoder must be
retrained.

Algorithm 1: Hierarchical spectral clustering for graph reduction

Inputs: Pos0,nℓ, ∣V1∣,…, ∣Vnℓ�1∣,r0,…,rnℓ�1

Outputs: E0,…,Enℓ�1,S0,…,Snℓ�2,Pos1,…,Posnℓ�1

Initialize i 0
Initialize E0 Radius_Graph Pos0,r0

� �
;

while i< nℓ�1 do
1. Compute the adjacency matrix, Ai, from Ei

2. Compute the graph Laplacian,Li Di�Ai

3. Form the spectral node feature matrix,Bi ∈ℝ∣Vi∣× jVi+ 1j�1ð Þ, with the eigenvectors associated with
the ∣Vi + 1∣�1 smallest eigenvalues of Li (excluding the smallest) as its columns;

4. Obtain node clustersAi
1,A

i
2,…,Ai

∣Vi + 1∣ by performingK�means clustering on the spectral node
features (i.e., the rows of Bi)

5. Generate the assignment matrix, Si ∈ℝ∣Vi+ 1∣× ∣Vi∣, such that Sijk =
1

∣Ai
j∣
if k ∈Ai

j, and Sijk = 0,
otherwise.

6. Posi + 1 Rescale SiPosi
� �

7. Compute the edge set for layer i+ 1 based on nearest neighbors within the radius
ri + 1,Ei + 1 Radius_Graph Posi + 1,ri + 1

� �
8. i i+ 1

end

3.2. Encoder architecture

The encoder architecture deploys the hierarchy of reduced graphs computed via the procedure from
Section 3.1. The encoder consists of layers i= 0,…,nℓ. The zeroth layer (i= 0), outlined in Section 3.2.1,
is a preprocessing layer that tailors the input data x to the form suited for the graph autoencoder. Layers
i= 1,…,nℓ�1, outlined in Section 3.2.2, leverage the hierarchy of reduced graphs from Section 3.1 to
perform message passing and pooling (MPP) operations that reduce the dimension of the system. The
final layer of the encoder (i= nℓ), as outlined in Section 3.2.3, utilizes an MLP to arrive at the low-
dimensional embedding x̂.

3.2.1. Preprocessing – layer 0
The preprocessing layer of the encoder (i= 0) encompasses two operators,Matricize and Scale, acting on
the input vector x. For a FOMwith nq state variables, theMatricize operator is used to convert x∈RnqNc

to the node feature matrix X∈RNc × nq in which each column of the matrix represents the nodal values of
one state variable. If the FOM consists of only one state variable (i.e., nq = 1), X= x, and the Matricize
operator will be the identity operator. As defined in Eq. (3.4), the Scale operator acts on the resulting node
feature matrix to improve the numerical stability of training, as is commonly performed in the literature
(Lee and Carlberg, 2020, 2021),

Scale :X0
ij↦

X0
ij�Xmin

j

Xmax
j �Xmin

j

, i= 1,…,Nc, j= 1,…,nq (3.4)

where Scale :R! 0,1½ � is an element-wise scaling operator acting on the elements of X, and Xmax
j ,

Xmin
j ∈R denote the maximum and minimum values, respectively, of the jth feature (i.e., jth column of

e52-12 Liam Magargal et al.

Downloaded from https://www.cambridge.org/core. 21 Nov 2025 at 18:35:23, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

matrix X) in the solution states used to train the autoencoder, which are determined and stored before
training begins. The resulting form of the preprocessing layer is

h0 : x;Θ0ð Þ↦Scale �ð Þ ∘Matricize xð Þ, (3.5)

where h0 :RNcnq!RNc × nq , andΘ0 = �0 is the empty set, as the preprocessing layer does not have trainable
weights and biases.

3.2.2. Message passing and pooling (MPP) – layers 1,…,nℓ�1
The MPP layer consists of two processes, where each relies upon the hierarchy of reduced graphs
computed in Section 3.1. The first operation is a message passing operation, wherein nodes connected
by an edge exchange information with each other to obtain information about nearby nodes. The
optimal information exchange is obtained from training the autoencoder. In the encoder, the message
passing operation in layer i increases the number of features associated with each node fromNi�1

F ∈ℕ to
Ni

F ∈ℕ. We take our message passing operation to be a mean aggregation SAGEConv from Hamilton
et al. (2017), which applies updates to each node based on the arithmeticmean of its neighbors’ features,
that is,

MPi
enc : Xi�1;Θi

� �
↦σ Xi�1

j Wi
1 + meann∈Ki�1 jð ÞX

i�1
n

 �
Wi

2

 �
, j= 1,…, ∣Vi�1∣, (3.6)

withMPi
enc :R∣Vi�1∣ ×Ni�1

F ×RNi�1
F ×Ni

F ×RNi�1
F ×Ni

F !R∣Vi�1∣×Ni
F , whereXi�1 ∈R∣Vi�1∣×Ni�1

F denotes the input
node feature matrix to the ith layer, the subscripts j and n denote the jth and nth rows of Xi�1, Wi

1,

Wi
2 ∈RNi�1

F ×Ni
F denote the weights withΘi = Wi

1,W
i
2

� �
denoting the set of weights for the ith MPP layer,

Ki�1 jð Þ denotes the set of nodes connected to node j based on the adjacency matrix Ai�1, where j∈ℕ
denotes the jth node in the graph at layer i�1, and σ :R!R denotes the element-wise activation function,
chosen here to be the exponential linear unit (ELU) due to its continuously differentiable property (Clevert
et al., 2016). The SAGEConv function described in Eq. (3.6) includes a loop over all nodes j∈Vi�1, where
for each node, the jth row of the outputX

i�1
of the message passing operation is calculated. The output of

Eq. (3.6) has the same number of rows as its input, Xi�1, but can have a different number of features
(i.e., Ni

F is not necessarily equal to Ni�1
F).

The next step of theMPP layer is a pooling operation. In the pooling operation, the assignmentmatrices
from Section 3.1 are used to reduce the number of nodes in a graph. By construction, the assignment
matrices are equivalent to an arithmetic mean operation. As a result, we use them to compute the
arithmetic mean feature vector of each cluster to get Xi, that is,

Pooli : X
i�1
 �

↦Si�1Xi�1
, (3.7)

with Pooli :R∣Vi�1∣×Ni
F !R∣Vi∣ ×Ni

F , where X
i�1 ∈R∣Vi�1∣ ×Ni

F denotes the output of the message passing
operation,MPi

enc, and S
i�1 ∈R∣Vi∣ × ∣Vi�1∣ is the assignment matrix precomputed by the spectral clustering

algorithm in Section 3.1. The full MPP layer takes the form,

hi : Xi�1;Θi

� �
↦Pooli �ð Þ ∘MPi

enc Xi�1;Θi

� �
, (3.8)

with hi :R∣Vi�1∣ ×Ni�1
F ×RNi�1

F ×Ni
F ×RNi�1

F ×Ni
F !R∣Vi∣ ×Ni

F . Hence, the MPP layer, as visually represented in
Figure 6, decreases the number of nodes in a given graph and increases the number of features associated
with each node.

3.2.3. Fully connected layer: compression – layernℓ
In the final layer of the encoder (i= nℓ), we first flatten the input matrixXnℓ�1 ∈R∣Vnℓ�1∣ ×Nnℓ�1

F to a vector-
representation, that is, Flatten :Xnℓ�1↦xnℓ�1, where xnℓ�1 ∈R∣Vnℓ�1∣Nnℓ�1

F . Here, we note that the Flatten
operator is similar to theVectorize operator, but with dimensions different than the node feature matrix of

Data-Centric Engineering e52-13

Downloaded from https://www.cambridge.org/core. 21 Nov 2025 at 18:35:23, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

the full-order solution. Next, a fully connected/MLP layer is applied to the flattened state to compress it to
a low-dimensional vector representation, that is,

MLPenc : xnℓ�1;Θnℓ

� �
↦Wnℓxnℓ�1, (3.9)

with MLPenc :R∣Vnℓ�1∣Nnℓ�1
F ×RM × ∣Vnℓ�1∣Nnℓ�1

F !RM , where Wnℓ ∈RM × ∣Vnℓ�1∣Nnℓ�1
F denote the weights

with Θnℓ = Wnℓf g. Note that no activation function is applied to the output, as the inclusion of an
activation functionwas empirically found to be prone to vanishing gradients during time integrationwhen
performed in themanner outlined in Section 4. Furthermore, no bias term is included, as it was empirically
found to be unnecessary. The final layer of the encoder architecture takes the form

hnℓ : Xnℓ�1;Θnℓ

� �
↦MLPenc �;Θnℓð Þ ∘Flatten Xnℓ�1� �

, (3.10)

with hnℓ :R∣Vnℓ�1∣ ×Nnℓ�1
F ×RM × ∣Vnℓ�1∣Nnℓ�1

F !RM . The output of this layer, x̂∈RM , is the low-dimensional
latent representation of the solution state.

3.3. Decoder architecture

Much like the encoder, the decoder architecture deploys the hierarchy of reduced graphs from Section 3.1.
The decoder consists of layers i= 0,…,nℓ. The zeroth layer (i= 0), outlined in Section 3.3.1, utilizes an
MLP to reconstruct a small graph from the low-dimensional latent representation, x̂. Layers
i= 1,…,nℓ�1, outlined in Section 3.3.2, leverage the hierarchy of reduced graphs from Section 3.1 in
reverse order to perform unpooling and message passing (UMP). The final layer of the decoder (i= nℓ),
outlined in Section 3.3.3, is a postprocessing layer that restructures the output graph into a state vector for
deployment in the time integration scheme.

3.3.1. Fully connected layer: expansion – layer 0
The zeroth layer of the decoder (i= 0) entails two functions. It first applies a fully connected/MLP layer to
the latent representation,

MLPdec : x̂;Ω0ð Þ↦σ W0x̂
� �

, (3.11)

with MLPdec :RM ×R∣Vnℓ�1∣Nnℓ�1
F ×M!R∣Vnℓ�1∣Nnℓ�1

F , where W0 ∈R∣Vnℓ�1∣Nnℓ�1
F ×M denote the weights of

the MLP layer of the decoder, with Ω0 = W0� �
, and σ :R!R denotes the element-wise activation

function. Additionally, note that, much like in the encoder, the fully connected/MLP layer does not have a
bias, as it was empirically noticed to be unnecessary. An unflattening operator is then applied to the output
of the fully connected layer, y0, to generate a node feature matrix corresponding to the nℓ�1 graph in the

Figure 6.MPP layer used in the encoder of our graph autoencoder. The layer accepts a graph as input
and performsmessage passing to exchange information between locally connected nodes. Next, the graph
nodes are pooled together based on their clusters from the hierarchical spectral clustering algorithm.
This pooling operation reduces the number of nodes in the graph to perform dimensional compression.

e52-14 Liam Magargal et al.

Downloaded from https://www.cambridge.org/core. 21 Nov 2025 at 18:35:23, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

hierarchy of reduced graphs, Unflatten : y0↦Y0, with Unflatten :R∣Vnℓ�1∣Nnℓ�1
F !R∣Vnℓ�1∣×Nnℓ�1

F , where

y0 ∈R∣Vnℓ�1∣Nnℓ�1
F denotes the output of MLPdec and Y0 ∈R∣Vnℓ�1∣×Nnℓ�1

F . We note that the unflattening
operator is similar to the Matricize operator introduced previously but applied to a vector with a size
different from the full-order state vector. Ultimately, the first layer of the decoder takes the form,

g0 : x̂;Ω0ð Þ↦Unflatten �ð Þ ∘MLPdec x̂;Ω0ð Þ, (3.12)

where g0 :RM ×R∣Vnℓ�1∣Nnℓ�1
F ×M!R∣Vnℓ�1∣ ×Nnℓ�1

F .

3.3.2. Unpooling and message passing (UMP) – layers 1,…,nℓ�1
The next layers in the decoder architecture (i= 1,…,nℓ�1) consist of UMP layers. The first step in a
UMP layer is to perform an unpooling operation, wherein nodes are reintroduced to the graph, and their
feature vectors are interpolated. In layer i of the decoder with i= 1,⋯,nℓ�1, the unpooling operation
receives the graph of layer nℓ� i as an input and outputs the graph of layer nℓ� i�1 in the hierarchy of
nℓ�1 graphs of the encoder. For example, in Figure 4 with nℓ = 3, the input and output to the second layer
of the decoder (i= 2) are the graphs of 1st layer (nℓ� i= 1) and the zeroth layer (nℓ� i�1= 0) of the
hierarchy of graphs in the encoder, respectively. For ease of notation, we introduce î= nℓ� i as a counter
used to denote the hierarchy of reduced graphs in the opposite order as the encoder. In the unpooling
operation of layer i of the decoder, a node’s features of graph î are interpolated using the k-nearest
neighbors of the node features of graph î�1,

Unpooli :Yi�1↦

P
n∈Nî�1 jð Þw Posî�1j ,Posîn

 �
Yi�1

nP
n∈Nî�1 jð Þw Posî�1j ,Posîn

 � , j= 1,⋯, ∣Vî�1∣ (3.13)

where,

w : Posî�1j ,Posîn

 �

↦
1

kPosî�1j �Posînk
, (3.14)

withUnpooli :R∣Vî∣ ×Nî
F !R∣Vî�1∣ ×Nî

F ,Nî�1 jð Þ is the k�nearest neighbors inVî of the jth node inVî�1, with
k ∈ℕ denoting the number of nearest neighbors used for interpolation. Posî�1j ∈Rnd is the spatial position

of the jth node at the ð̂i�1Þth layer of the hierarchy of reduced graphs, Posîn ∈Rnd is the spatial position of

the nth node in the î
th
layer in the hierarchy of reduced graphs, w :Rnd ×Rnd!R + denotes the spatial

interpolation function, and k � k :Rnd!R+ denotes the Euclidean norm. Much like the SAGEConv

function Eq. (3.6), the unpooling of Eq. (3.13) is performed by looping over all nodes, j∈Vî�1, to

compute the rows j= 1,⋯, ∣Vî�1∣ of the output of the unpooling operation, Y
i�1 ∈R∣Vî�1∣ ×Nî

F . Next, a
message passing operation is applied to the outputs of the unpooling operation,

MPi
dec : Y

i�1
;Ωi

 �
↦σ Y

i�1
j W i

1 + mean
n∈Kî�1 jð ÞY

i�1
n

 �
Wi

2

 �
, j= 1,⋯, ∣Vî�1∣, (3.15)

with MPi
dec :R∣Vî�1∣ ×Nî

F ×RNî
F ×Nî�1

F ×RNî
F ×Nî�1

F !R∣Vî�1∣×Nî�1
F , where Wi

1,W
i
2 ∈RNî

F ×Nî�1
F denote the

weights with Ωi = Wi
1,W

i
2

� �
denoting the set of weights for the ith UMP layer, Kî�1 jð Þ denotes the set

of nodes connected to node j in the graph of î�1
� �th

layer based on the adjacency matrixAî�1, where the
subscripts j and n denote the jth and nth nodes, respectively, and σ :R!R denotes the element-wise
activation function. According to Eq. (3.15), the output of MPi

dec is determined in a row-wise manner.
Ultimately, the UMP layer takes the form,

Data-Centric Engineering e52-15

Downloaded from https://www.cambridge.org/core. 21 Nov 2025 at 18:35:23, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

gi : Yi�1;Ωi

� �
↦MPi

dec �;Ωið Þ ∘Unpooli Yi�1� �
, (3.16)

with gi :R∣Vî∣×Nî
F ×RNî

F ×Nî�1
F ×RNî

F ×Nî�1
F !R∣Vî�1∣ ×Nî�1

F . Hence, the UMP layer increases the number of
nodes in a given graph and decreases the number of features associated with each node, and it gives the
node feature matrix Y i as the output. The UMP layer is visually represented in Figure 7.

3.3.3. Postprocessing – layernℓ
To represent the output of the decoder as a state vector for appropriate deployment in the time integration
scheme, a postprocessing step is applied as the final layer (i= nℓ). First, the InvScale operator is applied to
invert the original Scale operation,

InvScale :Ynℓ�1
ij ↦Ynℓ�1

ij Xmax
j �Xmin

j

 �
+Xmin

j , (3.17)

where InvScale :R!R is an element-wise scaling operator. Next, a Vectorize operator is applied to
reshape the output of the decoder to a state vector. Ultimately, the postprocessing step takes the form,

gnℓ : Ynℓ�1;Ωnℓ

� �
↦Vectorize �ð Þ ∘ InvScale Ynℓ�1� �

, (3.18)

where gnℓ :R
Nc × nq!RNcnq , and Ωnℓ = �0 is the empty set, as there are no trainable parameters in the

postprocessing layer. The output of the decoder ~x∈RN is a reconstruction of the original state vector x.

3.4. Training the autoencoder

The components of the autoencoder that require training are the message passing operations and fully
connected/MLP layers with θ = Θ1,Θ2,⋯,Θnℓf g, ω= Ω0,Ω1,⋯,Ωnℓ�1f g as trainable parameters. To
train these, we adopt the same loss function as Lee and Carlberg (2020, 2021), which is the L2-norm of the
reconstructed solution state,

L =
XN train

i= 1

xi�Dec �ð Þ ∘Enc xi
� ��� ��2

2, (3.19)

where xi ∈RN is the ith solution state in the training set andN train ∈ℕ denotes the total number of training
solution states generated by the FOM.

Figure 7.UMP layer used in the decoder of our graph autoencoder. The layer accepts a graph as an input
and performs an unpooling operation to re-introduce nodes into the graph, thus increasing the dimension
of the graph. Next, message passing is performed on the unpooled graph to exchange information

between locally connected nodes.

e52-16 Liam Magargal et al.

Downloaded from https://www.cambridge.org/core. 21 Nov 2025 at 18:35:23, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

4. Projection scheme and interpretability

Time-stepping for ROMs using autoencoders has been achieved by a variety of methods, including
training neural networks to compute time updates (Kim et al., 2019; Regazzoni et al., 2019; Fresca et al.,
2021; Maulik et al., 2021; Fresca and Manzoni, 2022), identifying low-dimensional systems of ODEs
(Fries et al., 2022; He et al., 2023), and projecting the semi-discretized equations of the FOM onto a
nonlinear manifold (Lee and Carlberg, 2020, 2021; Chen et al., 2022; Kim et al., 2022). To examine the
autoencoder’s ability to embed the physics of the FOM, we choose to perform time integration using the
time-discrete residual-minimizing LSPG projection (Carlberg et al., 2011, 2017; Lee and Carlberg, 2020,
2021). Specifically, GD-LSPG leverages the graph autoencoder to project the governing equations onto a
low-dimensional latent space, thus performing time integration on the latent state variables.

4.1. Least-squares Petrov–Galerkin projection

In this section,we summarize themain points from the literature to provide sufficient background on theLSPG
projection and how it is leveraged in this scope of work and direct the reader to Carlberg et al (2011, 2013,
2017) and Lee and Carlberg (2020, 2021)for further background and properties of the LSPG projection.

To illustrate, we set the initial conditions of the low-dimensional state vector to be the encoding of the
initial conditions of the high-dimensional system, that is, x̂ 0;μÞ=Enc x 0;μð Þð Þð , and approximate the full-
order state vector of the solution of the system, (Eq. 2.1), to be,

~x t;μð Þ=Dec x̂ t;μð Þð Þ, (4.1)

where ~x :R + ×D!RN denotes the predicted solution state. As is performed across the literature
(Carlberg et al., 2011; Lee and Carlberg, 2020, 2021), we next substitute Eq. (4.1) into Eq. (2.3) and
project the residual onto a test basis, Ψ∈RN ×M , to prevent the system from becoming overdetermined.
Ultimately, we arrive at the following minimization problem:

x̂ t;μð Þ= argmin
ξ̂ ∈RM

Ψ ξ̂

;μÞÞTr Dec ξ̂ t;μð Þ

 �
 ���� ���2

2
, (4.2)

where ξ̂ ∈RM is the sought-after low-dimensional solution state at time t. Under this approximation, the
boundary conditions are not explicitly preserved. However, boundary conditions are promoted implicitly
by the chosen time-discrete residual minimizing projection scheme. Taking the test basis,
Ψ :RM ×D!RN ×M , to be,

Ψ : ξ̂;μ

 �

↦
∂r
∂x

Dec ξ̂ t;μð Þð Þ

 !
dDec

dξ̂

ξ̂ t;μð Þ

 !
, (4.3)

a nonlinear manifold LSPG projection is obtained (with dDec
dξ̂

ξ̂ t;μð Þ

denoting the Jacobian of the decoder),

and an iterative Newton solver can be used to minimize (Eq. 4.2). Such a solver takes the form,

Ψ x̂n jð Þ;μ

 �
 �T

Ψ x̂n jð Þ;μ

 �

x̂n j + 1ð Þ � x̂n jð Þ

 �

= �β jð Þ Ψ x̂n jð Þ;μ

 �
 �T

r Dec x̂n jð Þ

 �

;μ

 �

, (4.4)

where the superscript n jð Þ denotes the jth iteration of nth time step, β jð Þ ∈R + is the step size chosen to satisfy
Wolfe conditions (Nocedal andWright, 1999). An initial guess at each time step is chosen to be x̂n 0ð Þ = x̂n�1,
where x̂n�1 denotes the converged solution from the previous time step, n�1. The solution is updated
iteratively until the L2-norm of the reduced-state residual for the current iteration falls below a user-prescribed
fraction of that of the initial guess at the time step n= 1 (which is the encoded initial condition, x̂0),

Convergence criterion :
r̂ x̂n jð Þ;μ

 ���� ���

2

r̂ x̂1 0ð Þ;μ

 ���� ���

2

≤ κ, (4.5)

Data-Centric Engineering e52-17

Downloaded from https://www.cambridge.org/core. 21 Nov 2025 at 18:35:23, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

where κ∈ 0,1½ � is the user-defined tolerance, and the reduced state residual r̂ is obtained from the
projection of the residual,

r̂ : ξ̂;μ

 �

↦ Ψ ξ̂;μ

 �
 �T

r Dec ξ̂

 �

;μ

 �

: (4.6)

It is important to note that LSPG projections of this form require knowledge of the FOM solver and direct
access to the residual and its Jacobian, meaning GD-LSPG can only be performed for methods in
computational mechanics where these information are available.

4.2. Interpretability of the latent state vector

In this section, we build from the LSPG projection to provide further insight into the interpretability of the
proposed graph autoencoder. Although there is no unified definition for interpretability in scientific
machine learning, in our study, we take it to mean, “the ability to explain or present in understandable
terms to a human,” (the definition fromDoshi-Velez andKim, (2017)). It is known that the latent space for
autoencoders is commonly difficult to interpret due to the entanglement of the latent state variables
(Eivazi et al., 2022; Kang et al., 2022). More broadly, in recent years, interpretability has emerged as a
major focus area in the field of scientific machine learning (Baker et al., 2019).

Here, we demonstrate that the Jacobian of the decoder used in the nonlinear manifold LSPG projection
scheme (Section 4.1) bears a direct analogy to the PODmodes. To illustrate this relationship, consider the
case where the decoder is an affine POD projection (see Appendix B),

~x t;μð Þ=Dec x̂ t;μð Þð Þ≔Φx̂ t;μð Þ, (4.7)

whereΦ∈RN ×M denotes the PODmodes, it can be shown that the Jacobian of the decoder is simply the
POD modes themselves, that is,

dDec
dx̂

x̂ t;μð Þ

=Φ: (4.8)

In this case, substituting Eq. (4.8) into Eq. (4.3) yields a classical POD-LSPG projection. Building on this
intuition, we interpret the Jacobian of the decoder in the graph autoencoder in the samemanner.While the
POD modes are time-invariant and independent of the latent state vector, x̂ t;μð Þ, the Jacobian of the
decoder of the graph autoencoder depends explicitly on x̂ t;μð Þ, indicating that the corresponding modes
evolve over time. Further discussion on the interpretability of the graph autoencoder is provided in
Section 5 through numerical examples.

We can further relate our perspective for investigating interpretability to common strategies found in
the literature, typically, classified as either global or local interpretability (Doshi-Velez and Kim, 2017).
Local interpretability seeks to identify the reason for a specific prediction, whereas global interpretability
seeks to identify the trends in a model’s behavior for all predictions. Through this lens, analyzing the
Jacobian of the decoder for the graph autoencoder can be viewed as a form of local interpretability. In
particular, this approach closely parallels saliency maps (Simonyan et al., 2013), originally developed for
image classification problems. Saliency maps aim to find the features in the input that are most predictive
of the output by employing a first-order Taylor expansion.

5. Numerical experiments

We evaluate the efficiency and accuracy of the GD-LSPG through a series of test problems. First, to
provide a baseline for comparison to the rest of the literature, we use a commonly studied 1D Burgers’
model using a structured mesh (Rewieński, 2003; Lee and Carlberg, 2020, 2021; Barnett et al., 2023).
This allows us to benchmark the accuracy of GD-LSPG with PMOR methods that deploy CNN-based
autoencoders. Second, we deploy GD-LSPG to a model solving the 2D Euler equations for two different
settings. The first setting uses an unstructured mesh to solve a setup for the Riemann problem (Kurganov

e52-18 Liam Magargal et al.

Downloaded from https://www.cambridge.org/core. 21 Nov 2025 at 18:35:23, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

and Tadmor, 2002; Liska andWendroff, 2003). Despite using an unstructured mesh, the domain is square
and regular, meaning we can interpolate the unstructured mesh solution onto a structured mesh solution
that can be deployed to a CNN-based autoencoder. In this setting, we demonstrate that the graph
autoencoder generalizes better than interpolating to a structured mesh and using a CNN-based auto-
encoder. The second setting demonstrates the versatility of GD-LSPG for a problem with a more
complicated geometry. In the second setting, we further evaluate the ability of the graph autoencoder
when presented with noisy training data. All autoencoders are trained with PyTorch (Paszke et al., 2019)
and PyTorch-Geometric (Fey and Lenssen, 2019). A detailed description of the employed autoencoder
architectures and choice of hyperparameters for all examples are provided in Appendix A. To train the
models and therefore minimize (Eq. 3.19), the Adam optimizer (Kingma and Ba, 2014) is deployed to
perform stochastic gradient descent with an adaptive learning rate. In this study, we use reconstruction and
state prediction errors as the primary performance metrics to assess accuracy. The reconstruction error is
used to assess the ROM’s ability to reconstruct a precomputed full-order solution, and it is defined as

autoencoder reconstruction error =

ffiPNt
n= 1 xn μð Þ�Dec ∘Enc xn μð Þð Þk k22

q
ffiPNt

n= 1 xn μð Þk k22
q , (5.1)

where xn μð Þ is the full-order solution at the nth time step. On the other hand, the POD reconstruction error
is evaluated from

POD reconstruction error =

ffiPNt
n= 1 I�ΦΦT

� �
xn μð Þ�� ��2

2

q
ffiPNt

n= 1 xn μð Þk k22
q , (5.2)

where Φ∈RN ×M is the matrix of reduced basis vectors from an affine POD approximation constructed
based on the method of snapshots (see Appendix B).

The state prediction error is used to assess the accuracy of the ROMobtained from different methods in
predicting the full-order solution,

state prediction error =

ffiPNt
n= 1 xn μð Þ�~xn μð Þk k22

q
ffiPNt

n= 1 xn μð Þk k22
q : (5.3)

In all numerical examples, both dLSPG and GD-LSPG employ functorch’s automatic differentiation
(He and Zou, 2021) to obtain the Jacobian of the decoder.

5.1. One-dimensional Burgers’ equation

To benchmark GD-LSPG with dLSPG and POD-LSPG, we use a 1D Burgers’ model on a structured
mesh. Due to its close relationship to the Navier–Stokes equations (Chan et al., 2010) and advection-
driven behavior, the 1D Burgers’ model is commonly chosen as a test case in the literature (Lee and
Carlberg, 2020, 2021; Chen et al., 2022; Geelen andWillcox, 2022; Barnett et al., 2023). In this study, we
choose the numerical experiment originally found in Rewieński (2003) with the added parameterization
from Lee and Carlberg (2020). The governing equation is,

∂w x, t;μð Þ
∂t

+
∂f w x, t;μð Þð Þ

∂x
= 0:02eμ2x, ∀x∈ 0,Lð Þ,∀t∈ 0,Tð �,

w 0, t;μð Þ = μ1, ∀t∈ 0,Tð �,
w x,0;μð Þ = 1, ∀x∈ 0,Lð Þ,

(5.4)

where f wð Þ = 0:5w2, x∈R denotes spatial position, t∈R + denotes time, L∈R denotes the length of the
1D physical domain, and T ∈R + denotes the final time. We utilize the FVM by dividing the spatial
domain into 256 equally sized cells over a domain of length L= 100, lending to a structured finite volume

Data-Centric Engineering e52-19

Downloaded from https://www.cambridge.org/core. 21 Nov 2025 at 18:35:23, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

mesh. A backward-Euler time-integration scheme is employed, which corresponds to the cell-wise
equations at the ith cell,

f i : ξ, t;μð Þ↦ 1
2Δx

wn+ 1
i�1

� �2� wn+ 1
i

� �2
 �
�0:02eμ2xi , (5.5)

with α0 = 1, α1 = �1, β0 = �Δt, β1 = 0, and τ = 1 when written in the form of Eq. (2.2). Note that since
Burgers’ equation involves only one state variable, that is, is a scalar variable. In Eq. (5.5),Δx∈R + is the
length of each cell in the uniform 1D mesh, xi ∈R is the coordinate f the center of the ith cell in the mesh,

and ξ = wn+ 1
1 ,wn+ 1

2 ,…,wn+ 1
Nc

 �T
is the sought-after state solution at the n+ 1ð Þth time step. The time

integration scheme uses a constant time step size Δt = :07 and a final time T = 35 for a total of 501 time
steps per solution including the initial value. To train both the CNN-based autoencoder and the graph
autoencoder, as well as obtain an affine POD basis, the solution to the FOM is computed for a total of
80 parameter scenarios with the parameters μ= μ1 = 4:25+

1:25
9

� �
i,μ2 = :015+

:015
7

� �
j

� �
, for i = 0,…,9 and

j = 0,…,7. Once trained, the autoencoders are deployed in an online setting to perform time integration for
their respective ROMs.

To generate the POD-LSPG solution, we set the tolerance κ in Eq. (4.5) to be 10�4, whereas, the
tolerance is set to 10�3 for the CNN-based dLSPG andGD-LSPG. The step size, β jð Þ, for POD-LSPG is set
to 1:0. Alternatively, in dLSPG and GD-LSPG, an adaptive step size strategy is adopted. For dLSPG, we
begin with a step size of 1:0 and reduce by 5% every five iterations that convergence is not achieved.
Likewise, in GD-LSPG, we begin with a step size of 0:5 and reduce by 10% every 10 iterations if
convergence is not achieved.

Figure 8 depicts the solution state at various time steps for two test parameter set realizations not seen in
the training set and two latent space dimensions ofM = 3,10. Additionally, the POD reconstruction errors

Figure 8. The left two columns represent the state solution for Burgers’ model Eq. (5.4) for time steps
t = 0,7,14,21, and 28 (ordered from left to right) for two latent space dimensions (M = 3,10, respectively),
while the right column depicts the error metrics from Eq. (5.1) to Eq. (5.3) for various PMOR methods.
Figures in the first row correspond to test parameters μ= μ1 = 4:30,μ2 = 0:021ð Þ, while figures in the
second row correspond to test parameters μ = μ1 = 5:15,μ2 = 0:0285ð Þ. GD-LSPG and dLSPG both

outperform POD-LSPG in predicting the highly nonlinear behavior of the Burgers’ equation.

e52-20 Liam Magargal et al.

Downloaded from https://www.cambridge.org/core. 21 Nov 2025 at 18:35:23, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

from Eq. (5.2), and autoencoder reconstruction errors from Eq. (5.1) for the CNN-based autoencoder,
inspired by Lee and Carlberg (2020, 2021), and the reconstruction errors from the graph autoencoder can
be found in Figure 8. Using the state prediction error of Eq. (5.3), we also compare the performance of
GD-LSPG to that of the traditional affine POD-LSPG (Carlberg et al., 2011, 2017), as well as dLSPG,
which leverages a CNN-based autoencoder (Lee and Carlberg, 2020, 2021). We emphasize that the
reconstruction errors for the graph autoencoder are more than an order of magnitude smaller than that of
the affine POD approximation for latent space dimensions 3–10. Likewise, the state prediction errors of
GD-LSPG are roughly an order of magnitude lower than that of POD-LSPG for latent space dimensions
3–10. This outcome is due to the fact that an affine subspace is not well-suited for such nonlinear
problems. Benchmarking the graph autoencoder with the traditional CNN-based autoencoder, we find
that the graph autoencoder’s reconstruction errors and state prediction errors to be less than an order of
magnitude greater than those of the CNN-based autoencoder for the vast majority of latent space
dimensions. This comparison implies that, while GD-LSPG gains adaptability and is applicable to
unstructured meshes, it does not perform as well as CNN-based dLSPG for the Burgers’ model with a
structured mesh. However, as noticed from the solution states provided in Figure 8, GD-LSPG is able to
model the advection-dominated shock behavior in a manner similar to traditional CNN-based dLSPG,
where traditional affine POD-LSPG tends to fail. We note that for μ= μ1 = 5:15,μ2 = 0:0285ð Þ the dLSPG
solution using a latent space dimensionM = 3 exhibits an erroneous solution when the shock approaches
the right side of the domain, which persistently occurred for different adaptive step size strategies. It is
worth noting that high errors were reported in Lee and Carlberg (2020) for the same latent space
dimension without explicit elaboration on the main cause of such high error. However, for latent space
dimensions 4–10, dLSPG outperforms GD-LSPG in terms of accuracy. Additionally, the errant solution
was not noticed for the parameter set μ = μ1 = 4:30,μ2 = 0:021ð Þ.

Next, we analyze the interpretability of the latent state vector through the Jacobian of the decoder
(as presented in Section 4.2). We reiterate that the Jacobian of the decoder for the graph autoencoder can be
interpreted in the samemanner as the PODmodes froma classical POD-LSPGscheme. Figure 9 presents the
Jacobian of the decoder for the GD-LSPG solution to the test parameters μ= μ1 = 4:30,μ2 = 0:021ð Þ for
M = 3 as well as the PODmodes used to obtain the POD-LSPG solution. Whereas the POD modes remain
fixed for all time steps, the Jacobian of the decoder for the graph autoencoder demonstrates highly
interpretable time-varying mode shapes. It is evident that the latent state variables from the graph
autoencoder capture information about the moving shock boundary.

Figure 10 depicts the difference between the ROM prediction of the full-order state vector and the
FOM results with space and time. It can be seen that both dLSPG and GD-LSPG provide an improved
ability to model the shock behavior of Eq. (5.4) over POD-LSPG. Additionally, we once again see that the
dLSPG solution for μ = μ1 = 5:15,μ2 = 0:0285ð Þ at latent space dimension M = 3 struggles to converge
when the shock approaches the right side of the domain. Finally, it is apparent that themain source of error
for GD-LSPG is a slight phase lag between the ground truth location of the shock and GD-LSPG’s
prediction of the shock location. Hence, on a structured mesh, GD-LSPG provides an improvement over
traditional affine POD-LSPG (Carlberg et al., 2011, 2013) in a manner comparable to that of dLSPG (Lee
and Carlberg, 2020, 2021; Kim et al., 2022).

To assess the computational cost of the GD-LSPG method and compare it to POD-LSPG and dLSPG,
we provide an analysis of the 1D Burgers’model. All operations in this section are performed in PyTorch
using a single Intel® Xeon® Platinum 8358 CPU@ 2.60GHz ICE LAKE core. We generate the solution
five times using each ROM and report the average time for each component of the ROM procedure
(normalized by the average time of the FOM) in Figure 11. We present the time to get rn kð Þ from Eq. (2.2)
and evaluate its Jacobian, the time to get the Jacobian of the decoder, the time to check the convergence
criterion (Eqs. 4.5–4.6), the time to decode to the high-dimensional space (Eq. 4.1), the time to computeΨ,
ΨTΨ, and ΨTrn kð Þ, and the time to update the low-dimensional solution state (Eq. 4.4). The most time-
consuming components of dLSPG and GD-LSPG are the time associated with computing the Jacobian of
the decoder (which is not needed for the POD-LSPG approach) and the time associated with computing
the high-dimensional residual and its Jacobian.

Data-Centric Engineering e52-21

Downloaded from https://www.cambridge.org/core. 21 Nov 2025 at 18:35:23, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

As noted by Farhat et al (2015), cost savings in ROMs employing LSPG projection can be achieved under
three primary scenarios. In the first scenario, although setting up the linear system in Eq. (4.4) has an operation
count that scaleswith the dimension of the FOM, cost savings can still be achieved if the computational cost of
the FOMis dominated by the cost of inverting the Jacobianof the time-discrete residual, and if the cost to set up
and minimize Eq. (4.2) is considerably lower than that of setting up and minimizing Eq. (2.3). In the second
scenario, the ROM is sufficiently stable to be solved with a much larger time step than the FOM, thereby
requiring fewer evaluations of Eq. (4.4) than Eq. (2.3). In the third (and most common) scenario, a hyper-
reduction scheme is employed to sparsely sample terms in the residual to approximate the minimization of
Eq. (4.2)with substantially fewer computations. POD-LSPGachieves approximately 20%cost savings for the
latent space dimensionM = 3, primarily due to satisfying the first scenario.However, this comes at the expense
of reduced solution accuracy. Since dLSPG andGD-LSPGdo not fall under any of the identified scenarios for
cost savings, they do not achieve cost savings with respect to the FOM in this setting. However, the primary
goal of this study is not computational efficiency, but rather to assess the extent of dimensionality reduction
capabilities of GD-LSPG while accurately capturing the advection-dominated nonlinear behavior inherent in
the numerical examples.

5.2. Two-dimensional Euler equations

In our second and third numerical experiments, we consider the FVM deployed to solve the two-
dimensional Euler equations in two distinct settings. In our first setting, a Riemann problem setup for

Figure 9. Jacobian of the decoder of GD-LSPG with respect to the ith latent state variable, ∂Dec
∂x̂i

x̂ t;μð Þ

, is

shown alongside the POD modes, Φi, for a latent space dimension M = 3. Results are presented at time
instances t = 0,7,14,21, and 28, for the test parameter set μ = μ1 = 4:30,μ2 = 0:021ð Þ. Unlike the time-

invariant and highly diffusive POD modes, the Jacobian of the decoder for the graph autoencoder captures
critical information about the location of the moving shock boundary. In all subplots (except for the bottom
right), the left axis corresponds to the Jacobian of the decoder for latent space variable i, while the right axis
corresponds to the the ith PODmode. All subplots (except for the bottom right) share the same legend as the
one shown for t = 0. The bottom right figure displays the full-order solution with time and space, in which the
horizontal lines highlight the selected time instances to highlight the match between the location of the

moving shock boundary and the identified features by the Jacobian of the decoder.

e52-22 Liam Magargal et al.

Downloaded from https://www.cambridge.org/core. 21 Nov 2025 at 18:35:23, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Figure 10. Local error for dLSPG, GD-LSPG, and POD-LSPG for the parameter set
μ= μ1 = 5:15,μ2 = 0:0285ð Þ. The top and bottom rows correspond to solutions generated with latent space
dimensions M = 3 and M = 10, respectively. The local error is simply taken to be ~w x, tð Þ�w x, tð Þ, or the
difference between the predicted solution state and the ground truth solution state. The POD-LSPG
solution introduces considerable error throughout the domain. Alternatively, dLSPG and GD-LSPG

introduce lower-order localized errors, primarily around the shock. The slight phase difference between
shocks in the predicted solution and the ground truth solution is the main error contributor.

Figure 11.Wall-clock time breakdown of individual components of GD-LSPG, dLSPG, and POD-LSPG
with a latent space dimension M = 3 normalized to the wall-clock time associated with the FOM solution.
Solutions were generated for the parameter set μ= μ1 = 4:30,μ2 = 0:021ð Þ. The POD-LSPG approach
does not have to compute the Jacobian of the decoder at each iteration. The breakdown reveals the most
expensive components of the dLSPG and GD-LSPGmethods include the time to get the high-dimensional
residual, Jacobian of the high-dimensional residual, and Jacobian of the decoder. The wall-clock time for

the FOM was 38.63 seconds.

Data-Centric Engineering e52-23

Downloaded from https://www.cambridge.org/core. 21 Nov 2025 at 18:35:23, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

a square domain is solved using an unstructured mesh, which allows us to establish the benefits of our
graph autoencoder architecture. In the second setting, we demonstrate the flexibility of our graph
autoencoder architecture by applying it to a bow shock generated by flow past a cylinder problem on
an irregular domain modeled with an unstructured mesh. To introduce the FVM solver used for these two
experiments, we provide a brief overview of the important concepts in this section and encourage the
reader to consult Roe (1981), Ren (2003), Nishikawa and Kitamura (2008), and Paardekooper (2017) for
further reading on Riemann solvers for the Euler equations. We begin with the two-dimensional Euler
equations in the form of hyperbolic PDEs:

∂U
∂t

+
∂F
∂x

+
∂G
∂y

= 0, (5.6)

U=

ρ

ρu

ρv

ρE

26664
37775, F=

ρu

ρu2 +P

ρuv

ρuH

26664
37775, G=

ρv

ρuv

ρv2 +P

ρvH

26664
37775, (5.7)

where ρ∈R + denotes density, u∈R and v∈R denote velocities in the x and y directions, respectively,
P∈R + denotes pressure, E = 1

γ�1
p
ρ +

1
2 u2 + v2ð Þ∈R + and H = γ

γ�1
p
ρ +

1
2 u2 + v2ð Þ∈R + denote specific

total energy and enthalpy, respectively, and γ∈R + is the specific heat ratio. We integrate Eq. (5.6) over a
control volume, Γ, and apply the divergence theorem to get the form,Z

Γ

d

dt
UdV +

Z
∂Γ
H � n̂dA= 0, (5.8)

where dA∈R + , dV ∈R+ and ∂Γ denote the differential surface area, the differential volume, and the
surface of the control volume, respectively, H =Fî+ Ĝj, n̂ = nxî+ nŷj denotes the outward facing unit
normal vector from the control volume, where î and ĵ denote the Cartesian unit vectors in x and y
directions, respectively, and nx ∈ �1,1½ � and ny ∈ �1,1½ � denote the components of n̂ decomposed in the x
and y directions.

An approximate solution for Eq. (5.8) is achieved by first spatially discretizing the domain, where the
surface integral term is approximated by obtaining the numerical flux passing over the cell faces in the
unstructured mesh. The numerical flux is computed using a Riemann solver designed to resolve the
computationally difficult nature of the hyperbolic Euler equations. In this numerical experiment, we
choose a Rotated Roe, Harten, Lax, and van Leer (R-RHLL) flux from Nishikawa and Kitamura (2008)
coupled with a forward Euler time integration scheme to generate a time series solution. The resulting
scheme for a single finite volume cell takes the form

Un+ 1
i =Un

i �Δt
X

j∈M ið Þ
Πij Un

i , Un
j

 �
, (5.9)

where Un
i ,U

n
j ∈R4 denote the state vector of the ith and jth cells at the nth time step, respectively, m ið Þ

denotes the set of neighboring cells of the ith cell (i.e., sharing an interface),Πij :R4 ×R4!R4 denotes the
function that computes the R-RHLL flux at the interface between the ith–jth cells (Nishikawa and
Kitamura, 2008). Therefore, Eq. (5.9) can be written in the residual-minimization cell-wise form of
Eq. (2.2) at the ith cell with

f i : Un, tn;μð Þ↦
X

j∈ℳ ið Þ
Πij Un

i , Un
j

 �
, (5.10)

and α0 = 1, α1 = �1, β0 = 0, β1 =Δt, τ = 1, and ξ = Un+ 1
1 ,Un+ 1

2 ,…,Un+ 1
Nc

 �T
when written in the form of

Eq. (2.2). We note that the minimization problem associated with the residual of the FOM (Eq. 5.9) is
solved explicitly using the forward Euler scheme. Consequently, the POD-LSPG solution is equivalent to
the POD-Galerkin solution (see Theorem4.2 in Lee andCarlberg (2020)). Additionally, when the forward

e52-24 Liam Magargal et al.

Downloaded from https://www.cambridge.org/core. 21 Nov 2025 at 18:35:23, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Euler scheme is deployed in GD-LSPG, minimizing the projection of the residual onto the low-
dimensional latent space according to Eq. (4.6) is performed implicitly using the iterative solver described
in Section 4. Our implementation of the R-RHLL flux uses a triangular mesh generated by Gmsh
(Geuzaine and Remacle, 2009)and Numba’s just-in-time compiler (Lam et al., 2015) to compile the
code efficiently.

For the problems studied in this section, the ROMs are built to reconstruct the conserved state variables
(ρ,ρu,ρv,ρE), as it allows for natural integration of Eqs. (5.6–5.10) into the projection scheme outlined in
Section 4. Consequently, the reported reconstruction and state prediction errors are evaluated with respect
to the conserved state variables. To compare the ROM solutions with those of FOM, we focus on pressure
and density fields where the latter is shown by contours.

5.2.1. Riemann problem
Our first setting in which we deploy GD-LSPG for the 2D Euler equations is a Riemann problem setup.
We solve Eqs. (5.6–5.7) on the domain x∈ 0,1½ �, y∈ 0,1½ � with outflow boundary conditions that are
computed via the fluxes of the cells along each boundary. The initial conditions are defined by dividing the
domain into quadrants, where a different state is defined in each quadrant (see Figure 12a). In this
experiment, we define the quadrants as a parameterized version of configuration G from Schulz-Rinne
et al (1993) (or configuration 15 from Lax and Liu (1998), Kurganov and Tadmor (2002), and Liska and
Wendroff (2003)), that is,

ρ1 = 1:0, ρ3 = 0:8,

u1 = u3 = u4 = μu,

v1 = v2 = v3 = μv,

P1 = 1:0, P2 =P3 =P4 = 0:4,

(5.11)

Figure 12. (a) Setup for the parametric Euler equations to be solved by a Riemann solver. The quadrants
have been numbered in the figure. The problem’s parameters are taken to be the initial velocities in the x
and y directions in the top right quadrant, that is, μ = μu,μvð Þ. Varying the initial velocity results in the
shock wave and rarefaction wave propagating at different speeds and in different directions, resulting in
an advection-driven flow. (b) The unstructured mesh used to solve 2D Euler equations for Riemann
problem setup. Note that this unstructured finite volume mesh is not directly compatible with a CNN-

based autoencoder, and will therefore require interpolation to perform dLSPG.

Data-Centric Engineering e52-25

Downloaded from https://www.cambridge.org/core. 21 Nov 2025 at 18:35:23, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

where μu,μv ∈R are themodel’s parameters, that is,μ = μu,μvð Þ, and the remaining variables (ρ2,ρ4,u2,v4)
are defined by the Rankine-Hugoniot relations and the relations for a polytropic gas. Specifically, the
rarefaction wave yields the conditions,

ρ2 = ρ1
P2

P1

� 	1
γ

,

u2 = u1 +
2
ffiffi
γ
p

γ�1

ffiffiffiffiffi
P2

ρ2

s
�

ffiffiffiffiffi
P1

ρ1

s !
,

(5.12)

and the shock wave yields the conditions,

ρ4 = ρ1

P4

P1
+
γ�1
γ+ 1

1+
γ�1
γ+ 1

P4

P1

0BB@
1CCA,

v4 = v1 +

ffi
P4�P1ð Þ ρ4�ρ1ð Þ

ρ4ρ1

s
:

(5.13)

We generate an unstructured mesh with 4328 finite volume cells, where the mesh is presented in
Figure 12b. Next, we perform a parametric study by varying the initial velocities in the top right quadrant
via μ= μu = �1:2�0:2i,μv = �0:3�0:1jð Þ, with i= 0,…,4 and j= 0,…,4, resulting in solutions to
25 different parameter sets. We takeΔt = 0:001 and Tf = 0:3 (which ensures that the shock and rarefaction
waves remain in the domain for all parameter sets), therefore collecting 301 snapshots for each parameter
set including the initial conditions. The solutions from the parametric study were used as training data to
train the autoencoder. To generate the POD-LSPG solution, we set the tolerance κ in Eq. (4.5) to be 10�4,
whereas, the tolerance is set to 10�3 for the CNN-based dLSPG and GD-LSPG. The step size, β jð Þ, for all
three models is set to 1:0 at all time steps.

While this solution is modeled by an unstructured mesh, the domain is square and the discretization is
mostly regular. As a result, we can interpolate the solution states on unstructured cell centers to a regular,
structured counterpart mesh for direct application to a CNN-based autoencoder. In this study, we simply
use a k�nearest neighbors interpolation with k = 3. Here, we establish the benefit of using GD-LSPG for
the unstructured mesh as opposed to deploying the interpolated CNN-based autoencoder to dLSPG. To
illustrate, we repeat the training for each autoencoder at a given latent space dimension five times, where
the only variation between training processes is the random initialization of weights and biases and the
random generation of mini-batches at each epoch.

Figure 13 presents the pressure field at t = 0:3 for two test parameter sets not seen during training,
μ= μu = �1:3,μv = �0:65ð Þ and μ= μu = �1:9,μv = �0:35ð Þ. Results are presented for the ground truth,
POD-LSPG, and both the best- and worst-case predictions for interpolated dLSPG and GD-LSPG, where
the best and worst cases correspond to the lowest and highest state predictions errors among the five
independently trained autoencoders, respectively. As expected, GD-LSPG captures the moving shock
behavior more accurately than the affine POD-LSPG solution and also provides more accurate pressure
fields in the regions separated by the shock and rarefaction waves. For the best-case error, the interpolated
dLSPG solution is slightly more accurate than the GD-LSPG solution. However, for the worst-case error,
the GD-LSPG solution is considerably more accurate than the interpolated dLSPG solution. This implies
that, within the setting studied, the GD-LSPG framework yields more consistent results than those
obtained via the interpolated dLSPG framework.

Figure 14 reports reconstruction and state prediction errors for five independently trained autoencoders
at each latent space dimension. We consider latent space dimensions of 1–10 compared to the FOM
dimension of 4328× 4= 17312. Specifically, for the latent space dimensions 3 and 4, some of the
interpolated CNN-based autoencoders generate solutions that perform considerably worse than the

e52-26 Liam Magargal et al.

Downloaded from https://www.cambridge.org/core. 21 Nov 2025 at 18:35:23, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

worst-case GD-LSPG solutions at the same latent space dimension. This indicates that the interpolated
CNN-based autoencoder is prone to failure in generalizing for parameter sets not seen during training.

Finally, Figure 15 presents the local errors in the pressure field at parameter sets
μ= μu = �1:3,μv = �0:65ð Þ and μ= μu = �1:9,μv = �0:35ð Þ at time t = 0:3 for POD-LSPG, and the
best- and worst-case interpolated dLSPG, and GD-LSPG. Here, it is evident that the POD-LSPG
solution introduces considerable error to the pressure field throughout the domain. Alternatively, for
best-case solutions, both interpolated dLSPG andGD-LSPG introduce relatively small errors isolated

Figure 13.Ground truth, POD-LSPG, and both best- and worst-case interpolated dLSPG andGD-LSPG
pressure fields, denoted by color, and density fields, denoted by contours, for the 2D Euler equations. The

results are shown at t = 0:3 for test parameter sets μ = μu = �1:3,μv = �0:65ð Þ and
μ= μu = �1:9,μv = �0:35ð Þ and for a latent space dimensionofM = 3. NotePOD-LSPG’s inability tomodel
the shock behavior, leading toadiffusive and inaccurate solution that does not accuratelymodel the advection-
driven behavior of the problem. The best-case interpolated dLSPG and GD-LSPG solutions model the shock
behavior with much higher accuracy, while the worst-case GD-LSPG solution is more accurate than the
worst-case interpolated dLSPG solution. Note that an animated version of this figure is found in the

supplementary material at journals.cambridge.org in the provided mp4 files.

Data-Centric Engineering e52-27

Downloaded from https://www.cambridge.org/core. 21 Nov 2025 at 18:35:23, subject to the Cambridge Core terms of use.

http://doi.org/10.1017/dce.2025.10030
https://journals.cambridge.org
https://www.cambridge.org/core

around the shock and rarefaction waves, indicating that the primary source of error for these methods
is a phase lag. However, the worst-case GD-LSPG solution is considerably more accurate than the
worst-case interpolated dLSPG solution, establishing a better generalization capabilities of
GD-LSPG in this setting.

5.2.2. Bow shock generated by flow past a cylinder problem
In our second setting, wemodel a bow shock generated by flow past a cylinder using an unstructured finite
volume mesh for a parameterized version of a test case found in Nishikawa and Kitamura (2008) to

Figure 14. Reconstruction and state prediction errors for two choices of test parameter sets (each
represented by a single column) for the Riemann problem setup. We repeat the training for the

interpolated CNN-based autoencoder and the graph autoencoder five times, which correspond to the five
points at each latent space dimension. We only obtain the POD modes once, which corresponds to only
one point at each latent space dimension for POD reconstruction and POD-LSPG. The top row includes
plots of POD, interpolated CNN-based autoencoder, and graph autoencoder reconstruction errors

evaluated from Eq. (5.1) to Eq. (5.2) with respect to the latent space dimension, M. Note that the graph
autoencoder performs similar level of reconstruction accuracy as the interpolated CNN-based auto-

encoder. The bottom row demonstrates POD-LSPG, interpolated dLSPG, and GD-LSPG state prediction
errors evaluated from Eq. (5.3) with respect to the latent space dimension, M. For small latent space
dimensions, GD-LSPG (and often interpolated dLSPG) outperforms POD-LSPG in terms of accuracy.
Additionally, the interpolated CNN-based autoencoder used in the dLSPG solution fails to generalize well
in this application for several latent space dimensions. Note: one of the interpolated dLSPG solutions for

M = 1 failed to converge.

e52-28 Liam Magargal et al.

Downloaded from https://www.cambridge.org/core. 21 Nov 2025 at 18:35:23, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Figure 15. ROM prediction errors associated with the best- and worst-case solutions for the Riemann
problem setup. The left, middle and right columns represent the errors for POD-LSPG, interpolated dLSPG
and GD-LSPG, respectively, at latent space dimension M = 3. The results are depicted for the parameter sets
μ= μu = �1:3,μv = �0:65ð Þ and μ= μu = �1:9,μv = �0:35ð Þ at time t = 0:3. We define local error to be
~P x,yð Þ�P x,yð Þ at a given time step. The POD-LSPG solution fails to accurately model the advection-driven
nature of the solution and shows errors as high as 25% in someparts of the domain. The best-case interpolated
dLSPGandGD-LSPGsolutionsmodel the shockwavemuchmore accurately, with only small errors localized
near the shock, highlighting the slight phase misalignment between FOM and ROM shock locations as the
primary source of error. The worst-case interpolated dLSPG solution has considerably higher errors than the
worst-case GD-LSPG solution. Note that an animated version of this figure is found in the supplementary

material at journals.cambridge.org in the provided mp4 files.

Data-Centric Engineering e52-29

Downloaded from https://www.cambridge.org/core. 21 Nov 2025 at 18:35:23, subject to the Cambridge Core terms of use.

http://doi.org/10.1017/dce.2025.10030
http://doi.org/10.1017/dce.2025.10030
https://journals.cambridge.org
https://www.cambridge.org/core

demonstrate the flexibility of GD-LSPG. As seen in Figure 16a, the model consists of a rectangular
domain and the leading edge of a cylinder, where, for the selected range of parameter values, it is expected
that a shock will form on the leading edge and propagate through the domain. Because of the domain’s
geometric irregularity, it is natural to employ an unstructured mesh, which is presented in Figure 16b.
Once again, we solve Eq. (5.6 and 5.7) on the domain that has been spatially discretized into 4148 finite
volume cells using Gmsh (Geuzaine and Remacle, 2009). However, this time we model an inflow
boundary condition on the left boundary of the domain, outflow boundary condition on the right side of
the domain and the top and bottom boundaries, and a slip-wall boundary condition on the surface of the
cylinder. We parameterize the model by the freestream Mach number, μin, that is,

ρin = 1:0, Pin = 1:0, uin = μin

ffiffiffiffiffiffiffiffi
γPin

ρin

s
, vin = 0, (5.14)

where ρin, Pin, uin, and vin denote the freestream density, freestream pressure, and freestream velocities in
the x and y directions, respectively, and μin = 1:0,1:050,…,1:250, which results in solutions to six
different parameters. The solutions exhibit a shock that develops along the leading edge of the cylinder
at varying rates. Additionally, the shock propagates at different speeds through the domain and incurs
varying pressure, density, and velocity differences across the shock depending on the freestream Mach
number. We take Δt = 0:001 and Tf = 1:0, therefore collecting 1001 snapshots for each parameter
including the initial conditions.

Figure 16. (a) Setup for the parametric Euler equations to be solved by a Riemann solver with an
unstructured finite volume mesh. A rectangular domain with the leading edge of a cylinder is modeled
with the noted boundary conditions. Depending on the freestream Mach number, μin, which will
be varied as this problem’s parameter, a shock can form along the leading edge of the cylinder

and propagate through the domain at different speeds. (b) Mesh used to solve 2D Euler equations
for the bow shock generated by flow past a cylinder problem. In this case, the physical domain’s
geometry is more complex than in the Riemann problem setup, therefore benefiting from the

unstructured mesh.

e52-30 Liam Magargal et al.

Downloaded from https://www.cambridge.org/core. 21 Nov 2025 at 18:35:23, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

In this numerical experiment, we present POD-LSPG and GD-LSPG solutions. To generate the POD-
LSPG solution, we set the tolerance κ in Eq. (4.5) to be 10�4, whereas, the tolerance is set to 10�3 for
GD-LSPG. The step size β jð Þ for both models is set to 1:0 at all time steps. Figure 17 demonstrates the
pressure and density fields at two different time steps and at the test parameter μin = 1:125 for the ground
truth solution, POD-LSPG, and GD-LSPG, both using a latent space dimension M = 2. Additionally,
Figure 17 provides the local errors between both ROM solutions versus the ground truth solution for the
pressure field. As before, note that POD-LSPG smooths out the shock and fails to accurately model the
moving discontinuity. Alternatively, GD-LSPGmodels the moving shock behavior much more faithfully
without generating spurious high-pressure regions. It is evident that the majority of the errors for
GD-LSPG are isolated around the shock.

We further assess the interpretability of the GD-LSPG solution by presenting the Jacobian of the
decoder for the graph autoencoder alongside the POD modes used in the POD-LSPG solution for the
latent space dimension M = 2 and the test parameter μin = 1:125 in Figure 18. Specifically, we plot
the component of the Jacobian of the decoder and the POD modes that correspond to the energy state
variable (i.e., ρE in Eq. [5.7]) over the entire physical domain. While the POD modes are time invariant,
the Jacobian of the decoder depends on the latent state vector and is shown at two distinct time instances.
At t = 0:25, mode 1 primarily captures information about the moving shock, while mode 2 captures
information about the moving shock and the high-pressure region behind it. Additionally, at t = 0:75,
mode 1 continues to represent the shock, and additionally captures part of the high-pressure region,
whereas mode 2 still captures both features. On the other hand, the POD modes remain highly diffusive
and time invariant, limiting their ability to represent the moving shock as well as the graph autoencoder.

Finally, Figure 19 reports the POD and graph autoencoder reconstruction and state prediction errors.
For this numerical example, we consider latent space dimensions 1 to 10,where the dimension of the FOM
is 4148 * 4 = 16592. The graph autoencoder presents significantly lower reconstruction errors compared
to POD for the latent space dimensions of choice. In addition, the GD-LSPG state prediction errors remain
considerably lower than those of POD-LSPG. We note that the main reason that GD-LSPG state
prediction errors for this example are not as low as those achieved in the 1D Burgers’ model and 2D
Riemann problem setup is themore significant phase lag error as demonstrated in Figure 17. Furthermore,
we emphasize that identifying an appropriate error metric for advection-dominated problems is an
important area of future work.

5.3. Performance with noisy training data

In this section, we evaluate the ability of our graph autoencoder to approximate the underlying physics
when trained on noisy data. The numerical experiment is conducted on the flow past a cylinder problem,
following the same training strategy outlined in Appendix A, with the only difference being the addition
of Gaussian noise to the training data. Specifically, Gaussian noise is added to each state variable
(ρ,ρu,ρv,ρE), proportional to its range within the training data,

ρð Þni = ρð Þni + ϵσnoise ρð Þmax� ρð Þmin� �
, (5.15)

ρuð Þni = ρuð Þni + ϵσnoise ρuð Þmax� ρuð Þmin� �
, (5.16)

ρvð Þni = ρvð Þni + ϵσnoise ρvð Þmax� ρvð Þmin� �
, (5.17)

ρE
� �n

i
= ρEð Þni + ϵσnoise ρEð Þmax� ρEð Þmin� �

, (5.18)

where ρð Þni and ρð Þni denote the clean and noisy density values, respectively, for the ith cell and the nth

training snapshot, and ρð Þmax and ρð Þmin represent the maximum and minimum density values across the
entire training set. The same notation applies to the momentum components, ρuð Þni , ρvð Þni , and the energy
term, ρE

� �n
i
). In Eqs. (5.15–5.18), σnoise ∈R + denotes the noise level, and ϵ�N 0,1ð Þ represents the

added noise drawn from a standard normal distribution. In this study, we vary the noise level as

Data-Centric Engineering e52-31

Downloaded from https://www.cambridge.org/core. 21 Nov 2025 at 18:35:23, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Figure 17.Pressure field (denotedby color) anddensity field (denotedby contours) are demonstrated for theground truth solutions (first column) aswell as thePOD-
LSPG (second column) and GD-LSPG solutions (third column). Additionally, the local errors, ~P x,yð Þ�P x,yð Þ, between the corresponding ROMs and the ground
truth solution for the bow shock generated by flow past a cylinder are presented in columns 4 and 5. The results are provided at two time steps, namely t = 0:25 (top
row) and t = 0:75 (bottom row), for test parameterμin = 1:125. TheROMsare constructed usinga latent space dimensionofM = 2. Like before, POD-LSPGstruggles
to accurately model the advection-driven shockwave occurring in this model. Alternatively, GD-LSPGmodels the shock behavior with higher accuracywhere errors

are mainly isolated around the shock. The top color bar refers to the pressure field solutions while the bottom color bar refers to the local error plots.

e52-32
L
iam

M
agargaletal.

D
ow

nloaded from
 https://w

w
w

.cam
bridge.org/core. 21 N

ov 2025 at 18:35:23, subject to the Cam
bridge Core term

s of use.

https://www.cambridge.org/core

Figure 18. POD modes,Φi, (left) and Jacobian of the decoder for the graph autoencoder of the ith latent

state variable, ∂Dec
∂x̂i

x̂ t;μð Þ

(right) for the energy state variable (ρE in Eq. [5.7]) for the POD-LSPG and

GD-LSPG solutions, respectively. The results are shown for the latent space dimension M = 2 and for the
test parameter μin = 1:125. Note that the POD modes are time invariant and therefore remain fixed for all
time steps, while the Jacobian of the decoder for the graph autoencoder presents time-varying mode
shapes (here shown for t = 0.25 and t = 0.75) . The Jacobian of the decoder of the graph autoencoder
reveals that the graph autoencoder’s latent variables primarily contain information about the bow shock
that forms on the leading edge of the cylinder, offering interpretability into the GD-LSPG solution. In
contrast, the POD modes used in POD-LSPG are time invariant, independent of the latent state vector,
and highly diffusive. Note that the top colorbar (black/blue/white) is used to present the POD modes,
while the bottom color bar (red/white/black) is used to present the Jacobian of the decoder for the graph

autoencoder.

Data-Centric Engineering e52-33

Downloaded from https://www.cambridge.org/core. 21 Nov 2025 at 18:35:23, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

σnoise = 0:0, 0:01, 0:05, and 0:1 to assess the sensitivity of the graph autoencoder to different noise levels.
Figure 20 presents examples of noisy training solutions for μin = 1:1 at time t = 0:75.

Once trained over all studied noise levels, the graph autoencoder is evaluated on its ability to generate
the clean (i.e., noise-free), ground truth solutions for a test parameter not seen during training. Figure 21
presents the ground truth solution andGD-LSPG solutions for latent space dimensionsM = 2, and 10, and

Figure 19. POD reconstruction error from Eq. (5.2), graph autoencoder reconstruction error from
Eq. (5.1), and state prediction errors from Eq. (5.3) plotted with respect to the latent space dimension M
for 2DEuler equations for the bow shock generated by flow past a cylinder at μin = 1:125. For latent space
dimensions 2–10, GD-LSPG performs as well as or considerably better than POD-LSPG in terms of

accuracy.

Figure 20. Pressure field (denoted by color) and density field (denoted by contours) are demonstrated for
four different noise levels, σnoise = 0, 0:01, 0:05, and 0:1 for the training parameter μin = 1:1 at t = 0:75.
Notice that for σnoise = 0:1, the shock features are still present, but are significantly blurred in comparison

to σnoise = 0.

e52-34 Liam Magargal et al.

Downloaded from https://www.cambridge.org/core. 21 Nov 2025 at 18:35:23, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

for test parameter μin = 1:125 at time t = 0:75. For M = 2, the GD-LSPG solution remains consistently
accurate across all studied noise levels. In contrast, forM = 10, the GD-LSPG solutionmaintains accuracy
for σnoise = 0, and 0:01, but accuracy degrades at noise levels σnoise = 0:05, and 0.1. While the shock
features appear to still be present in the solutions, there appears to be a considerable amount of artifacts
introduced into the solution, especially for noise level σnoise = 0:1.

Finally, the reconstruction and state prediction errors are reported in Figure 22 for latent space
dimensionsM = 1–10, and noise levels σnoise = 0:0, 0.01, 0.05, and 0.1. As expected, introducing higher
noise levels increased both the graph autoencoder reconstruction errors and the GD-LSPG state predic-
tions errors. Additionally, we observe that the GD-LSPG state prediction errors for the noisy solutions
increase with larger latent space dimensions. We speculate that the graph autoencoder with smaller latent
space dimensions are constrained to capture only the signal itself, whereas those with larger latent space
dimensions may overfit to noise. It should also be noted that several GD-LSPG solutions failed to
converge due to non-physical solutions (e.g., negative pressure), primarily at higher noise levels,
specifically at noise level σnoise = 0:05 for M = 1, and at noise level σnoise = 0:1 for M = 5,6,9).

5.4. Wall clock training times

Lastly, in addition to online computational costs, we report the times to generate the hierarchies of graphs
as well as the times to train each model used in this study, which were both carried out using an NVIDIA
L40S GPU.Wall-clock times to generate the hierarchy of graphs for each example are reported in Table 1
and wall-clock times to train each model are reported in Table 2. For the second numerical experiment

Figure 21. Pressure field (denoted by color) and density field (denoted by contours) are demonstrated for
the ground truth and for GD-LSPG for latent space dimensions M = 2, and 10 and noise levels σnoise = 0,
0:01, 0:05, and 0:1 at time t = 0:75 for test parameter μin = 1:125. For M = 2, we find all solutions to be
very accurate predictions of the ground truth solution. However, for M = 10, we find that, as more noise is
introduced, theGD-LSPG solution becomes more inaccurate due to noise. Still, the shock features appear

to be present.

Data-Centric Engineering e52-35

Downloaded from https://www.cambridge.org/core. 21 Nov 2025 at 18:35:23, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

(Riemann problem), where we repeat the training five times, we simply report the average time for
training the autoencoders for each latent space dimension. Immediately, it is worth noting that the graph
autoencoder in its current form is more expensive to train than the traditional CNN-based autoencoders
and considerably more expensive to train than the POD.

The wall-clocks times reported in Table 1 are computed by repeating the hierarchical spectral
clustering algorithm ten times for each model and averaging the results for each level. For the Burgers’
model, we employ the K-means++ initialization scheme (Arthur and Vassilvitskii, 2007), as it resulted in
more intuitive cluster assignments. Generating the graph hierarchy is not yet computationally efficient
enough to be used on-the-fly. More efficient clustering schemes will be necessary before GD-LSPG can
be effectively applied to models without a fixed mesh, such as those using adaptive meshes, Lagrangian
frameworks, or arbitrary Lagrangian–Eulerian methods.

Another noteworthy observation is that, although the solution states in the Riemann problem setup and
the bow shock generated by flow past a cylinder problem have considerably larger dimensions than the

Figure 22.Graph autoencoder reconstruction errors (left) evaluated from Eq. (5.1) and GD-LSPG state
prediction errors (right) evaluated from Eq. (5.3) for the bow shock generated by flow past a cylinder
problem when trained using noisy training data with noise levels σnoise = 0, 0:01, 0:05, and 0:1 for test
parameter μ= 1:125. Higher noise levels in the training data lead to increased reconstructions errors, as

well as higher state prediction errors. Note that GD-LSPG failed to converge due to non-physical
solutions (i.e., negative pressure) for latent space dimension M = 1 at noise level σnoise = 0:05 and for

latent space dimensions M = 5, 6, and 9 at σnoise = 0:1.

Table 1. Average wall-clock times (in seconds) for generating the hierarchy of graphs for each
example, where ∣Vi∣ and ∣Vi + 1∣ denote the number of nodes in the ith and i+ 1ð Þth layers in the

hierarchy of graphs, respectively. The time reported for each clustering is the average of ten repeated
runs of the clustering algorithm

Hierarchy
level, i

Burgers’ model Riemann problem Bow shock

∣Vi∣ ∣Vi + 1∣
Wall-clock
time (s) ∣Vi∣ ∣Vi + 1∣

Wall-clock
time (s) ∣Vi∣ ∣Vi+ 1∣

Wall-clock
time (s)

0 316 64 15.391 4328 512 676.098 4148 512 702.034
1 64 16 0.029 512 64 1.116 512 64 1.095
2 16 4 0.037 64 8 0.008 64 8 0.008
3 4 2 0.002 8 2 0.003 8 2 0.002
Total 15.425 677.224 703.140

e52-36 Liam Magargal et al.

Downloaded from https://www.cambridge.org/core. 21 Nov 2025 at 18:35:23, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Burgers’ model, the cost to train the autoencoders does not appear considerably larger. There are likely
several factors contributing to this. First, the larger models are likely easier to parallelize on the NVIDIA
L40S GPU. Furthermore, the number of batches provided at each epoch during training is a major driving
component of the training time. As seen inAppendixA, for all autoencoders, a batch size of 20was chosen
due to random access memory limitations. However, due to the varying number of training solutions, the
number of batches per epoch varies considerably depending on the problem. To elaborate, the auto-
encoders for the 1DBurgers’model have 36080 solution states used for training, meaning each epochwill
have 1804 batches. On the other hand, the autoencoders for the 2D Riemann problem setup have 7000
solution states used for training, meaning each epoch will have 350 batches. Finally, the autoencoders for
the 2D bow shock generated by flow past a cylinder problem have 5500 solution states used for training,
meaning each epoch will have 275 batches.

6. Conclusions and future work

In this paper, we present GD-LSPG, a PMOR method that leverages a graph autoencoder architecture to
perform model reduction directly on unstructured meshes. The graph autoencoder is constructed by first
generating a hierarchy of reduced graphs to emulate the compressive capabilities of CNNs. Next, message
passing operations are trained for each layer in the hierarchy of reduced graphs to emulate the filtering
capabilities of CNNs. In an online stage, the graph autoencoder is leveraged to perform a nonlinear
manifold LSPG projection to obtain solutions to parameter sets not seen during training. We investigate
the interpretability of such solutions by analyzing the Jacobian of the decoder.

In this work, we assess the performance ofGD-LSPGwith three different numerical experiments. First,
to benchmark GD-LSPG, we apply it to a 1D Burgers’ model commonly used in the literature.
Specifically, this benchmarking case deploys a structured mesh and we can therefore compare the results
directly to both POD-LSPG (Carlberg et al., 2011, 2017) and dLSPG (Lee and Carlberg, 2020, 2021). We
find that GD-LSPG has accuracy that is comparable to that of dLSPG and that both methods provide

Table 2. Wall-clock training times (in hours) for POD, CNN-based autoencoder, and graph
autoencoder for all numerical examples. Note that the POD is only obtained once for all latent
space dimensions where the POD basis is determined by truncating the left singular basis to the
user-specified latent space dimension, M. Alternatively, each latent space dimension has a unique

CNN-based autoencoder and graph autoencoder that must be trained individually. For the
repeated training of the autoencoders for the Riemann problem, we report the average time to train

each model

Latent
space
dimension,
M

Burgers’ model Riemann problem Bow shock

POD
CNN-based
autoencoder

Graph
autoencoder POD

Interpolated
CNN-based
autoencoder

Graph
autoencoder POD

Graph
autoencoder

1 1.39 × 10�3 1.73 4.70 0.03 2.01 5.08 0.02 4.48
2 1.30 5.48 1.98 5.01 4.52
3 1.16 5.40 1.90 5.00 4.38
4 1.30 4.64 1.91 5.06 4.41
5 1.30 4.68 1.94 5.00 4.40
6 1.13 4.77 2.23 4.98 3.83
7 1.12 4.77 2.21 5.03 3.80
8 1.17 4.71 2.20 5.88 4.67
9 1.30 4.65 1.86 4.95 3.91
10 1.28 4.70 1.86 5.02 4.64

Data-Centric Engineering e52-37

Downloaded from https://www.cambridge.org/core. 21 Nov 2025 at 18:35:23, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

considerable improvement in accuracy over POD-LSPG as they capture themoving shock behavior found
in this solution more accurately in comparison to POD-LSPG. By plotting the Jacobian of the decoder, we
find that the latent space of the graph autoencoder primarily captures information about the moving shock
front. In the second and third numerical experiments, we apply GD-LSPG to a 2D Euler equations model
that leverages an unstructured mesh in two different settings. The first setting involves a square domain
that solves a Riemann problem setup. Because the domain is regular, we can interpolate the unstructured
mesh onto a structured grid that can be provided to a CNN-based autoencoder and applied in dLSPG.
While we find that this method can produce results that outperformGD-LSPG, it is also prone to failing to
generalize well for parameter sets not seen during training. Alternatively, GD-LSPG consistently
generalizes well for parameter sets not seen during training while also considerably outperforming
POD-LSPG in terms of accuracy due to its ability to model the moving shock and rarefaction waves
present in this problem. The second setting models a bow shock generated by flow past a cylinder with an
unstructured mesh. In this setting, the modeled geometry is more naturally represented by an unstructured
mesh, and therefore demonstrates the flexibility of GD-LSPG. We compare GD-LSPG to POD-LSPG
and, once again, find that GD-LSPG often outperforms POD-LSPG in terms of accuracy as GD-LSPG
better preserves the sharp features of the bow shock that appear on the cylinder. Alternatively, POD-LSPG
smooths out the shock and introduces spurious high-pressure regions in the solution. As with the 1D
Burgers’ model, the Jacobian of the decoder for the graph autoencoder indicates that the latent state
variables contain information about the moving bow shock. Finally, we also investigate the ability of the
graph autoencoder to filter noise by training it on data generated by perturbing the ground truth solutions
with Gaussian noise at various noise levels for the bow shock generated by flow past a cylinder problem.
This setting naturally aligns with our graph autoencoder framework, as the noisy model is constrained to
the same underlying governing equations as the clean data for which the residual can be computed. At
smaller latent space dimensions, the graph autoencoder accurately captures the shock behavior. However,
accuracy decreases as noise level and latent space dimension increase.

As is present across an extensive amount of literature employing end-to-end training of autoencoders
(Lee and Carlberg, 2020, 2021; Fries et al., 2022; Barwey et al., 2023), our graph autoencoder is limited to
models with a dimension of only a few thousand. Additionally, we emphasize that the hierarchical spectral
clustering scheme is limited by the scalability of the eigen decomposition of the graph Laplacian and
K�means clustering operation which we leave as areas of future work. One potential future direction to
achieve cost savings is to introduce a latent space dynamics model similar to operator inference
(Peherstorfer and Willcox, 2016), latent space dynamics identification (Fries et al., 2022), or sparse
identification of nonlinear dynamics (Brunton et al., 2016). An added benefit of these methods is that,
unlike the LSPG schemes presented in Section 4, they do not often require explicit knowledge of the
residual. This feature makes them potentially suitable for use with experimental data or computational
models where the residual is unavailable or difficult to compute. Another possible future direction is to
develop a hyper-reduction scheme to achieve cost savings. In GD-LSPG’s current formulation, the high-
dimensional residual must be computed and projected onto the low-dimensional latent space, forcing the
operation count complexity to scale on the dimension of the FOM. A hyper-reduction scheme would
alleviate this limitation by sampling and generating a sparse representation of the high-dimensional
residual, thereby eliminating an operation count complexity that scales on the dimension of the FOM. To
date, hyper-reduction has been achieved for dLSPG using shallow decoders (Kim et al., 2022). However,
GD-LSPG uses a deep decoder. As a result, we leave this as an open area of investigation.

Abbreviations
CNN Convolutional neural network
dLSPG Deep least-squares Petrov–Galerkin
ELU Exponential linear unit
FEM Finite element method
FOM Full-order model
FVM Finite volume method

e52-38 Liam Magargal et al.

Downloaded from https://www.cambridge.org/core. 21 Nov 2025 at 18:35:23, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

GD-LSPG Geometric deep least-squares Petrov–Galerkin
GNN Graph neural network
MLP Multilayer perceptron
MPP Message passing and pooling
ODE Ordinary differential equation
PDE Partial differential equation
PMOR Projection-based model-order reduction
POD Proper orthogonal decomposition
POD-LSPG Proper orthogonal decomposition-based least-squares Petrov–Galerkin
ROM Reduced-order model
R-RHLL Rotated Roe, Harten, Lax, and van Leer
UMP Unpooling and message passing

Supplementary material. The supplementary material for this article can be found at http://doi.org/10.1017/dce.2025.10030.

Data availability statement. The data that support the findings of this study are openly available at https://doi.org/10.5281/
zenodo.17088969 (Magargal et al., 2025a) and https://github.com/liam-magargal/GeometricDeepLSPG (Magargal et al., 2025b).

Acknowledgments. Portions of this research were conducted on Lehigh University’s Research Computing infrastructure, partially
supported by NSFAward 2019035.

Author contribution. Conceptualization: L.K.M.; P.K.; S.N.R.Methodology: L.K.M.; P.K.; S.N.R. Formal analysis: L.K.M; P.K.,
S.N.R. Data curation: L.K.M.; P.K. Funding acquisition: P.K.; J.W.J. Project administration: P.K.; J.W.J; J.G.M. Writing – original
draft: L.K.M.; P.K. Writing – review & editing: L.K.M.; P.K.; S.N.R.; J.W.J.; J.G.M. All authors approved the final submitted draft.

Funding statement. L. K. Magargal is supported by the Department of Defense (DoD) through the National Defense Science &
Engineering Graduate (NDSEG) Fellowship Program. P. Khodabakhshi acknowledges the support of the National Science
Foundation under award 2450804. L. K. Magargal and J. W. Jaworski acknowledge the financial support of the Department of
Energy under grant DE-EE0008964. S. N. Rodriguez and J. G. Michopoulos acknowledge the support of the Office of Naval
Research through U.S. Naval Research Laboratory core funding. J. W. Jaworski acknowledges the partial support of the National
Science Foundation under CAREER award 1846852/2402397 and the Office of Naval Research under award N00014-24-2111.

Competing interests. The authors declare none.

Ethical standard. The research meets all ethical guidelines, including adherence to the legal requirements of the study country.

References
Ahmed SE and San O (2020) Breaking the Kolmogorov barrier in model reduction of fluid flows. Fluids 5(1), 26.
Amsallem D, Zahr MJ and Farhat C (2012) Nonlinear model order reduction based on local reduced-order bases. International

Journal for Numerical Methods in Engineering 92(10), 891–916.
Antoulas A (2005) Approximation of Large-Scale Dynamical Systems. Philadelphia, PA: Society for Industrial and Applied

Mathematics.
Arthur D and Vassilvitskii S (2007) K-means++: The advantages of careful seeding. New Orleans, Louisiana: Society for

Industrial and Applied Mathematics, pp. 1027–1035.
Baker N, Alexander F, Bremer T, Hagberg A, Kevrekidis Y, Najm H, Parashar M, Patra A, Sethian J,Wild S, et al. (2019)

Tech. Rep. Workshop Report on Basic Research Needs for Scientific Machine Learning: Core Technologies for Artificial
Intelligence. Washington, D.C. (United States): USDOE Office of Science (SC).

Bank D, Koenigstein N and Giryes R (2023) Autoencoders. Machine learning for data science handbook: data mining and
knowledge discovery handbook, 353–374.

Barnett J and Farhat C (2022) Quadratic approximation manifold for mitigating the Kolmogorov barrier in nonlinear projec-
tionbased model order reduction. Journal of Computational Physics 464, 111348.

Barnett J, Farhat C and Maday Y (2023) Neural-network-augmented projection-based model order reduction for mitigating the
Kolmogorov barrier to reducibility. Journal of Computational Physics 492, 112420.

Barrault M,Maday Y, Nguyen NC and Patera AT (2004) An ‘empirical interpolation’method: Application to efficient reduced
basis discretization of partial differential equations. Comptes Rendus Mathematique 339(9), 667–672.

Barwey S, Shankar V, Viswanathan V and Maulik R (2023) Multiscale graph neural network autoencoders for interpretable
scientific machine learning. Journal of Computational Physics 495, 112537.

Data-Centric Engineering e52-39

Downloaded from https://www.cambridge.org/core. 21 Nov 2025 at 18:35:23, subject to the Cambridge Core terms of use.

http://doi.org/10.1017/dce.2025.10030
https://doi.org/10.5281/zenodo.17088969
https://doi.org/10.5281/zenodo.17088969
https://github.com/liam-magargal/GeometricDeepLSPG
https://www.cambridge.org/core

Battaglia PW, Hamrick JB, Bapst V, Sanchez-Gonzalez A, Zambaldi V,Malinowski M, Tacchetti A, Raposo D, Santoro A,
Faulkner R, et al (2018) Relational inductive biases, deep learning, and graph networks. Preprint, arXiv:1806.01261.

Baur U, Beattie C, Benner P and Gugercin S (2011) Interpolatory projection methods for parameterized model reduction. SIAM
Journal on Scientific Computing 33(5), 2489–2518.

Benner P, Goyal P, Kramer B, Peherstorfer B and Willcox K (2020) Operator inference for non-intrusive model reduction of
systems with non-polynomial nonlinear terms. Computer Methods in Applied Mechanics and Engineering 372, 113433.

Benner P, Gugercin S and Willcox K (2015) A survey of projection-based model reduction methods for parametric dynamical
systems. SIAM Review 57(4), 483–531.

Benner P, Ohlberger M, Cohen A and Willcox K (2017) Model Reduction and Approximation. Philadelphia, PA: Society for
Industrial and Applied Mathematics.

Bern M and Plassmann P (2000) Chapter 6 - mesh generation. In Sack J and Urrutia J (eds.), Handbook of Computational
Geometry. Amsterdam: North-Holland, pp. 291–332.

Bongini P, Bianchini M and Scarselli F (2021) Molecular generative graph neural networks for drug discovery. Neurocomputing
450, 242–252.

Brunton SL, Proctor JL and Kutz JN (2016) Discovering governing equations from data by sparse identification of nonlinear
dynamical systems. Proceedings of the National Academy of Sciences 113(15), 3932–3937.

Bui-Thanh T,Willcox K and Ghattas O (2008) Model reduction for large-scale systems with high-dimensional parametric input
space. SIAM Journal on Scientific Computing 30(6), 3270–3288.

Carlberg K, Barone M and Antil H (2017) Galerkin v. least-squares Petrov-Galerkin projection in nonlinear model reduction.
Journal of Computational Physics 330, 693–734.

Carlberg K, Bou-Mosleh C and Farhat C (2011) Efficient non-linear model reduction via a least-squares Petrov–Galerkin
projection and compressive tensor approximations. International Journal for Numerical Methods in Engineering 86(2),
155–181.

Carlberg K, Farhat C, Cortial J and Amsallem D (2013) The GNAT method for nonlinear model reduction: Effective
implementation and application to computational fluid dynamics and turbulent flows. Journal of Computational Physics 242,
623–647.

Chan J,Demkowicz L,Moser R andRoberts N (2010) A class of discontinuous Petrov–Galerkin methods. Part V: Solution of 1D
burgers and Navier–Stokes equations. ICES Report 29, 13.

Chaturantabut S and Sorensen DC (2010) Nonlinear model reduction via discrete empirical interpolation. SIAM Journal on
Scientific Computing 32(5), 2737–2764.

Chen PY,Xiang J,Cho DH,Chang Y, Pershing G,Maia HT,ChiaramonteMM,Carlberg K andGrinspun E (2022) CROM:
Continuous reduced-order modeling of PDEs using implicit neural representations. Preprint, arXiv:2206.02607.

Clevert DA,Unterthiner Tand Hochreiter S (2016) Fast and accurate deep network learning by exponential linear units (ELUs).
In International Conference on Learning Representations (ICLR).

DihlmannM,DrohmannMandHaasdonkB (2011)Model reduction of parametrized evolution problems using the reduced basis
method with adaptive time partitioning. In Proceedings of the International Conference on Adaptive Modeling and Simulation.

Doshi-Velez F and Kim B (2017) Towards a rigorous science of interpretable machine learning. Preprint, arXiv:1702.08608.
Drmac Z andGugercin S (2016) A new selection operator for the discrete empirical interpolationmethod—Improved a priori error

bound and extensions. SIAM Journal on Scientific Computing 38(2), A631–A648.
Drohmann M, Haasdonk B and Ohlberger M (2011) Adaptive reduced basis methods for nonlinear convection–diffusion

equations. InFinite Volumes for Complex Applications VI Problems&Perspectives: FVCA 6, International Symposium, Prague.
Berlin, Heidelberg: Springer, pp. 369–377.

Dutta S, Rivera-Casillas P, Styles B and Farthing MW (2022) Reduced order modeling using advection-aware autoencoders.
Mathematical and Computational Applications 27(3), 34.

Eivazi H, Le Clainche S, Hoyas S and Vinuesa R (2022) Towards extraction of orthogonal and parsimonious non-linear modes
from turbulent flows. Expert Systems with Applications 202, 117038.

Farhat C, Chapman T and Avery P (2015) Structure-preserving, stability, and accuracy properties of the energy-conserving
sampling and weighting method for the hyper reduction of nonlinear finite element dynamic models. International Journal for
Numerical Methods in Engineering 102(5), 1077–1110.

Fey M and Lenssen JE (2019) Fast graph representation learning with PyTorch Geometric. Preprint, arXiv:1903.02428.
Franco N,Manzoni A and Zunino P (2023) A deep learning approach to reduced order modelling of parameter dependent partial

differential equations. Mathematics of Computation 92(340), 483–524.
Fresca S,Dede L andManzoni A (2021) A comprehensive deep learning-based approach to reduced order modeling of nonlinear

time-dependent parametrized PDEs. Journal of Scientific Computing 87(2), 1–36.
Fresca S andManzoni A (2022) POD-DL-ROM: Enhancing deep learning-based reduced order models for nonlinear parametrized

PDEs by proper orthogonal decomposition. Computer Methods in Applied Mechanics and Engineering 388, 114181.
Fries WD, He X and Choi Y (2022) Lasdi: Parametric latent space dynamics identification. Computer Methods in Applied

Mechanics and Engineering 399, 115436.
Fukami K, Nakamura T and Fukagata K (2020) Convolutional neural network based hierarchical autoencoder for nonlinear

mode decomposition of fluid field data. Physics of Fluids 32(9), 095110.

e52-40 Liam Magargal et al.

Downloaded from https://www.cambridge.org/core. 21 Nov 2025 at 18:35:23, subject to the Cambridge Core terms of use.

https://arxiv.org/abs/1806.01261
https://arxiv.org/abs/2206.02607
https://arxiv.org/abs/1702.08608
https://arxiv.org/abs/1903.02428
https://www.cambridge.org/core

Gao H and Ji S (2019) Graph U-nets. In International Conference on Machine Learning, Proceedings of Machine Learning
Research 97, 2083–2092.

Geelen R and Willcox K (2022) Localized non-intrusive reduced-order modelling in the operator inference framework. Philo-
sophical Transactions of the Royal Society A 380(2229), 20210206.

Geelen R, Wright S and Willcox K (2023) Operator inference for non-intrusive model reduction with quadratic manifolds.
Computer Methods in Applied Mechanics and Engineering 403, 115717.

Geuzaine C and Remacle JF (2009) Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities.
International Journal for Numerical Methods in Engineering 79(11), 1309–1331.

Glorot X and Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the
Thirteenth International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research 9,
249–256.

Gruber A,GunzburgerM, Ju L andWang Z (2022) A comparison of neural network architectures for data-driven reduced-order
modeling. Computer Methods in Applied Mechanics and Engineering 393, 114764.

Hamilton WL (2020) Graph Representation Learning. San Rafael, CA: Morgan & Claypool Publishers.
HamiltonWL,Ying Z and Leskovec J (2017) Inductive representation learning on large graphs. Advances in Neural Information

Processing Systems 30.
Hartman D and Mestha LK (2017) A deep learning framework for model reduction of dynamical systems. In 2017 IEEE

Conference on Control Technology and Applications (CCTA), IEEE, 1917–1922.
HasegawaK, Fukami K,Murata Tand Fukagata K (2020) Machine-learning-based reduced-order modeling for unsteady flows

around bluff bodies of various shapes. Theoretical and Computational Fluid Dynamics 34(4), 367–383.
He X, Choi Y, Fries WD, Belof JL and Chen JS (2023) gLaSDI: Parametric physics-informed greedy latent space dynamics

identification. Journal of Computational Physics 489, 112267.
He H and Zou R (2021) functorch: JAX-like composable function transforms for PyTorch. https://github.com/pytorch/functorch.
Kang YE, Yang S and Yee K (2022) Physics-aware reduced-order modeling of transonic flow via β-variational autoencoder.

Physics of Fluids 34(7), 076103.
Kashima K (2016) Nonlinear model reduction by deep autoencoder of noise response data. In 2016 IEEE 55th Conference on

Decision and Control (CDC). IEEE, pp. 5750–5755.
Khodabakhshi P and Willcox K (2022) Non-intrusive data-driven model reduction for differential–algebraic equations derived

from lifting transformations. Computer Methods in Applied Mechanics and Engineering 389, 114296.
KimB,AzevedoVC,ThuereyN,KimT,GrossMand Solenthaler B (2019)Deep fluids: A generative network for parameterized

fluid simulations. Computer Graphics Forum 38(2), 59–70.
KimY,Choi Y,WidemannD and Zohdi T (2022) A fast and accurate physics-informed neural network reduced order model with

shallow masked autoencoder. Journal of Computational Physics 451, 110841.
Kingma DP and Ba J (2014) Adam: A method for stochastic optimization. Preprint, arXiv:1412.6980.
Kurganov A and Tadmor E (2002) Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem

solvers. Numerical Methods for Partial Differential Equations: An International Journal 18(5), 584–608.
Lam SK, Pitrou A and Seibert S (2015) Numba: A LLVM-based python JIT compiler. In Proceedings of the Second Workshop on

the LLVM Compiler Infrastructure in HPC, pp. 1–6.
Lax PD and Liu XD (1998) Solution of two-dimensional Riemann problems of gas dynamics by positive schemes. SIAM Journal

on Scientific Computing 19(2), 319–340.
Lee K and Carlberg K (2020) Model reduction of dynamical systems on nonlinear manifolds using deep convolutional

autoencoders. Journal of Computational Physics 404, 108973.
Lee K and Carlberg K (2021) Deep conservation: A latent-dynamics model for exact satisfaction of physical conservation laws.

Proceedings of the AAAI Conference on Artificial Intelligence 35(1), 277–285.
LeVeque RJ (2002) Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge, UK:

Cambridge University Press.
Lieu T, Farhat C and Lesoinne M (2006) Reduced-order fluid/structure modeling of a complete aircraft configuration. Computer

Methods in Applied Mechanics and Engineering 195(41), 5730–5742.
Liska R and Wendroff B (2003) Comparison of several difference schemes on 1D and 2D test problems for the Euler equations.

SIAM Journal on Scientific Computing 25(3), 995–1017.
MacQueen J (1967) Somemethods for classification and analysis of multivariate observations. InProceedings of the Fifth Berkeley

Symposium on Mathematical Statistics and Probability. Berkeley, CA: University of California Press, 1, 281–297.
Madenci E and Oterkus E (2013) Peridynamic Theory and its Applications. New York: Springer.
Magargal LK, Khodabakhshi P, Rodriguez SN, Jaworski JW and Michopoulos JG (2025a) Replication Data for: Projection

based model-order reduction via graph autoencoders suited for unstructured meshes. https://doi.org/10.5281/zenodo.17088969,
zenodo, V2.

Magargal LK, Khodabakhshi P, Rodriguez SN, Jaworski JWand Michopoulos JG (2025b) Replication Data for: Projection
based model-order reduction via graph autoencoders suited for unstructured meshes. https://github.com/liam-magargal/Geome
tricDeepLSPG.

Maulik R, Lusch B and Balaprakash P (2021) Reduced-order modeling of advection-dominated systems with recurrent neural
networks and convolutional autoencoders. Physics of Fluids 33(3), 037106.

Data-Centric Engineering e52-41

Downloaded from https://www.cambridge.org/core. 21 Nov 2025 at 18:35:23, subject to the Cambridge Core terms of use.

https://github.com/pytorch/functorch
https://arxiv.org/abs/1412.6980
https://doi.org/10.5281/zenodo.17088969
https://github.com/liam-magargal/GeometricDeepLSPG
https://github.com/liam-magargal/GeometricDeepLSPG
https://www.cambridge.org/core

Mazumder S (2015) Numerical Methods for Partial Differential Equations: Finite Difference and Finite Volume Methods.
Cambridge, MA: Academic Press.

McQuarrie SA,HuangC andWillcoxK (2021) Data-driven reduced-order models via regularised operator inference for a single-
injector combustion process. Journal of the Royal Society of New Zealand 51(2), 194–211.

Monaghan JJ (1992) Smoothed particle hydrodynamics. Annual Review of Astronomy and Astrophysics 30, 543–574.
Moore B (1981) Principal component analysis in linear systems: Controllability, observability, and model reduction. IEEE

Transactions on Automatic Control 26(1), 17–32.
Nair NJ and Balajewicz M (2019) Transported snapshot model order reduction approach for parametric, steady-state fluid flows

containing parameter-dependent shocks. International Journal for Numerical Methods in Engineering 117(12), 1234–1262.
NewmanME,Watts DJ and Strogatz SH (2002) Random graphmodels of social networks. Proceedings of the National Academy

of Sciences 99, 2566–2572.
Nishikawa H and Kitamura K (2008) Very simple, carbuncle-free, boundary-layer-resolving, rotated-hybrid Riemann solvers.

Journal of Computational Physics 227(4), 2560–2581.
Nocedal J and Wright SJ (1999) Numerical Optimization. New York, NY: Springer.
Ohlberger M and Rave S (2013) Nonlinear reduced basis approximation of parameterized evolution equations via the method of

freezing. Comptes Rendus Mathematique 351(23-24), 901–906.
Paardekooper SJ (2017) Multidimensional upwind hydrodynamics on unstructured meshes using graphics processing units–I.

Two-dimensional uniform meshes. Monthly Notices of the Royal Astronomical Society 469(4), 4306–4340.
Pan S, Brunton SL and Kutz JN (2023) Neural implicit flow: A mesh-agnostic dimensionality reduction paradigm of

spatiotemporal data. Journal of Machine Learning Research 24(41), 1–60.
Paszke A,Gross S,Massa F,Lerer A,Bradbury J,ChananG,Killeen T,Lin Z,Gimelshein N,Antiga L, et al. (2019) Pytorch:

An imperative style, high-performance deep learning library. Advances in Neural Information Processing Systems 32.
Peherstorfer B (2020) Model reduction for transport-dominated problems via online adaptive bases and adaptive sampling. SIAM

Journal on Scientific Computing 42(5), A2803–A2836.
Peherstorfer B (2022) Breaking the Kolmogorov barrier with nonlinear model reduction. English (US). Notices of the American

Mathematical Society 69(5), 725–733.
Peherstorfer B and Willcox K (2016) Data-driven operator inference for nonintrusive projection-based model reduction.

Computer Methods in Applied Mechanics and Engineering 306, 196–215.
Pichi F,MoyaB andHesthaven JS (2024) A graph convolutional autoencoder approach tomodel order reduction for parametrized

PDEs. Journal of Computational Physics 501, 112762.
Qian E, Kramer B, Peherstorfer B and Willcox K (2020) Lift & learn: Physics-informed machine learning for large-scale

nonlinear dynamical systems. Physica D: Nonlinear Phenomena 406, 132401.
Reddy J (2005) An Introduction to the Finite Element Method. New York, NY: McGraw-Hill Education.
Regazzoni F, Dedè L and Quarteroni A (2019) Machine learning for fast and reliable solution of time-dependent differential

equations. Journal of Computational Physics 397, 108852.
Ren YX (2003) A robust shock-capturing scheme based on rotated Riemann solvers. Computers & Fluids 32(10), 1379–1403.
Rennie B and Dobson A (1969) On Stirling numbers of the second kind. Journal of Combinatorial Theory 7(2), 116–121.
Rewieński MJ (2003) A Trajectory Piecewise-Linear Approach to Model Order Reduction of Nonlinear Dynamical Systems. PhD

thesis, Massachusetts Institute of Technology.
Rezaian E and Duraisamy K (2023) Data-driven balanced truncation for predictive model order reduction of Aeroacoustic

response. AIAA Journal 61(10), 4524–4545.
Rodriguez SN, Iliopoulos AP,Carlberg K,Brunton SL, Steuben JC andMichopoulos JG (2022) Projection-tree reduced order

modeling for fast N-body computations. Journal of Computational Physics 459, 111141.
Roe P (1981) Approximate Riemann solvers, parameter vectors, and difference schemes. Journal of Computational Physics 43(2),

357–372.
Rusch TK, Bronstein MM and Mishra S (2023) A survey on oversmoothing in graph neural networks. arXiv Preprint, arXiv:

2303.10993.
Schulz-Rinne CW, Collins JP and Glaz HM (1993) Numerical solution of the Riemann problem for two-dimensional gas

dynamics. SIAM Journal on Scientific Computing 14(6), 1394–1414.
Simonyan K, Vedaldi A and Zisserman A (2013) Deep inside convolutional networks: Visualising image classification models

and saliency maps. arXiv Preprint, arXiv:1312.6034.
Sirovich L (1987) Turbulence and the dynamics of coherent structures part I: Coherent structures. Quarterly of Applied

Mathematics 45(3), 561–571.
TairaK,Brunton SL,Dawson STM,RowleyCW,Colonius T,McKeonBJ, SchmidtOT,Gordeyev S,Theofilis VandUkeiley

LS (2017) Modal analysis of fluid flows: An overview. AIAA Journal 55(12), 4013–4041.
Von Luxburg U (2007) A tutorial on spectral clustering. Statistics and Computing 17, 395–416.
Wei YC and Cheng CK (1989) Towards efficient hierarchical designs by ratio cut partitioning. In 1989 IEEE International

Conference on Computer-Aided Design. Digest of Technical Papers, IEEE, 298–301.
Welper G (2017) Interpolation of functions with parameter dependent jumps by transformed snapshots. SIAM Journal on Scientific

Computing 39(4), A1225–A1250.

e52-42 Liam Magargal et al.

Downloaded from https://www.cambridge.org/core. 21 Nov 2025 at 18:35:23, subject to the Cambridge Core terms of use.

https://arxiv.org/abs/2303.10993
https://arxiv.org/abs/2303.10993
https://arxiv.org/abs/1312.6034
https://www.cambridge.org/core

Wentland CR, Duraisamy K and Huang C (2023) Scalable projection-based reduced-order models for large multiscale fluid
systems. AIAA Journal 61(10), 4499–4523.

Wiewel S,BecherMandThuereyN (2019) Latent space physics: Towards learning the temporal evolution of fluid flow.Computer
Graphics Forum 38(2), 71–82.

Zhou J,CuiG,HuS,ZhangZ,YangC,LiuZ,WangL,LiC and SunM (2020) Graph neural networks: A review ofmethods and
applications. AI Open 1, 57–81.

Appendix A. Architecture details and training
All models are trained on an NVIDIA L40S GPU. We initialize all weights and biases using Xavier initialization (Glorot
and Bengio, 2010). No attempt was made to mitigate oversmoothing (or overdiffusion) for any of the models, which can
be a concern for extremely deep GNNs. The reader is directed to Rusch et al (2023) for an in-depth study on quantifying
and mitigating oversmoothing for GNNs. The details of the graph and CNN-based autoencoders for the test problems in
Section 5 are provided in Tables A1 and A2, respectively. In all test problems, the loss is evaluated using Eq. (3.19). Stochastic
gradient descent is performed using the Adam optimizer (Kingma and Ba, 2014) to update the weights and biases at each
epoch. The learning rate for all problems is chosen to be 10‒4, and the activation functions are taken to be ELU (Clevert et al.,
2016).

To train the autoencoders in the 1D Burgers’ model, we first perform a training/validation split, where 4000 solution states are
stored for validation, and the remaining 36080 solution states are used for training. We train the models for 1000 epochs where, at
each epoch, the training set is passed through the autoencoder in batches of 20. In training the graph autoencoder, we noticed that the
architecture struggles to model the solution state near the boundaries, especially when the shock approaches the boundary. We
believe that this issue is related to the nonlocality of our graph autoencoder, as the boundary nodes do not receive adequate
information from the space outside of the domain. This behavior is often found across the field of nonlocal modeling, including
peridynamics (Madenci andOterkus, 2013) and smoothed-particle hydrodynamics (Monaghan, 1992).We leave this as an open area
for future investigation, but for now, we present a simple procedure for including padding nodes in a graph autoencoder. This
procedure appends 30 nodes to the left side of the domain and sets their features to be the value of the left boundary condition, that is,
μ1. Along the right boundary,we find that solvingBurgers’modelwith the finite volume solver for 30 finite volume cells to the right of the
right boundary and prescribing the computed velocity values to the features of the padding nodes is appropriate. Our decoder reconstructs
the solution for the nodes in the physical domain aswell as those in the padding zones but only computes the losswith respect to the nodes
in the physical domain of the problem. During the hierarchical spectral clustering algorithm, radius ri for layer i is chosen such that

Eq. (3.1) gives roughly seven edges for each node, that is, ri = xright� xleft
� �

7
2∣Vi ∣

 �
, where xright ∈R and xleft ∈R are the positions of the

rightmost and leftmost padding nodes inV0, respectively. To train theCNN-based autoencoder, a kernel size of 25 is chosen at each layer,
where half-padding is used. In the decoder, the transposed convolution layers are given an output padding of 1.

In the 2D Euler equations for the Riemann problem setup, we first perform a training/validation split, where 525 solution states
are stored for validation, and the remaining 7000 solution states are used for training. We train the model for 5000 epochs, where, at
each epoch, the training set is passed through the autoencoder in batches of 20. To compute the hierarchy of reduced graphs in the
graph autoencoder, at each layer, Eq. (3.1) uses a radius that aims for nine edges for each node. We found that padding along the
boundaries was unnecessary for this problem and therefore did not include it. In theCNN-based autoencoder, a kernel size of 5×5 is
chosen at each layer, where half-padding is used. Stride is taken as 2 for all layers. In the decoder, the transposed convolution layers
are given an output padding of 1.

To train the graph autoencoders used in the 2D Euler equations for the bow shock generated by flow past a cylinder problem, we
first perform a training/validation split, where 506 solution states are stored for validation, and the remaining 5500 solution states are
used for training. We train the model for 5000 epochs where, at each epoch, the training set is passed through the autoencoder in
batches of 20. To compute the hierarchy of reduced graphs, at each layer, Eq. ((3.1) uses a radius that aims for nine edges for each
node, that is, ri =

ffiffiffiffiffiffiffi
9

π∣Vi ∣

q
. We found that padding along the boundaries was unnecessary for these models, and therefore did not

include it.
We found stacking message passing operations to be beneficial to the accuracy of the graph autoencoders. In theMPP layers, we

perform message passing operations multiple times before pooling. In the UMP layers, multiple message passing operations are
performed after unpooling. The number of message passing operations is represented in Table A1 under the “# of MP operations”
column. Lastly, the final message passing operation of the decoder does not have an activation function associated with it, as the
output of the last UMP layer should fall in the range 0,1½ � because of the rescaling operations.

We additionally report the total number of tunable parameters for each layer of the autoencoders. A single SageCONVmessage
passing operation consists of 2Ni�1

F Ni
F tunable parameters. When we stack multiple message passing operations in the same MPP

layer, we ultimately have 2Ni�1
F Ni

F + 2N
MPPNi

FN
i
F tunable parameters in the ith layer, where NMPP ∈ℕ denotes the number of

additional message passing operations in an MPP layer. Likewise, when we stack multiple message passing operations in the same
UMP layer, we will have 2Ni�1

F Ni
F + 2N

UMPNi�1
F Ni�1

F tunable parameters in the ith layer, where NUMP ∈ℕ denotes the number of
additional message passing operations in a UMP layer. For both CNN layers and transposed CNN layers, the total number of
parameters in the ith layer isNi�1

F Ni
F ι+N

i
F , where ι∈ℕ denotes the kernel size. Note that the CNN-based autoencoders use biases in

the MLP/fully connected layers, whereas the graph autoencoders do not.

Data-Centric Engineering e52-43

Downloaded from https://www.cambridge.org/core. 21 Nov 2025 at 18:35:23, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

A.1. Details of the graph autoencoders

Table A1. Outputs of each layer of the encoder and decoder of the graph autoencoder for all test
problems, where i represents the layer number, ∣Vi∣ denotes the number of nodes in the output graph,
Ni

F denotes the number of features for each node in the output graph, and M denotes the dimension of
the latent space. The number of nodes in the output graph of the preprocessing and postprocessing

layers in the 1D Burgers’ model includes the 30 padding nodes on both sides of the domain.
Parentheses in “# of MP operations” column denote the number of features in the output of

intermediate message passing operations

i Layer type ∣Vi∣ Ni
F

of MP
operations

Vector
length

of tunable
parameters

1D Burgers’
model

Encoder 0 Preprocessing 316 1 N/A N/A N/A
1 MPP 64 8 2 (8) N/A 144
2 MPP 16 16 2 (16) N/A 768
3 MPP 4 32 2 (32) N/A 3072
4 MPP 2 64 2 (64) N/A 12288
5 MLPenc N/A N/A N/A M 128M

Decoder 0 MLPdec 2 64 N/A N/A 128M
1 UMP 4 32 2 (64) N/A 12288
2 UMP 16 16 2 (32) N/A 3072
3 UMP 64 8 2 (16) N/A 768
4 UMP 316 1 2 (8) N/A 144
5 Postprocessing N/A N/A N/A 316 N/A

2D Riemann
problem

Encoder 0 Preprocessing 4328 4 N/A N/A N/A
1 MPP 512 16 2 (16) N/A 640
2 MPP 64 64 2 (64) N/A 10240
3 MPP 8 128 2 (128) N/A 49152
4 MPP 2 256 2 (256) N/A 196608
5 MLPenc N/A N/A N/A M 512M

Decoder 0 MLPdec 2 256 N/A N/A 512M
1 UMP 8 128 2 (256) N/A 196608
2 UMP 64 64 2 (128) N/A 49152
3 UMP 512 16 2 (64) N/A 10240
4 UMP 4328 4 2 (16) N/A 640
5 Postprocessing N/A N/A N/A 4328 × 4 N/A

Bow shock
problem

Encoder 0 Preprocessing 4148 4 N/A N/A N/A
1 MPP 512 16 2 (16) N/A 640
2 MPP 64 64 2 (64) N/A 10240
3 MPP 8 128 2 (128) N/A 49152
4 MPP 2 256 2 (256) N/A 196608
5 MLPenc N/A N/A N/A M 512M

Decoder 0 MLPdec 2 256 N/A N/A 512M
1 UMP 8 128 2 (256) N/A 196608
2 UMP 64 64 2 (128) N/A 49152
3 UMP 512 16 2 (64) N/A 10240
4 UMP 4148 4 2 (16) N/A 640
5 Postprocessing N/A N/A N/A 4148 × 4 N/A

e52-44 Liam Magargal et al.

Downloaded from https://www.cambridge.org/core. 21 Nov 2025 at 18:35:23, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

A.2. Details of the CNN-based autoencoders

Table A2. Outputs of each layer of the encoder and decoder of the CNN-based autoencoder for test
problems 1 and 2, where i denotes the layer number, and M denotes the dimension of the latent space.
Note: the MLPdec in the CNN-based autoencoder has a bias term and is followed by an ELU activation
function (unlike the graph autoencoder). Empirically, we found that the inclusion of the bias term and
activation function slightly improves accuracy for the CNN-based autoencoder, but not the graph

autoencoder. Note that the CNN-based autoencoder for the 2D Riemann problem has 4096 grid points
in the interpolated mesh versus the 4328 cells in the original mesh

i Layer type
Grid
points Channels Stride

Vector
length

of tunable
parameters

1D Burgers’
model

Encoder 0 Preprocessing 256 1 N/A N/A N/A
1 1D convolution 128 8 2 N/A 208
2 1D convolution 32 16 4 N/A 3216
3 1D convolution 8 32 4 N/A 12832
4 1D convolution 2 64 4 N/A 51264
5 MLPenc N/A N/A N/A M 129M

Decoder 0 MLPdec 2 64 N/A N/A 128 M + 1ð Þ
1 1D transposed

convolution
8 32 4 N/A 51232

2 1D transposed
convolution

32 16 4 N/A 12816

3 1D transposed
convolution

128 8 4 N/A 3208

4 1D transposed
convolution

256 1 2 N/A 201

5 Postprocessing N/A N/A N/A 256 N/A
2D Riemann

problem
Encoder 0 Preprocessing 4096 4 N/A N/A N/A

1 2D convolution 1024 8 2 N/A 208
2 2D convolution 256 16 2 N/A 3216
3 2D convolution 64 32 2 N/A 12832
4 2D convolution 16 64 2 N/A 51264
5 MLPenc N/A N/A N/A M 129M

Decoder 0 MLPdec 16 64 N/A N/A 128 M + 1ð Þ
1 2D transposed

convolution
64 32 2 N/A 51232

2 2D transposed
convolution

256 16 2 N/A 12816

3 2D transposed
convolution

1024 8 2 N/A 3208

4 2D transposed
convolution

4096 4 2 N/A 204

5 Postprocessing N/A N/A N/A 4096 × 4 N/A

Data-Centric Engineering e52-45

Downloaded from https://www.cambridge.org/core. 21 Nov 2025 at 18:35:23, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Appendix B. Proper orthogonal decomposition
To compute the set of orthonormal PODbasis vectors, we use themethod of snapshots (Sirovich, 1987) inwhich a snapshotmatrix of
the time history of the FOM solutions is generated, XPOD = x1,…,xN train½ �∈RN ×N train , where N train ∈ℕ is the number of training
snapshots, xi ∈RN is the solution state vector of snapshot i with N being the dimension of the state vector. Next, singular value
decomposition is performed on the snapshot matrix, XPOD:

XPOD =VΣUT (B.1)

where V = v1,…,vN½ �∈RN ×N is a matrix of N orthonormal vectors which represent the POD modes in the order of decreasing
singular values, Σ= diag σ1,…,σNð Þ∈RN ×N is the diagonal matrix of singular values ordered as σ1 ≥…≥ σN , and
U= u1,…,uN train½ �∈RN ×N train provides information about the time dynamics. The POD basis is created by truncating the first M
left singular vectors of the snapshot matrix, that is, Φ= v1,…,vM½ �∈RN ×M , which is made up of M orthonormal vectors that
describe the dominant mode shapes of the system. The POD basis vectors are orthonormal and optimal in the L2 sense, making them
a common choice in the context of PMOR (Taira et al., 2017).

Cite this article:Magargal L, Khodabakhshi P, Rodriguez S, Jaworski J and Michopoulos J (2025). Projection-based model-order
reduction via graph autoencoders suited for unstructured meshes. Data-Centric Engineering, 6, e52. doi:10.1017/dce.2025.10030

e52-46 Liam Magargal et al.

Downloaded from https://www.cambridge.org/core. 21 Nov 2025 at 18:35:23, subject to the Cambridge Core terms of use.

https://doi.org/10.1017/dce.2025.10030
https://www.cambridge.org/core

	Projection-based model-order reduction via graph autoencoders suited for unstructured meshes
	Impact Statement
	Introduction
	Background and preliminaries
	Full-order model
	Nonlinear dimension reduction via autoencoders
	Graph theory

	Dimension reduction via graph autoencoders
	Generating a hierarchy of reduced graphs with spectral clustering
	Encoder architecture
	Preprocessing - layer 0
	Message passing and pooling (MPP) - layers 1,. . .,n-1
	Fully connected layer: compression - layern

	Decoder architecture
	Fully connected layer: expansion - layer 0
	Unpooling and message passing (UMP) - layers 1,. . .,n-1
	Postprocessing - layern

	Training the autoencoder

	Projection scheme and interpretability
	Least-squares Petrov-Galerkin projection
	Interpretability of the latent state vector

	Numerical experiments
	One-dimensional Burgers’ equation
	Two-dimensional Euler equations
	Riemann problem
	Bow shock generated by flow past a cylinder problem

	Performance with noisy training data
	Wall clock training times

	Conclusions and future work
	Supplementary material
	Data availability statement
	Acknowledgments
	Author contribution
	Funding statement
	Competing interests
	Ethical standard
	References
	Architecture details and training
	Details of the graph autoencoders
	Details of the CNN-based autoencoders

	Proper orthogonal decomposition

