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ON A BOUNDARY-VALUE PROBLEM POSED BY CANCER
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Abstract

This paper contains a detailed formulation of advanced tumor therapy with neutron beams
as a mixed boundary initial value problem for multigroup neutron diffusion in a composite
3D multiregional system. By applying a vector-matrix composite region finite-integral
transformation we derive the principal operational solution to this problem as the group-
regional neutron flux distribution inside the tumor 3D subregions. The principal solution
is then converted into expressions of various order approximation, which may be directly
programmed on a computer.

1. Introduction

Nuclear particle beam radiotherapy of certain tumors is currently a technologically
advanced and effective means in the selective destruction of cancer cells.

Neutron therapy in particular could be more effective than radiation therapy with
x-rays or charged particles for certain advanced, typically multi-regional 3D tumors
because it has the propensity to kill tumor cells which are low in oxygen content and
often become resistant to alternative forms of radiation [3, 10].

The (30-350) Mev cyclotrons commercially available nowadays which are dedic-
ated to proton or neutron therapy are able to produce several beams that can rotate
around the patient simultaneously. Proton or deuteron beams may, if required, be
converted to neutron beams with space- r, energy- E (or speed- v), and time- ¢
dependent localized currents J(r, E, t) through, for example, bombarding various
targets madeup of Be® or Li’, say.

Such installations facilitate to a great extent 3D radiation therapy, image registra-
tion, 3D treatment plan optimization, radio-surgery and conformal radiotherapy with
multileaf collimators [12].
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The present communication is arranged as follows. Cancer therapy with neutron
beams is formulated as a neutronics boundary-value problem in the next section.
Section 3 studies the structure of the analytic exact solution of this boundary-value
problem. The final section, 4, is devoted to deriving various approximants to the exact
operational solution of the boundary-value problem.

2. Boundary-value problem formulation

Neutron beams for cancer therapy can be obtained from a variety of origins includ-
ing radio-isotopic and fission sources, nuclear reactors or various particle accelerat-
ors.

2.1. Neutron source Modern neutron therapy is conceived in association with high
energy (30-350) Mev proton or deuteron bombardment of various targets including,
in principle (but not in practice) some of the tumor tissues. The energy spectrum
of emitted neutrons is fairly stable over a wide range of bombarding proton energies
[2] because it is dominated by evaporative neutrons with energies typically below
20 Mev. Only forward anisotropy of neutron emission is increased by boosting the
proton bombarding energy in a way leaving the energy spectrum virtually unaffected.

A group regional neutron source term Q;, (r, t) in neutron therapeutic applications
may be realised by, for example, a bombarding beam /;(r, ¢) of high energy protons
that is applied to the surface of the region R; or perhaps by implanting an encapsulated
C?? fission neutron source into the cancerous composite domain.

2.2. A composite domain Radiotherapy in general leads in many applications to an
acute exposure of the patient to a large dose of radiation received over a short period
of time.

Cancer therapy with neutrons invokes the problem of unsteady multigroup neutron
diffusion inside a finite composite cancerous domain R bounded by a surface S,
and divided into N finite subregions as illustrated in Figure 1. Each subregion,
which may be of malignant or healthy tissues, is nonhomogeneous but isotropic in
neutron scattering and may have a specific tolerance, I';, for the maximum permissible
absorbed dose of radiation.

The common interface S;; = §;; of any two adjacent subregions R; and R; (with
boundary surfaces S; and S;) is in perfect physical contact. In the event that S; and S;
(i # j) have no common interface, then we let S;; = 0. If a subregion R; is not in
contact with the medium external to R then we let S;o = 0.

Therefore the surface S; of any subregion S; may be given by

N
S =S+ Y_(1—8)Sy, (1)
j=1

https://doi.org/10.1017/50334270000009206 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000009206

48 Nassar H. S. Haidar [3]

o

FIGURE 1. Sketch to illustrate the human body as a composite cancerous region that is irradiated by
external neutron beams.

where §;; is Kronecker’s delta. The cancerous composite system geometry is arbitrary
but for the restriction that the shape of the outer surface of each individual subregion
S:o as well as the overall outer surface of the system

N
S() = Z S,'() (2)
j=1

should be non-re-entrant to neutrons.

It is not unreasonable to assume further that the cancer growth time, which is
comparable to the latent period characteristic of biological radiation exposure, is
much longer than the radiation therapy time, so the composite region geometry is time
independent.

https://doi.org/10.1017/50334270000009206 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000009206

[4] Boundary-value problem of cancer neutron therapy 49

2.3. Linearity In practical therapy with neutron beams some subdomains in the
cancerous composite domain may have to contain certain burnable isotopes like, for
example, B'®. The rate of elimination of neutrons of the k-th energy group [9] by such
isotopes inside the i-th region, is representable by

L, Deu(r, 1), (3)
where
Th(r, 1) = N (r,)a}, )
and
Tl (r) = NE(x, 0)a) )]

is the total macroscopic cross section of the burnable isotope, o, being the microscopic
total cross section of this isotope and N?(r) is its space-time dependent regional
density. Here ¢, (r) is the group regional neutron flux.

The kinetics of this isotope density are governed by the differential equation

%N,-” (r,1) = —o}@u(r, )N/ (r, 1) (6)
whose solution is
N?(r,t) = Ni(r, 0) exp [—o/; fo ' Pulr, t)dt] i @)
By virtue of (3)—(5) the last relation leads to
5@, Deu(r, 1) = T} (r) exp [—a,.’; /0 ’ g (r, t)dt] @i(r, 1). )
This nonlinear rate (in the regional group flux) may be linearized however only when
/0 ' pu(r, 1)dT K 1/0}, )
to permit
z,-ll(l', Du(r, t) = E:’k(l‘)fpik(l'» 1. (10)
In the general case when (9) applies we shall adopt the notation
T + T () = T (an

in which Z;, (r) denotes the group total macroscopic cross section and X3 (r) is the
group regional total absorption cross section of non-burnable isotopes.
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2.4. Regional therapy control Alternative methods for cancer radiotherapy which
include therapy with selectively accumulating radioisotopes [8] such as J'*! and Tc*,
injected colloidal radioactive metals like Au'®® or Zn® or artificially radioactive sus-
pensions containing Y*® or Lu'”’, say, have long been in practice [4]. A common
problem with all alternatives has been in their nonuniformity of distribution inside
some kinds of cancers.

The effectiveness of neutron therapy may also be intensified regionally by injecting
a suspension that contains a biologically acceptable strong neutron absorber like B!
whose absorption viz. BY(n, a)Li’ is accompanied by the emission of ionising o
particles.

The rate of group regional depletion or multiplication of neutrons as a result of
applying such alternative therapeutic techniques is

Ui (r, @i (r, t). 12)

Here the space-time dependent arbitrary sign regional therapy control function Uy, (r, 1)
arises from the fact that the distribution of radioactive nucleide in a human being is a
space-time dependent process with complex kinematics and dynamics [6].

The function U;, (r, t) could moreover represent a regional accumulation, assimila-
tion or elimination of certain neutron scattering or absorbing isotopes through injection
or effluxion. Relation (12) may moreover in some situations simulate the function of
hormones or drugs administered to stimulate the function of certain organisms in the
human body during radiotherapy.

All these considerations must be decisive in defining the regional dosimetric levels

G !
b= [ [ out.0putrrara <, 13)
k=] vO R;

in which w;, (r, ) is the group regional biolbgical effectiveness of the neutron radiation
in the N-dimensional composite system.

2.5. Master PDEs The group neutronic properties of each subregion, whether
healthy or malignant, are characterized by its space-dependent diffusion coefficient
and macroscopic total and scattering cross sections Dy (r), X/, (r) and E,.j x (r) respect-
ively.

The multigroup description of neutron diffusion in such systems poses [9, 6] the
problem of solving the system of coupled PDEs

0
k"aw(l‘, 1) =V [Dy(r) Ve, , t)] — E;k(r)(Pik(r, t)

G
+ Y B @y v, U, Do (r, 1) + Qu(r, 1),
2

J

i=123,...,N; k,j=123,...,G, (14)
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where N and G stand respectively for the number of regions and neutron energy
groups.

2.6. Boundary conditions Various boundary conditions of the third kind at all outer
regional surfaces of the system are subject to the usual coupling conditions and to the
initial conditions for the regional group neutron fluxes

@ir(r, 1) = Fi(r). (15)
Note however that in almost all therapeutic situations
Fu() =0, Vik.

The possible irradiation of a cancerous composite region by more than one group
regional beam with a current Ji,(r, t), applied on S;,, necessitates the imposition
on the regional outer surface S of the general nonhomogeneous radiative boundary
condition

3
D, —@u(r, t) £ Vo (r, t) = —Ju(x, t Sios
k(r)anm«pk(r ) £ Viowir(r, 1) «(r,t) ron S (16)

i=1,23,...<N; k=1,2,3,...,G,

with Ji (r, 1) #0o0n S;, and Ji, (r, ) = 0on Sy,.

Clearly S;o = S;, + Siy and S;, # O only for a small number of subregions which
are irradiated by a number M < N of external neutron beams. One should also
expect ;o = S, to hold for some regions; of course in fully internal regions S;o = 0.
Moreover, y;q is the transport theory corrected ratio of the diffusion coefficient to the
extrapolation length, which is invariably equal to 0.47 for all i-regions and all energy
groups, that is,

0, ronS;
Yio = ’ (17)
y =047, ronsS,.

Here anio denotes the normal derivative at the outer surface S;o of the subregion R; in
the outward direction. The +y;, and —y,, in (16) are taken when this normal points
respectively to the left and to the right side of an observer in R;.

Therefore
9
Dika_‘pik(r, 1) £ Yipu(r, t) = —Ju(r, 1), ronS,,
n,-p
i=1,23,..., M<N; k=1223,...,G, (18)
9
Dy —@u(r, t) £ yip0u(r,t) =0, ronS,,
Bn,-p
i=1,2,3,...,<N; k=1,2,3,...,G. (19)
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2.7. The boundary-value problem Now consider the matrix relation
$ir, 1) = Ui(r, 0) + £ (r) — S(r) (20)
in which
i;(r)={z{"(r)], kj=123,...,G
is the matrix of regional intergroup scattering cross section and
U;(r, t) = Diag[U; (r, HDUn(r, 1) - - - Uig(r, 1))

is the diagonal matrix of group regional control functions. In association with (14) we
write the multiregional neutronics boundary-value problem in the multigroup vector-

matrix form
d " A
B Ecpi(r, 1) =[V:-Di()V 4+ %,(r, )]y (r, 1) + Qi(r, 1),
i=1,273,...,N, 21
w;(r, t)=<pj(r ), ronSij, i,j=12,3,...,N,t>0, (22)

D(r) @i (r, t)—D(r) sO,(r t), rons;,
n n

i,j=12,3,...,N, t >0, (23)
D; (r) (p,(r 1) £ y,pi(r,t)=-Ji(r,t), ronS;,, i=1273,..., M <N,
an;
(24)
A d
Di(r)ﬁcp,-(r, 1)k ypi(r,t)=0, ronS,, j=1,2,3,...,<N, (25)
iq
‘P,(r,o):E(r)v i=1’2’39"'7Ns (26)

involving the column vectors
@i(r, 1) = [ga(r, D, 1) ... @i (x, D],
F(r) = [Fi(r)Fa(r) ... Fie(M)],
Qi(r, 1) = [Qu(r, 1) Qn(r, 1) ... Qig(r, D],
Ji(r, 1) = [u(r, ) Ja(r, 1) ... Jig(r, D], 27)
and the diagonal matrices
D;(r) = Diag[ Dy (1) Do (r) . .. Dig (M),
£}(r) = Diag[Z}, (1) T,(r) . .. Ejg (0],
V! = Diag[V,'V; ' ... V; ‘]. (28)

Obviously d/0n;; denotes the normal derivative at interfaces S;; between subregions
R; and R; in the same sense from R; to R;.
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3. Operational analysis

It should be observed that the variable coefficient boundary-value problem (21)—
(28) is nonhomogeneous both in its differential equation (due to the Q; (r, ¢) term) and
in its boundary conditions (due to the J; (r, t) term). Moreover, both of these terms
are in principle space-time dependent.

Such a boundary initial value problem may have closed-form solution in terms of
its Green’s function [1] only for a single-region system. The construction of Green’s
functions for multiregional composite systems of arbitrary geometry is well-known
to be formidably difficult, if not a practically impossible task. Moreover, even for
the simplest case of a single-region system, the solution of such boundary initial non-
homogeneous boundary-value problems is not amenable to standard eigenfunction ex-
pansions. Indeed if a single-region finite integral transform [5] is applied to solve such
a single-region problem, the transformation of the partial differential equation (21)
into an ordinary differential equation will not be possible because the eigenfunctions
and eigenvalues of the corresponding eigenvalue problem would depend on both r and
t, with a necessary continuum [7] in the eigenvalue spectrum. Certainly composite-
region boundary-value problems require the application of composite-region finite
integral transforms [11] for their solution.

Denote the group regional reduced source vector by

Ei(r,1) = VQi(r, 1) (29
and the group regional reduced current of the applied neutron beam vector by
Zi(r, 1) = VI(r,1). (30)

Next define the multigroup composite-region finite integral transform

N
Hyle,(r, 0] = gn(t) =Y | 0].(r,nV',(r,)dR 31)

i=t YR

and the multigroup composite-boundary finite integral transform

N
WhIZi(r, )] = Z,@) =Y _ | 6], OV Zi(r, 1)dS (32)

i=1 Y Sio

with

Oin(r, 1) = Yin (v, 1)/ Yimllw (33)
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and Y,,(r, t) being the functional eigenvectors of the vector matrix eigen boundary-
value problem [6, 11] auxiliary to (21)-(26).

V- Di®)VYin(r, 1) + LZi(x, £) 4 @)V ] Yi(r, 1) = 0, (34)

Yim(r, t) = [Yilm(ra t)},iZM(rf t)' 0T YiGm(rg t)]T’ rin RH i = 19 2, 3s veey N.
Yim(r’ t) =ij(ra t),

A 9 A 0
Di(r)'aZ;Yim(r’ 1) = Dj(’)g;;ij(r, t), ron Sij;
i,j=123,...,N,t >0, 35)
N )
Di(r)g——Y,-,,,(r, Hxy,Yim(rt)=0, ronS,; i,j=123,...,M <N,
e (36)
N 0
Di(r)—Yim(r’ t) + )’qu.’m(l‘, t) = O, ron S,'q; l,_] = l, 2, 3, e, < N.
Bn,--
! (37)
Here
N 172
1Y imlly = {Z / Y, (e, OV Yo (r, t)dR} (38)
i=l YR

is a composite-region weighted norm of the Y, (r, t) vector and ,, (¢) is the eigenvalue
associated with this eigenvector.
The composite-region integral transforms (31) and (32) have respective inversion

formulae
Hy' [@n ()] = 9,0, 1) = ) @u()Bim(r, 1), (39)
m=1
WilZh O =Zi(r,0) = ) Z3(1)0im (x, ). (40)
m=1

After observing that the «,, (¢) are independent of both Q;(r, ¢) and J;(r, ), that
G (0) = F,u (0) (41)

and writing

N
G =Y [ 05,0007 26,x, 1R, “2)
i—1 VR

we can state the main result of this paper.
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THEOREM. The group-regional solution vector of the composite-region boundary-
value problem (21)—(28) is

@i(r, 1) =) Gu(0)Oim(r, 1), (43)
m=1
with coefficients ¢,,(t) that satisfy the system of ordinary differential equations

ditff)m(t) + ot (D)Pm (1) + ; Gun()Gn(t) = En(t) — Z;,0), 44)

m=1,2,3,...,00,
subject to
Gn0) = F,(0), m=1,2,3,...,00. (45)

PROOF. Details of the proof of this theorem are given in the appendix.

Once a solution to (44)—(45) is found, the regional absorbed dose during cancer
therapy with neutron beams is determined, viz.,

hi=>Y" / / Q] (r, )@ (t)8im(r, t)dRdT, (46)
m=1v0 R;

where

Qi(r, 1) = [Wa(r, )W (r, 1) - - Wi (r, 1" 47

4. Approximate solution

It is common knowledge that an exact solution to an infinite set of coupled differ-
ential equations like (44) is theoretically impossible. In practice, however, it is always
possible to truncate the infinite sum in (44) leaving / terms and solve the [6] [-th order
approximation,

d_ ) ! . _ )
ZPn(®) + an ()G () + ; Gun()Pn(t) = En(t) — Z2(2), “8)

m=1,2,3,...,00,
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subject to
&m(0) = F(0), m=1,23,...,00. 49)

This is an initial-value problem also with an infinite system of ordinary differential
equations but only the first / of which are coupled.
The first /-coupled equations of the system (48) may be written in vector-matrix

form
£ o) = A0pm +Ew + 10, (50)
subject to
@(0) = F(0), (5
with

@) =[G ()G - - - G,
F(0) = [F(0)F:(0) - - F, (0],

and A(t) an / x [ matrix.
The solution of the nonhomogeneous differential system (50) is usually attempted
by defining the associated disjoint equation

d A*
EX(t) = AY()X() (52)

and the H (¢) matrix which is the transpose of the matrix of simple and generalized
eigenvectors of A*(t). The initial-value problem (50)-(51) admits the closed-form
solution

Pty = H' (0)HOF(©0) + H (1) / H(®)IE(r) + Z*()]dr. (53)
0

For the uncoupled transforms ¢,,(¢):m = [+1,142,1+3, ... , 00, the initial-value
problem (48)—(49) becomes

d
_¢m(t) +a,,,(t)¢,,,(t) = fm(t)s

dt
Gm(0) = Fra(0), m=I1+1,1+2,1+3,...,00, (54)
with
)
fn(®) = En(t) = Z3,(1) = D Gun()@(t) (55

n=1
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considered known. Its solution is straightforward and can be written as

(ﬁm(t) = FM(O)CXP{—/IGM(T)d'E] +/ fm(r)exp{_f am(u)du]dr-(56)
0 (] T

Ultimately the I/-th order approximation to the solution vector ¢, (r,t) of the
boundary-value problem (21)—(28) is determined by applying the inversion formula
(39) to the I-th order approximation of the transform ¢, (¢) as defined by relations (53)
and (56).

For example, the zero order (I = 0) solution vector ©?(r, t) of the above-mentioned
boundary-value problem is

o(r, Yy F,(0 {—/',,, d}
Pl 1) Z[ ©expy— | on(r)dz

m=1
t 4
+ f [En(t) + Z%(t)])exp {— f a,,,(t)dr] dt] 0. (r, 1).
0 T
The first order (! = 1) solution vector ¢; (r, ) is given by
(28] 4 t
PHUOELHHEDY [/ Gmi(T)91 (1) exp {—/ am(u)du] dt] Oim(r, 1),
m=2 0 T
where

o) = Fl(O)eXp[—/ al(r)dr} +/ [Ex(r)+ZT(r)]eXP{—f al(u)du]dr
0 4] ) T

and so on.
In conclusion, it should be noted that these approximations to the solution of the
boundary-value problem can be directly programmed on a computer.
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Appendix. Proof of the theorem

Expand ¢, (r, t) in terms of the eigenfunctions of (34)—(37) over the subregion R;
as

@i, 1) =Y Col®)Yim(r, 1). (A.1)
m=1
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In order to define C,,(¢) it is necessary to derive a composite-region multigroup ortho-
gonality relation. We do that by studying equations (34) for two distinct eigenvalues
o, (¢) and o, (¢). Multiplication of the first by Y " (r, t) and the second by Y/ (r,t)
and dropping out the independent variable to s1mp11fy the notation leads to

V- DY VY., — YL VY,,) + (@ — @) YL V'Y, = 0. (A2)

Let us integrate (A.2) over the spatial variables in the corresponding subregion and
add similar terms for all subregions.

N N
(O — ) Zf Y’ V'Y, dR = Z/ V- Di(YI VY, — Y VY,,)dR.
i=1 v Ri ’ i=1 YR

(A.3)
We then apply the Gauss divergence theorem to transform (A.3) into
N Y D1 Y;,
@ — ) ) / Y’ V'Y, dR = Z f P "|as. (A.4)
i=1 /R D; 8n

with the vertical bars denoting determinant, and consider the boundary conditions
(35)—(37) together with (33) to arrive at the composite-region orthonormality property

/ 0l (x, )V "0, (r, )dR = 8. (AS5)
The boundary-value problem (21)—(28) may be solved operationally by application

of the H-transform. This is actually done by multiplying equation (21) by 8, (r, ¢)
and integrating over the R; subregion to obtain

fo’ V- -a—cp,dR /BTV DV<p,dR+f Bz:,lfliga,.dR+/ 6;,Q:dR.
R; R;

ot (A.6)
The identity
0" V.D,Vp, =V (6" DV, — I D;VO,,) + ¢’V - D8,  (AT)
together with the Gauss divergence theorem enable us to write the first integral to the
right-hand side of (A.6) as
R ThH. 2@,
f 6" V.D,Vyp,dR = f @’V D;V0,,dR + / ma 4. (AB)
R; S; i i m i

Replace YT (r, t) by 8,,,(r, t) in (34) and multiply throughout by ¢] (r, 1) to get

@IV-D;V, = - [Ei + 0 V10, (A.9)
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Substitute (A.9) into (A.8) and the resultant relation into (A.6) to obtain

A 3
f 0’ V' —p,dR=—«a / 0" V'p.dR
R; at R;
BT D5 50 Oim T -1
+[ b, ’:.,” dS—i—f 0, ,VTEdR,
s | P i on;; an; Pi Ri (AIO)
In view of definition (31), summation of (A.10) overi =1,2,3,..., N yields
N LGT
Z/ 0T V- !5, PidR = —0n@n(®) + E, (t)+Zf TDBZ_”J" ds.
i=1 Hong; Y (A.11)

On following a similar procedure that takes into consideration the boundary conditions
(22)-(25) and (35)—(37), we see that

a GT
’f’" i o V'Z.ds. (A.12)
‘/S‘. l ’Bn,-,- ('pi Z S,p
Therefore
/ or v-! —cp,dR = 0@ (1) + En(t) — Z2(0). (A.13)

Differentiate (43) with respect to time and substitute the resulting equation into (A.13).
We obtain

N [o o]
Z/ 0.,V lz 0,~,.—8—¢,,(t)] dR
i=1 R; n=1 at
- T {r—1 > - K] _ -
+;Ai OimV {;%(t)ae,-n} _O‘M‘Pm(t)+Em(t)—Zm(t),

The orthonormality property (A.S) together with (42) yield the required result.

(A.14)
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