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1. Introduction. If a convergent series of real or complex numbers is rearranged, the
resulting series may or may not converge. There are therefore two problems which naturally
arise.

(i) What is the condition on a given series for every rearrangement to converge?
(ii) What is the condition on a given method of rearrangement for it to leave unaffected

the convergence of every convergent series?
The answer to (i) is well known ; by a famous theorem of Riemann, the series must be

absolutely convergent. The solution of (ii) is perhaps not so familiar, although it has been
given by various authors, including R. Rado [7], F. W. Levi [6] and R. P. Agnew [2]. It is
also given as an exercise by N. Bourbaki ([4], Chap. Ill, § 4, exs. 7 and 8).

It may happen that a rearrangement of a convergent series, though not convergent, is
nevertheless summable by some method of summability. Thus, given any method of
summability, there are analogues of (i) and (ii).

(iii) What is the condition on a given convergent series for every rearrangement to be
summable?

(iv) What is the condition on a given method of rearrangement for it to rearrange every
convergent series into a summable series?

Of these problems, (iv) seems to be the more difficult, and the main part of this paper is
taken up with an attempt to give a satisfactory solution. The general result obtained in § 3
(Theorem 1) would be difficult to apply, but under certain conditions there is a much simpler
reformulation of this solution, given in § 4 (Theorem 2) ; this simpler form is applicable to
most methods of summability that occur in practice. Finally, Theorem 3 of § 6 gives the
complete solution of the easier problem (iii); it turns out that, as for (i), the series must be
absolutely convergent.

2. Definitions. We consider a general method A of summability, defined by the matrix
n

(ati). The series Zwn, or its sequence of partial sums xn= 2 «r> i8 called A-bounded if, for

each i, the series "Ea^Xj is convergent and sup S aaxj < °o. If also s = lim 2 o«â  exists,
j i j — 1 t—>-to 3 = 1

then the series, or its sequence of partial sums, is called A-summable to s. The method A is
called regular if 2wn is A-summable to s whenever 2wn is convergent to s. Necessary and
sufficient conditions for the method A to be regular are

00

Cl : sup 2 | a-u | < oo,

C2 : lim aiS =0 for each j ,
00

C3 : lim Y, ait = l.
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REARRANGEMENTS OF INFINITE SERIES 183

(See, for example, G. H. Hardy [5], p. 43, Theorem 2.) It follows from Cl that, if A is regular,
every series with bounded partial sums is A-bounded.

In these definitions and conditions, the variable i may take values and tend to infinity
either on the set of positive integers or on the set of positive real numbers. Since we are only
interested in the behaviour as i -*• oo, it seems reasonable to consider also the weaker defini-
tions of A-summability and A-boundedness which we obtain if we demand that the series

"Ea^Xj should converge and that < 2 auxj \ should be bounded only for sufficiently large values

of i, say for i =̂ m. It is not obvious that this weaker definition leads to the same class of
regular methods of summability, because m may depend on the series 2wn considered. But
in fact it can be shown (R. P. Agnew [1], Theorem 7.2 and C. A. Rogers [8]) that the method
A is regular in this weaker sense if and only if C2 and C3 hold together with

00

Cl' : there is a constant m with sup 2 | a« | < oo.

Since it involves little extra complication, we shall work with these weaker definitions of
A-boundedness, A-summability and regularity.

The natural way to specify a method of rearrangement is to take a permutation o- of the
set N of positive integers. This rearranges the series 2«n into the series 2«<,(n) • The partial
sums of the rearranged series are of the form

n
2 «o(r) = 2 «„

r = l r<Pn

where PB-{or(l), o(2), ...,*(»)}•

More generally, if we are given any strictly increasing sequence (Pn) of finite subsets of N
00

with U Pn = N, we shall say that these define a method P of rearrangement, and that the
n — 1

P-rearrangement of the series I,un is the series for which the sequence of partial sums is (yn),

where yn = 2 ur.

Our main problem is to find the condition that must be satisfied jointly by P and A for
the sequence (yn) to be A-summable to s whenever ~£un is convergent to s. We shall then say
that the method PA is regular. Unlike the situation for regular methods of summability, it
can happen that the method PA is regular and yet there are (non-convergent) series 2wn

with bounded partial sums for which the P-rearrangement is not A-bounded. (There is an
example in § 5.) If the P-rearrangement of every series with bounded partial sums is
A-bounded, we shall call the regular method PA fully regular.

3. General conditions for regularity and full regularity.
LEMMA 1. / / the method PA is regular, then the conditions C2 and C3 of § 2 hold.
Proof. For 02, if j is given, there are integers h in Pt but not in P,_x (if j > 1) and

k in Pi+1 but not in Ps. Then, if uh = 1, uk = - 1 and un = 0 for all other values of n, the series
2«n is convergent to 0 and its P-rearranged partial sums yn are all zero except for yt which
is 1. Thus
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184 A. P. ROBERTSON
00

0 = lim 2 a.n^n = 1™ au-
i—>oo n = l t—><x>

Similarly C3 can be proved by choosing ZeP1 and putting w, = l, un=0 otherwise;
then SM« converges to 1 and yn = 1 for all n. Hence

00 00

1 = lim 2 aiiVi — l i m 2 aa-
i-»oo j" = 0 t->-oo 3 = 1

We therefore consider only methods of summability which satisfy C2 and C3. With
each convergent series Swn we associate its sequence x — (xn) of partial sums. Then a; is a
member of the space (c) of all convergent sequences. With the norm || x || =sup | xn \ , the

n
space (c) becomes a Banach space. Any continuous linear form / on this space is of the form

/(*) = /olima;n + £ /„*„,
n—*oo n = 1

CO

where 11/II = X |/« I < °°- With this norm, the set of all continuous linear forms on (c),
n = 0

that is, the dual of (c), is the Banach space (I1) of all sequences which form the terms of an
absolutely convergent series. Finally, any continuous linear form z on (I1) is of the form

n = 0

where \\z\\ = sup \zn\ < oo. Thus the dual of (I1) is the Banach space (m) of all bounded
n

sequences with the norm given above. (For these definitions and properties, see Banach [3]>
pp. 11-12, 65-67.)

In what follows we shall have to consider the convergence of sequences of elements of
(I1) in two natural topologies on (I1). If, for each x e (c), fk(x) ->/(*), the sequence (fk) is said
to converge t o / i n the weak topology a({P), (c)). If ||/fc - / 1 | -> 0 the sequence (fk) is said to
converge t o / i n the norm topology on (I1).

We associate with a method PA a set of elements of (I1) in the following way. For each i
and each positive integer k, put

k k k

i = l i = l rePj 3 = 1 rePj

(with the convention a;0 = 0). Then fik(x) is a finite linear combination of the xn and so fik

is a continuous linear form on (c), i.e., fik e (I1).
LEMMA 2. Suppose that the method PA is regular. Then there is an integer m such that,

for each i 5s m,

k

and the linear form ft defined by

f((x) = lim fik(x)
Jfc->-00

exists and is continuous on (c). / / the method PA is fully regular, then fik ->/< in the norm
topology on (I1).
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Proof. Denote by En the vector subspace of (c) consisting of those x for which
00

lim flk(x) = 2 atiyt exists and is finite for all i > n. Since the method PA is regular, (c) is the

union of the En and so at least one, Em say, must be of second category in (c). Then if
i > m, sup | fik(x) | < oo for each x e Em, and so, by Banach [3], p. 80, Theoreme 4, Em is

k

the whole of (c). Hence, by the Banach-Steinhaus theorem (loc. cit., Theoreme 5),
SUP \\fik II < °°- Thus/,-fc(a;) ->fi(x) for each x e (c) and/tf is continuous on (c).

If the method PA is fully regular, the same argument can be applied with (m) instead
of (c) to find an integer m such that, for all i ^ m, /,•*(#) ->fi(x) for each a; e (m). But (Banach
[3], p. 141) this implies that/tf e (I1) and (loc. cit., p. 137) that/ i f c -»/< in the norm topology
on (I1).

THEOREM 1. Suppose that the method A of summability satisfies the conditions C2 and C3
of § 2, emd <to <&e linear forms fik are defined on (c) by (I) above. Then the method PA is regular
[fully regular] if and only if there is an integer m such that, for each i ^ m, lim fik = ft exists

(the limit being taken in the weak topology a((lx), (c)) [in the norm topology on (I1)]), and
suPll/.-|| <»•
i ^ m

Proof. If the method PA is regular or fully regular, the existence of the limits /,• in the
CO

appropriate topology follows from Lemma 2. Also, for each x e (c), lim ft(x) = lim 2
i-*co t—>-oo j = 1

exists, and so, by the Banach-Steinhaus theorem, (||/,-1|) is bounded for i ^ m.
Conversely, suppose that for i ^ m, fik -^-f{ weakly and sup || f( \\ < oo. If x = (xn) is a

sequence for which xn is constant for sufficiently large n, then

y, = 2 (Zr-*r-i) = lim a;n

for sufficiently large j , say for j ^ i. Thus

fi(x) = Hm /<fc(a;)

I 00

= S ««(2/i - lim «n) + S a« • lim *„
3 = 1 n-*co 3 = 1 «—>-oo

-> 0 + lim xn as i ->• oo, by C2 and C3.
n->oo

Now, given any sequence a; e (c), put

a:C) = (a;1, a;2, x3, ... , xv, xv, xp, ... )

Then /,(a;) =/,(*«»») +ft(x - »«»>).

Now the first part of the right side of this converges to lim a4p) = xv, by what has been proved,

while \fc(x - icC)) | < sup | | / , || . || x -

N CM.A.
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186 A. P. ROBERTSON

which converges to zero as p -*• oo, uniformly for i ^ m. Hence f{(x)

which proves that the method PA is regular.

Finally, if/,,. -»•/( in norm for { ̂  m, we have, for each x e (m),

•>• lim xv as i
p—•«

exists and

oo,

i - i

sup

Thus the method PA is fully regular.

4. Special cases. From the point of view of applications, it is clearly desirable to have
the conditions of Theorem 1 reformulated in terms of the sequence (Pn) and the matrix (a{j)
which specify the method PA. This we have been able to do only with some supplementary
hypothesis either on the method P of rearrangement or on the method A of summability.
We start by calculating 11 fik \ \ . Denoting by Xi the characteristic function of the set P, (so
that Xj(r) = 1 if r e Pj and Xj(r) =0 otherwise), we have

k

3 = 1

= S ««2
1

Hence 11/** II =2 S O H M ' ) - Xi(r + 1))

An exactly similar argument shows that if I <k,

!!/«-/«II =2

Now, for fixed r, both xAr) an<i Xj(r + 1) a r e increasing with j and so all the terms
(Xi(r) ~ Xiir + 1)) ^ a v e ^ e same sign. Thus the last two formulae can be written in the form

.(2)

where S1 denotes summation over those values of j < k for which just one of r, r +1 belongs
to Pj, and 22 denotes summation over the same values of? with the further restriction j ^ I +1.

The position of the modulus signs in the formulae (2) makes further simplification diffi-
cult, but if they can be moved inside the inner summation, we can then change the order of
summation and obtain much simpler expressions. Clearly this will be possible if either all
the a(] in the inner sum are real and have the same sign, or if the inner sum contains only one
term. The first of these conditions is satisfied if the method A of summability is positive
(i.e. if aiS ^ 0 for all i and all j) and the second if the method P of rearrangement satisfies
the following condition : for each n, if r e Pn, then r +1 e Pn+1 and (if r > 1) r -1 e Pn + 1.
When this condition is satisfied we shall call the method P of rearrangement rapid.

If either of these conditions is satisfied we shall have
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| | /» || = 2 Sx | «« | = 2x 2 | a« | = S | ait \ $,,
r T 3 = 1

where <f>j is the number of integers r for which just one of r, r + 1 belongs to Pj. Similarly

H/«-/«ll = S \an\b.
i — i + i

Even when the modulus signs cannot be moved in (2), we have inequalities ; for example

r r

These results are summarised in the next lemma.
LEMMA 3. If the method A of summability is positive or the method P of rearrangement

is rapid,

3 = 1 3 = 1 + 1

For any method PA,

3 = 1 ;=i + l

THEOREM 2. Consider the three statements
(i) <Ae method PA is regular,

(ii) <Ae method PA is / « % regular,
(iii) conditions C2 and C3 o/ § 2 are satisfied, together with

00

Cl" : <Aere is a constant m with sup S | au \ <t>i < °o.

(iii) => (ii) => (i). / / either the method A of summability is positive or the method P of
rearrangement is rapid, then (i) o (ii) <=- (iii).

Proof. Suppose first that (iii) holds. Then by Lemma 3, if i ^ m, \\fn -fik \\ -> 0 as
I, k —»• oo and so /< t —*-ft in the norm topology on (i1). Also

00
8UP II/< II = SUP ]im Wfik II < sup S | a{i \<f>i<co.

Hence, by Theorem 1, (ii) holds (and therefore (i) holds).
Next let A be positive or P rapid and let (i) hold. Then by Lemma 2, there is a constant

00

m with sup || fik || < oo for all i ^ m. By Lemma 3 this shows that the series £ | ati \ <f>j is
* j - i

convergent. Hence | | / j ( -fik \\ -*• 0 as I, k ->• oo, and so, as A; -> oo, the sequence (fik) con-
verges in norm to some element of (I1). But this element must be its <T((F), (c))-limit f{,
whose existence is guaranteed by Theorem 1. Thus, by Theorem 1, (ii) holds. Also

00

sup 2 I atj | <j>t = sup lim \\fik \\ = sup | | / , || < oo,
i > l i ^ k i^

by Theorem 1, and this is Cl". Since C2 and C3 are consequences of (i), by Lemma 1, (iii)
has been proved.
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188 A. P. ROBERTSON

COROLLARY 1. Suppose that A is a positive method of summability; if there is some
method P of rearrangement for which the method PA is regular, then the method A is also regular.
If A is any method of summability and if there is some rapid method P of rearrangement for which
the method PA is regular, then the method A is also regular.

Proof. Each <j>j>\ and so Cl" implies Cl'.
COROLLARY 2. If A is a positive regular method of summability, then the following three

conditions are equivalent:
(i) the method PA is regular,

(ii) the method PA is fully regular,
(iii) the sequence (<f>n) is A-bounded.

On putting ait = 1 if i =j and atj = 0 if i # j we obtain the answer to the question (ii) of § 1 :
COROLLARY 3. The method P of rearrangement leaves unaffected the convergence of every

convergent series if and only if the sequence (<f>n) is bounded.
We recall that <j>n was defined to be the number of integers r for which just one of r, r +1

belongs to Pn. In Theorem 2, </>„ can be replaced by a more natural quantity. Any finite set
P of positive integers can be written as a disjoint union of intervals (i.e. runs of consecutive
positive integers), separated by integers not in the set. The number of intervals in this
(unique) partition of P is the smallest number of intervals whose union is P . Let \jin be the
smallest number of intervals whose union is Pn. I t is easy to see that just one of r, r +1
belongs to Pn only if either r is a right-hand end point or r +1 a left-hand end point of one
of the intervals of Pn ; hence </>n = 20B if 1 ̂  Pn and <j>n = 2<jjn - 1 if 1 e Pn. Thus in Theorem 2
and its corollaries, we may replace 0n throughout by if>n.

5. Counterexamples. In Theorem 2, the equivalence of (i), (ii), and (iii) fails in the
absence of any restriction on either the method A of summability or the method P of re-
arrangement. Also Corollaries 1 and 2 are no longer valid if A and P are unrestricted. In
this section we justify these assertions by exhibiting the following examples :

(1) a regular method PA which is not fully regular,
00

(2) a fully regular method PA for which £ | «« I 4>i = °° f° r a u *»
3 = 1

(3) a fully regular method PA for which A is not regular,
(4) a method PA which is not regular, but for which the sequence (<f>n) is A-bounded.

Example (1) shows that in Theorem 2, (i) does not imply (ii) and example (2) shows that (ii)
does not imply (iii). Examples (3) and (4) refer to Corollaries 1 and 2 respectively.

The same method P of rearrangement will suffice for examples (1), (2) and (4). Any
positive integer j can be written in the form j = n3 + r, where 1 <: r <: 3»2 + 3ra + 1 . Put

-P«'+1={1, 2, 3, ... , 2n», 2n3 + 2, 2n3+4, ... ,

•Pn
s+2={1. 2 . 3, ... , 2«3 + 2, 2M3 + 4 , 2W3 + 6,

Pn'+r={1» 2, 3 2n3 + 2n2 +r}, for 3 «S r

Then clearly <f>n>+1 = ^n»+ 2 = 2m2 + 1 and (f>n*+r = 1 for 3 < r < 3w2 + 3w + 1 . Also

2n'+2»" 2»'+2nl+2

r = 2ns r = 2n»+2

and yn,+r=a;2n3+2nV for 3 < r < 3w2 + 3w + 1 .
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REARRANGEMENTS OF INFINITE SERIES 189

Now if we put

b{j = Iji3 for 1 < j < i3,

= 0 otherwise,

the matrix (b{j) defines a positive regular method B of summability. Since

2 M*=ja ( S 1+2 S 2

the method PB is fully regular (Theorem 2, Corollary 2).

Next suppose that a > 1 and put

*», n'+i = + l / w o t . a-i. n'+2 = - !/«•" .

for each positive integer TO ̂  i, and let a{j = btj otherwise. Then the conditions Cl, C2 and
C3 are easily verified and so the method A of summability defined by the matrix (atj) is
regular. Also, since

00 00

2 a-i&i = 2 but)
i = I j = I

the sequence (<£„) is A-bounded. But

2J I «« I ?i = 2J O«^/ + 2
j l 1

Since the last series converges only for a > 3, the condition Cl" holds only if a > 3.
We now investigate the values of a for which the method PA is regular and the.values

for which it is fully regular.
k k

S a-uHt = S btiVi+fi-ikix), say,
j i j i

where ha(x)= 2 n~ayn>+1 - 2 «"a2/n'+2-

Since the method PB is fully regular, the method PA is regular if and only if, for each x e (c),
lim hik(x) exists and tends to zero as i -> oo. Also the method PA is fully regular if (and

only if) also, for each x e (m), lim hik(x) exists and is bounded with respect to i.

Now if TO ̂  i and 2 < r < 3TOS + 3n +1,

n
lib Vifm +1 jtn -t*'

"*' V**'2m *°2ma+l ^ *c2m + 2 m a + l ^

oo

<; 2 m~a4||a;||->Oasi->• oo,

for all x e (m), since a > 1. However
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and, while the first term is of the type already considered, the second one is

2n» + 2n" / n8 + n' \
»""" 2 ( - 1 ) % =»~" ân" - 2 (»M-i - a^)) •

r = 2»s \ « = n» + 1 /

If a; e (c) this term is o{n?-«) =o(l) as i -+ oo, if a Ss 2. Hence the method PA is regular for
a 3* 2. Also if a; e (m) this term is O(w2-a) =o(l) as t -> oo when a > 2, and so the method
PA is fully regular for a > 2. But if a = 2 the method PA is not fully regular, for then
K n'+iM ~K n'(x) =w-2(2w2 + l) > 2 for the bounded sequence (xn) for which xn = {- 1)".
Thus lim h{k(x) does not exist for all x e (m). Also if 1 < a < 2 the method PA is not regular ;

i-t-oo
in fact if xn = ( - l)n/log n,

yn>+i - f 2 ^ l o g r

and so A<>B.+i (*) -*<.„• (*) > 2wa-/log (2w3

Thus lim %<fc(x) does not exist for all a; e (c).

To obtain counterexample (1) take a = 2 ; for example (2) take any a in the range
2 < a < 3 and, for example (4), take any a with 1 < a < 2.

Example (3) is simpler. For each positive integer n, and each r with 1 < r < n put

P n . = { 1 , 2 , 3 , . . . , ^ } ,
Pn«+1!r_i={l> 2, 3 , . . . ,rii+r-
•fn'+ar ={1,2,3, . . . ,ri*+r,

Then yni=xB. and yBi+lr-ynt+2r_1=a;Bi+r-a:Bi+r_1. Also take a<( j«+r = ( - l ) r for 0 < r < 2t
and put a{j=0 otherwise. Then

oo 2i

j = l r = 0

t

=«,-•+ 2 (a;<>+r-a;,.»+r_1)
r = l

Hence, for each x e (c), S a«y/ converges to lim a;n as i -»• oo, and so the method PA thus
j = 1 n —>• oo

defined is regular. In fact, it is easily seen to be fully regular. On the other hand, the method
A does not satisfy the condition Cl (nor Cl') and so it is not regular.

It is perhaps worth pointing out that the method P of rearrangement used for this
example arises from a permutation a defined by

a(w2) =w2, c{ni+2r-1) =n2 +n+r, cr(rta +2r) =«,2 +r,
for 1 ^ r < n.

6. An extension of Riemann's theorem. If A is any regular method of summability,
there is always a series with bounded partial sums which is not summed by the method A.
(See, for example, Hardy [5], Theorems 2 and 3 ; the conditions that A shall be regular and
that A shall sum every series with bounded partial sums are inconsistent.) The theorem
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proved below represents a simultaneous generalisation of this result and of Riemann's
theorem referred to in § I. I t also answers question (iii) of § 1.

00

THEOREM 3. Given any conditionally convergent series S un ana> anV regular method A of
n = 1

oo

Buvvmability, there is always a rearrangement £ «<,(n) which has bounded partial sums but is not

A-summable.
Proof. To construct a we divide the positive integers into blocks by means of a strictly

increasing sequence (j{n)) of positive integers ; for each n we define a permutation of the
set of r satisfying j(2n -1 ) < r < j(2n +1) and piece these together to form a. The purpose
of the even terms j(2n) will appear later.

n n
Write as before xn = £ wr and «/„ = £ u

a(r) (when a(r) has been defined for r < n), and let
r = l r = l

s = lim xn. Also put k = 4 + sup | xn \. We shall so construct a that
it—•oo n

I Vr I *£= ^ f°r aU r- (3)

First, (a;n) is A-summable to 5 and so there is a positive integer i(l) such that

ai(X), ixJ~s ^ K 1

Also, by Cl (or Cl ' ) , there is a positive integer j(l) such tha t

JE 1

and we may suppose _;'(!) chosen so tha t also

(4)

Put o(r) =r for 1 < r < j(l); then, for these values of r, \ yr | = | xr \ < k and so (3) is
satisfied. Then, however a(r) is defined for r > j(l), provided only that (3) still holds, we
shall have | xr - yT \ ^ | xr | + | yr \ ^ 2k, and so

00

3 ' 10A; 5 '
(5)

Now if 7n denotes the set {j(l) + l,j(l) +2, ... , n}, write cn = sup | yi(l) + S « r - s | .

Then, by (4), cn+1 < cn +1 and c,(1) < 1. Also cn -> oo as n ->• oo. (For a series Swn with
real terms this is familiar. If the terms are complex, either the series of real parts or the
series of imaginary parts must converge conditionally; suppose the former. Then, by
picking out terms ur for r > j(l) with positive real parts we can make | 2 ur | arbitrarily

reF
large.) Hence there is an n' with 2 < cn- < 3 ; let the upper bound cn- be attained when
F=F'. Then if CT(J(1) + 1), a(j(l)+2), ... , a(ra), say, are denned to be the elements of F'
in order, we shall have, for j(l) < r ^ m,

| y r - s | < < v < 3 and | ym-s \ =cn- > 2.
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Also, for these values of r, \ yr | < | 5 | +3 < ft as required by (3). Now the series

converges to a sum s', say, which, by (4), satisfies | ym -s' | < 1, and therefore | a -a ' | > 1.
If zn denotes the sum to n terms of this series, we can find, as before, i(2) > i{\) such that

~ s> <l
and j(2) > m such that

< 1

Put a(r) = a(m) +r -m for ra < r < j(2) ; then for these values of r,

o(m) + r — m

\Vr-Vv
n = »(>») +

by (4). Hence \yr\ <\ym\+1 <\s\+3 + l ^k. Thus | yT \ < ft for m <r < j(2), as
required by (3). Similarly, | zr \ < ft for all r. Also, however a(r) is denned for r > j(2),
provided only that (3) still holds, we shall have | zr -yr \ < 2k for all r, and so, as for (5),

Since | a -a ' | > 1, this with (5) gives

i- 2
i - l

1
5'

We can now define a(r) for j(2) < r < m', say, so as to fill in the gaps left in /„,. For
these values of r we shall have

u.-s,ft,+ 2 « r +
reF r-

where F is some finite subset of /„-. Hence by the method of construction of F' and (4),

\yr-s\ <<v + l < 3 + l=4 ,

and so | yr \ < ft, as required by (3). Then the series

L+Wa(m')+2 + - "

has xn for its wth partial sum for n > m', and therefore it converges to 5. Thus we can find
i(3) > i(2) and j(3) > m', as before, such that, if we put a(r) = a(m')+r -m' form' < r <j(3),
then, for these values of r, | yr \ = | a;r | < ft. Then, however a(r) is defined for r > j(3),
provided only that (3) still holds, we shall have

2 Qitowyj-i
3 = 1

.2
5 '

and therefore
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This process can clearly be continued ; we next rearrange the terms of S«n for n > j(3)
to make it converge to a new sum s" with | a - « " | > 1, and so on. The permutation a is
thus built up step by step ; at each stage (3) is satisfied and we have, for all n,

£ aii.n),iVj- £ aH.n+\\jVi
3 = 1 3 = 1 >i

Since i{n) —>- oo as n -*• oo, this shows that 2M<,(n) is not A-summable, though its sequence
(yn) of partial sums is bounded, which completes the proof of the theorem.
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