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Abstract

In this paper we prove that if V is a vector space over a field of positive characteristic p # 5 then any
regular subgroup A of exponent 5 of GL(V) is cyclic. As a consequence a conjecture of Gupta and
Mazurov is proved to be true.

2000 Mathematics subject classification: primary 20E25, 20F50.

1. Introduction

A group G is called periodic if any element of G has finite order and of finite exponent e
if, forany g € G, we have g¢ = 1. Obviously any group of finite exponent is periodic,
but the contrary is not true in general. We also recall that a group G is called locally
finite if each finite subset of G is contained in a finite subgroup of G.

A well-known conjecture of Burnside says that a finitely generated group of finite
exponent e is necessarily finite (or, equivalently, that any group of finite exponent is
locally finite).

This conjecture has been proved only for e = 2 (in this case the group is abelian),
for e = 3 (Levi and van der Waerden [4], see also [8, 14.2.2]), for e = 4 (Sanov [9],
see also [8, 14.2.3]) and for ¢ = 6 (Hall [3]), while nothing is known for the case
e = 5. In some classes of groups Burnside’s conjecture is true; for example, Burnside
proved that if F is a field of characteristic 0, then any subgroup of finite exponent of
GL(n, F) is finite. However Burnside’s conjecture is not true in general, as Novikov
and Adjan proved in a series of papers of great length. Successively Adjan constructed
infinite groups of exponent e with a finite numbers of generators for any odd exponent
e > 665 (see [1]).
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It is therefore quite natural to ask if, given a natural number e and a vector space
V over a field F of characteristic finite and coprime with e, there exists an infinite
subgroup A of GL(V) of exponent e that is regular (that is, with the property that
a(v) # vforany v # O and any @ € A, @ # 1). If e is a prime number, it can
be conjectured that A is necessarily cyclic. This conjecture is certainly true if the
dimension of V over F is finite (this fact was proved by Burnside; see [8, 10.5.6]).
In this paper, we consider the case e = 5 and prove

THEOREM 1.1. If V is a vector space over a field of positive characteristic p # 5
then any regular subgroup A of exponent 5 of GL(V) is cyclic.

We observe that the action of A is regular over V if and only if any non-identity
element of A has minimal polynomial that divide x* + x* + x* + x + 1. In group-
theoretic terms, this means that in the semidirect product of V by A there are not
elements of order 5p. :

2. Notation and preliminary results

We fix two distinct primes p and q. Let F be a field of characteristic p, V a vector
space over F and A a subgroup of the automorphism group of V of exponent g and
such that for any ¢ € A, o # 1 we have Fixy(a) = {0}. It is easy to verify that for
anya € A\ {1} and any v € V we have :

(1) v+a@ +a?@+ - +a?l(v) = 0.
In the ring End (V) identity (1) can be written as follows

(2) l+a+a’+--+a?' =0
forany ¢ € A \ {1}.

REMARK. For any pair of elements «, 8 € A \ {1} with {a) N (B8) = {1} we have
[a, B1 # L.

If ¢, B € A\ {1} with (@) N (B) = {1} commute, thenaf’ (i = 0,1,...,9—1)
are all non identity elements of A. If we write the fundamental relation (2) for these
elements, we get 1 +af’ + -+ + (@B)7 ' =0fori =0,1,...,9 — 1. Summing
term by term and using the fact [«, 8] = 1 we get

g+a(Q+B+-+p" N+ 42 A4+B+---+87H=0

but, by (2), 1 + B+ --- + B97! = 0, and therefore ¢ = O while p # g. This
contradiction proves the statement.
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The preceding remark shows that any finite subgroup of A must have order g. We
observe that infinite groups in which any proper (non trivial) subgroup has order g have
been constructed by OY’sanskii ([7]). Groups of this type are called Tarski monsters.

Before proving Theorem 1.1, we want to expose the ideas behind the proof. We
suppose for a moment that ¢ = 3 (and not knowing the theorem of Levi and van der
Warden [4]); then we can write (2) as

(3) l+a+a'=0 foralla € A\ ({1}.

If A is not cyclic, there exist &, 8 € A \ {1} with (@) N (B) = {1} and from (3) we
get

l+a+a™' =0,
l+a+ B2 =0,
1+ af™' + Ba™! =0,

summing each member we obtain
3+ a(l+B8+B8H+U+B8+BHa'=0

but, from (3), 1 + 8 + B~! = 0. From this we get the contradiction 3 = 0 while
p #3.

3. Proof of Theorem 1.1 (p = 2)

We suppose g = 5; to prove Theorem 1.1 we suppose that there exists a counterex-
ample, that is, a vector space V over a field F of characteristic p # 5 and a non cyclic
group A of exponent 5 acting regularly on V.

We fix the following notation: the indices in the sums will always be from O to 4
and considered mod 5. We shall often use the fundamental relation (2) in the form

4) l4a+a’?+aP+a'=0
or in the form
(5) l+a+a?+a+a =0

We shall always denote by « and 8 two non identity elements of A with (a)N{8) = {1}.
The proof is in various steps.

STEP 1. We have 3, "« p*¥ ap’* = 0.
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PROOF. If we put i + j = r we obtain

Zﬂi+jaﬂi+2jaﬂi+j = Z [ﬁr(lﬁ’ <Z ﬂj) aﬂ’}

ij r J

and we conclude because ), g/ = 0. d
Weputg =Y  Bapiando =), pla~'p"
STEP2. 0 + g = 0.
PROOF. If i =0, 1, ...4, by (4) we get
1 +af’ +af'ap’ +af'afaf’ + pa™' =0

summing the five preceding equalities and recalling that

p (Z ﬁ") =0 and <Z ,8“) a”'=0

we get

(6) p (Z ﬂ‘aﬂi> +a (Z ﬁ‘aﬂ"aﬁf) =-5
and l '

) Y Bapi+ ) plapap’=—5a"".

Thesum @ = )_, B'aB’ is invariant with respect to the substitutions & ~» g/ af’ with
Jj =0,1,...,4. If we make these substitutions in (7) and we take a sum, we get

5 Zﬂiaﬂi + Zﬂi+jaﬁi+2jaﬂi+j = -5 Zﬂ—ja—l —j‘
i ij j

By Step 1 we have 3, ™/ af"*¥ af'* = 0 and since char F = p # 5 we obtain
the relation we wanted. O

STEP 3. a7 + ga™! = —5.

PROOF. We observe that, since A has exponent 5, the relation (6) can be written as

a( X, fap)+ (X, B e )a™! = -5. O

STEP4. 7% + g% = —25.

https://doi.org/10.1017/51446788700014440 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700014440

[5] Fixed point free actions of groups of exponent 5 301

PROOF. We have observed before that @ and g are invariant with respect to the
substitutions « ~» B/af’ with j = 0,1,...,4. So we make these substitutions in
a0 + ga~! = —5, we sum the five equalities and we get the desired result. O

STEP 5. Theorem 1.1istrueif p = 2.

PROOF. Let p = 2. By Step 2 we have @ = ¢ and, recalling Step 4 we obtain the
following contradiction 0 = 26 = 5° + g? = —25. O

4. Proof of Theorem 1.1 (p = 3)

From now on, we suppose that p = 3 and therefore the relations obtained in
Steps 2—4 have the form:

i
-

In particular, 7> = g2

STEP 6. We have
(a) g =1+7a7;
(b) ¢! =ca — 1.
PROOF. From @ = —¢g and from o + ga~! = 1 we get (a).
Multiplying @& + ga~' = 1 on the left by a~! and on the right by & we obtain
a~'g +Ta = 1 that gives (b). O
STEP7. If we put p = ¢ + a~ ! and ¢ = a7 we get

(@) p € GL(V)hasorder8and p?>=1— p;
(b) ¢ € GL(V) has order 8 and ¢* = 1 + ¢;
© [p,pl=1.

PROOF. From the relations obtained in Step 6, we get
po=(+ag=14+Ga'+Fa—-1=G@+a”')=5p
and therefore [p, 0] = 1; since [p, @] = 1 we also have {p, ¢] = 1. Then

Pr=@+a Y =a*+at+2=—-1l-a—a'4+2=1-p and
=0 =p)l=1-2p+p*=1-2p+1—-p=-1.
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In particular, p € GL(V) and p® = 1. Moreover,
¢’=avad =a(l+a'T)d=14+ac=14+¢ and
p'=(1+¢) =1420+¢’=1+20+1+¢=-1
In particular, ¢ € GL(V) and ¢® = 1. a

STEP 8. The group B = (p?, ¢*) < GL(V) is abelian and |B| < 4.

PROOF. By Step 7, B is certainly abelian, moreover p? and ¢? have order 4 and
therefore, since p* = —1 = ¢* |B| < 8. We prove that B has order (at most) 4
showing that p2p~2, which has order 2, acts fixed points freely over V and it is
therefore equal to —1.

If we put V; = Fixy(0*p~2) we have that V; is a (p, ¢)-invariant subspace of V
(because (p, @)} is abelian).

If, by contradiction, Vp # {0} and using the same symbols for the restrictions of
the automorphisms to V,, from Step 7 we get 1 — p = p? = ¢ = 1 + ¢, that is,
aF = ¢ = —p = —a —a~'. Using Step 6 (a) we get 1 + 7a~' = —a — a~' and
7=-l-a—a’and1 =57° = l+a+a?+a*+20+20+20% = [ +2a +2a° +a*,
that is, @* = a + @® and @ = @ + a~! = p which gives the required contradiction:
1=p%= () =0. O

STEP 9. Theorem 1.1 is true if p = 3.

PROOF. By Step 8 we have |B| < 4 and since p* = —1 = ¢*, this is possible only
in two ways:

(I) p? = ¢ but this gives a contradiction, because in the proof of Step 8 we have
seen that p%¢~2 acts fixed points freely on V.

(II) p2 = —¢? then, by Step 7, 1 — p = —1 — ¢ and ¢ = 1 + p. Then, recalling
Step 6, 1 +0a! = aFd = ¢ =1+ pand T = pa = 1+ o?; this implies
1=52=(1+a??=1+2a*+a*and ¢ = 1: a contradiction. O

5. Sketch of the proof of Theorem 1.1 for p > 7

We remark that if char F = p > 7, we can obtain the same result in a way similar
to the one used for p = 3, but using arguments ad hoc for any prime number p.

We can always find commuting elements o and ¢ (as defined in Step 7), satisfying
0>+ p—1=0and 9* + 5¢ + 27! . 25 = 0. The orders of these automorphisms are
divisors of p2 — 1 and depends on the prime p, as Table 1 shows, but we haven’t been
able to find a method of proof valid for any p.

It seems hard to prove the same conjecture for A in the case in which ¢ = 7 (or
greater), with the methods used in this paper.
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TABLE 1.

p |3 7 11 13 17 19
p] | 8 16 10 28 36 18
o] | 8 24 40 12 4 72

6. An application

If G is a periodic group, we denote by w(G) the set of the orders of the elements of
G. In [2] Gupta and Mazurov proved that if w(G) is a proper subset of {1, 2, 3, 4, 5},
then either G is locally finite or there exists a normal nilpotent 5'-subgroup N of G
such that G/N is a group of exponent 5. The same authors have conjectured that if
N # {1} then G is locally finite. This conjecture is equivalent to

CONJECTURE ([2]). Let A be an automorphism group of an elementary abelian
{2, 3}-group G such that every non-trivial element of A fixes in G only the trivial
element. If A is of exponent 5 then A is cyclic.

The conjecture is true by Theorem 1.1; hence we have proved:

THEOREM 6.1. If w(G) C (1, 2,3, 4,5} and w(G) # {1, 5} then the group G is
locally finite.

To establish Theorem 6.1, we need (in addition to the resulits of [2]) the following
facts:

e The groups of exponent 4 are locally finite ([9]).

o Ifw(G)=1{1,2,3,4,5} then G is locally finite ([5]).

o Ifw(G)=1{1,2,3,5}then G = A; ([10]).
We recall that if w(G) = {1, 2} then G is elementary abelian, if w(G) = (1, 3} then
G is nilpotent of class at most 3 ([4]), and that the groups G with w(G) = {1, 2, 3}
are described in [6].
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