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ABSTRACT. In the standard solution for the stresses 
in a glacier or ice sheet obeying Glen's law, the 
down-slope component of the weight is supported by the 
basal shear stress, and the longitudinal deviatoric stress 
is second order. However, it has been found necessary 
to account for the longitudinal stress gradient when 
relating surface to bed topography with empirical data. 
In addition, during rapid stretching of the glacier, 
perhaps during a surge, the longitudinal stress gradient 
becomes comparable to or larger than the shear stress, 
and the standard solution is not entirely valid. In this 
paper, we consider the analysis of the stresses and 
strain-rates in a glacier when the longitudinal deviatoric 
stresses are comparable to the basal shear stresses. In 
some circumstances the down-slope component of weight 
is not borne completely by basal shear stress to leading 
order and some of the weight is shifted to the 
longitudinal deviatoric stress gradient. This case has also 
been examined. The results are used to obtain 
expressions for basal shear stress in terms of glacier 
thickness, slope, surface strain-rate gradient, and ice 
properties . 

RESUME. De l'analyse des contraintes longitudinales dans 
les glaciers. Dans la solution standard pour les contraintee 
dans un glacier ou une calotte de glace obeissant a la loi de 
Glen, la composante du poids vers I'aval est equilibree par 
la contrainte de cisaillement a la base et la composante 
longitudinale du deviateur des contraintes est du second 
ordre. Cependant il est necessaire de prendre en compte le 
gradient longitudinal des contraintes pour relier la 
topographie de surface a celle du lit avec des donnees 
empiriques. De plus, lors de rap ides extensions du glacier, 
comme pour un surge, le gradient de contrainte longitudinal 
devient comparable ou supeneur a la contrainte de 
cisaillement et la solution standard n'est plus totalement 
valable. Dans cet article, no us envisageons I'analyse des 
contraintes et des deformations dans un glacier lorsque les 

INTRODUCTION 

In the standard solution for the flow of a glacier 
down a valley, the stress state is one of pressure plus a 
pure shear relative to Cartesian axes aligned with the 
mean slope. Other stress components such as longitudinal 
deviatoric stress are considered to be negligible compared 
to those retained. A discussion of the standard solution 
can be found in Raymond (1980) and the unique book 
by Hutter ([cI983]). However, in some circumstances the 
longitudinal deviatoric stress magnitude is comparable to 
or exceeds the magnitude of the pure shear stress 
estimated in the standard solution. This would occur 
when the speed of the ice sliding over the bedrock is 
high . In particular, it seems likely that during a surge, 
the longitudinal deviatoric stress becomes large as the 
glacier stretches. This point is discussed and the results 
of this paper are used in a separate publication on the 
mechanics of surging glaciers (in preparation by the 
present authors). In addition, it has been found that it 
is necessary to take into account the longitudinal stress 
when using experimental measurements to relate surface 
and bed topography (Robin, 1967). Coli ins (1968), Budd 

contraintes longitudinales deviatrices sont comparables aux 
contraintes de cisaillement a la base. Dans certains cas la 
composante du poids vers I'aval n'est pas equilibree 
totalement par la contrainte de cisaillement basale au 
premier ordre et une par tie du poids est responsable d'un 
gradient longitudinal de contrainte. Ce cas a aussi ete 
examIne. Les resultats sont utilises pour obtenir des 
expressions pour la contrainte de cisailJement a la base en 
fonction de l'epaisseur de glace, de la pente, du gradient de 
deformation en surface et des proprietes de la glace. 

ZUSAMMENFASSUNG. Uber die Analyse der 
Ldngsspannung in Gletschern. In der StandardlOsung fUr die 
Spannungen in Gletschern oder Eisschilden, die dem 
Glen'schen Fliessgesetz folgen, wird die hangabwl1rts 
gerichtete Komponente des Gewichts durch die 
Scherspannung am Untergrund aufgenommen, wl1hrend die 
Ablenkungskraft in der Ll1ngsrichtung von 2. Ordnung ist. 
Es erwies sich jedoch als notwendig, den 
Ll1ngsspannungsgradienten zu berucksichtigen, wenn die 
OberfHichengestalt mit dem Untergrund uber empirische 
Daten in Beziehung gesetzt werden soli. Ausserdem wird bei 
schnellen Beanspruchungen des Gletschers, etwa wl1hrend 
eines Ausbruchs, der Ll1ngsspannungsgradient vergleichbar 
mit oder sogar grOsser als die Scherung; dadurch verliert die 
StandardlOsung ihre volle Gultigkeit. In dieser Arbeit stellen 
wir die Analyse der Spannungs- und Verformungsraten in 
einem Gletscher fUr den Fall dar, dass die ablenkende 
Ll1ngsspannungen den Scherspannungen am Untergrund 
vergleichbar sind. Unter gewissen Umst11nden wird die 
hangabwlirts gerichtete Gewichtskomponente nicht vOllig 
durch die Scherspannung am Untergrund aufgenommen; ein 
Teil des Gewichts geht vielmer in den Gradienten der 
ablenkienden Uiangsspannung ein. Dieser Fall wurde 
ebenfalls untersucht. Die Ergebnisse werden zur Aufstellung 
von Ausdrucken fur die Scherspannung am Untergrun in 
Abhlingigkeit von Dicke, Geflille, Verformungsrate an der 
Oberfll1che und Eiseigenschaften herangezogen. 

(1970), and Nye (1969) have all considered this problem, 
and use the governing equations for equilibrium of 
stress, the constitutive law, and averages through the 
thickness of the glacier to estimate the effect of 
longitudinal stress on the basal shear stress . Their result 
for the basal shear stress ~b takes the form 

~b = pgh sin a + G - T 

where G is a function of the surface velocity, ice 
thickness h, and material properties, and T is a function 
of the shear-stress distribution (a is the bed slope and 
pg is the weight of the ice per unit volume). As noted 
by Nye (1969), some of the derivation leading to this 
result is exact, while other parts are questionable. 
Whereas the previous work has made relatively ad hoc 
attempts at determining G and T, the present study 
determines them systematically and clarifies when the 
assumptions of the previous work are appropriate. 

Hutter (1981) has obtained second~rder corrections 
to the standard glacier solution by using a regular 
perturbation scheme and has obtained corrections for the 
longitudinal stress and shear stress. This deri va tion is 
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valid when the ice flux due to basal sliding is 
comparable to or negligible compared with the ice flux 
due to shear flow. Therefore, it includes, as a special 
case, the case of no slip at the base which was 
considered by Nye (1969). Hutter's analysis avoids 
considering a separate boundary layer at the free 
surface (Johnson and McMeeking, 1984) by using a 
generalization to Glen's flow law which predicts linearly 
viscous behavior at low stress levels . There may be 
cases, however, when such an approach cannot be used 
to relate surface measurements to bottom topography. 
The reason for this is that a boundary-layer analysis 
may be necessary even when linear rheology is used to 
model the response to low stresses. Depending on the 
stress level at which the transition from power-law to 
linear rheology takes place, it is possible for the linearly 
viscous region near the free surface to be very small 
and embedded within the boundary layer. With regard to 
the present paper, however, a more serious limitation of 
Hutter's analysis is that when the ice flux due to basal 
sliding dominates the ice flux due to shear flow, the 
longitudinal stress magnitude is larger than that 
considered by Hutter. Fowler (1982) has considered this 
case; but restricted his attention to situations in which 
the shear stress still dominates the other deviatoric 
stresses. 

In this paper, we are particularly interested in the 
following two cases: a glacier in which the longitudinal 
deviatoric stress is comparable to the shear stress at the 
base of the glacier, and a glacier in which the 
longitudinal stress is larger than the other stress 
components. We find that the state of stress in a glacier 
is dependent on the rate of sliding of the ice over the 
bedrock. It is conventional to assume that the speed of 
sliding is a function of the basal shear stress . This 
function may be monotonic for sliding without cavity 
formation or of the form shown in Figure I when 
cavities are present (Lliboutry, 1968; Hutter, 1982[b]). We 
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U~ Ub• basal sliding velocity 

Fig. 1. Sliding law relationship between basal shear stress 
and basal velocity. 

find that the solution for portions of glacie~s sliding at 
rates greater than ut, (see Fig. I) can be fundamentally 
different from portions sliding at lower speeds. At 
speeds lower than ut" the down-slope component of the 
weight can be supported by the basal shear stress to 
leading order. Above ut" some of the down-slope 
component of weight must be balanced by the 
longitudinal stress gradient to leading order and we find 
that the standard solution no longer serves as a basis 
for analysis. 

In the next section, we present the governing 
equations for a glacier on a steep slope. In the 
following section, we consider the standard glacier 
solution which is valid for moderate basal sliding 
velocities. This is followed by two sections which discuss 
the analysis of glacier motion when the basal sliding 
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velocity is large, i.e. when there is rapid stretching. This 
includes two cases in which the shear stress supports the 
glacier's weight and one case in which the longitudinal 
deviatoric stress gradient supports part of the weight. 
Each case corresponds to a different magnitude of the 
basal sliding velocity and a different magnitude of the 
longitudinal deviatoric stress. We then obtain similar 
results for an ice mass resting on a gentle slope. Lastly, 
we consider the influence of the longitudinal stress on 
the basal shear stress for the cases studied in the 
previous sections. 

FORMULA nON 

There have been numerous studies of the mechanics 
of glacial motion and a comprehensive review has been 
given by Hutter (l982[a], [cI983]). Following Johnson and 
McMeeking (l984), we consider the gravity.<friven flow 
of an incompressible viscous isotropic medium obeying 
Glen's law down a sloping valley with slowly varying 
bottom topography. The flow is two-dimensional (i.e. 
plane strain) and inertial effects are neglected . The slope 
of the free surface relative to the bottom is assumed to 
be small and the thickness of the glacier is small 
compared to its down-slope extent. 

We introduce a Cartesian coordinate frame (x,y) 
where the x-axis is along the mean bed line as in 
Figure 2. It should be noted that the coordinate system 
could also be aligned with the mean surface slope away 

Fig . 2. A segment of the glacier showing the coordinate 
system. 

from the margins, and the analysis would be unaltered . 
We first consider the case where the bed inclination 
angle Cl is assumed to be of order unity, i.e. steep 
~laciers, and introduce the non.<fimensional variables x = 

x/ L, Y = y/ ho' u = ~/U, ~/pgho' where the circumflex 
indica tes the physical variable. Here h is the 
characteristic or maximum thickness of the gfacier L is 
the length scale in the ~.<firection which charac;erizes 
the length over which the steady-state flow field varies 
when driven only by time-independent accumulation and 
ablation representing averages over many years. In 
addition, u = (u,v) are the components of the velocity 
field, aij are the components of stress, p is the uniform 
ice density, and g is the gravitational constant. The 
dev!a~o.ric stresses sij are introduced through the 
dhefl~ltlOns sij . = aij - l/2Sij (axx + a)!)!), suitable for 
t e mcompresslble plane flow of this proolem. 

Restricting attention to slow variations of the flow 
field due to steady (time averaged) accumulation and 
ablation, we require S == ho/L «I. In terms of the 
non-dimensional variables the governing equations 
become 

8axx 8axy 
6--+--ax ay 

8axy 
S ax 

sin Cl, 

8ayy 
+--

8y 

(I) 

cos Cl, 

x 
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au av 
5 - + - = 0. 

ax ay 
(2) 

Since the glacier is shallow or thin, we see from mass 
conservation, Le . Equation (2), that the transverse 
velocity v is small and of order s. The constitutive 
equation or flow law for the ice is taken to be Glen's 
law, 

au n-l av n-l 

1 

5 T sxx' T sYY' ax ay 

~ [au + 5 ~ = Tn-1 
(3) 

2 ay ax 
axy 

where T2 = t tr(~2) = 3(sx~ + ax~) and B is a material 
parameter which IS often temperature dependent , but in 
this research we will study only isothermal conditions. 
The normalized form of 'Equation (3) results when the 
c~aracteristic velocity U is identified as Bh (pgho) n. We 
will carry out our analysis for n = ~ which is 
characteristic of ice (Col beck, 1980) and simplifies the 
analysis. The general features of the analysis for other 
values of n (except n = 1) will be the same. 

The boundary conditions on the upper surface of 
the ice y = Ys(x) are those of zero traction . When 
tr igonometric functions are expanded in terms of y' (x) = 
dYs/dx. the conditions become (with reference to i:-igure 
2) 

ans = - axy + 25 sxxYs' (x) + 

} (4) 
+ 252 axy<y~(x»2 + 053 ) = 0, 

} 
ann ayy - 25 axyy;(x) + 

+ 262 
S xx(y~(x»2 + 0 SS) 

(5) 
O. 

In addition, we have the kinematic boundary condition 

ah(x,t) 

at 
= Q(x.t) + v(x,ys) - Sy ~ (x) u(x.ys) + 0(52) (6) 

where Q is the normalized volume accumulation rate 
QtU and t = tB(pghO)3 . 

At the base of the glacier y = Yb(x) we have zero 
normal velocity 

Vb = v(x'Yb) - syMx) u(x,Yb) -

1 
- - S2(YMx»2 v(x'Yb) + 0(5 3) = 0 

2 1 
(7) 

and a basal sliding law which we state in a general 
way as 

ub = u(x 'Yb) + SyMx) v(x,Yb) -

1 
- - S2(y~(x»2 u(x'Yb) + 0(53) 

2 

= 4>(s(x'Yb)' x, t) 

(8) 

where 4> is a prescribed function of s, x , and t, and its 
dependence on x and t indicates that the bed can be 
inhomogeneous and conditions can vary with time, 
perhaps seasonally. The time dependence above is not 
intended to represent an explicit time dependence, but 
represents time dependence which would enter through 
the numerous physical mechanisms affecting 4>, such as 
temperature, etc . We have assumed here that the sliding 
mechanism is basically dominated by viscous flow and 
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hence of> depends principally on the deviatoric stress. 
However, one generalization of this would be to include 
pressure dependence. For example, a sliding mechanism 
influenced by Coulomb friction would be likely to lead 
to this situation. 

ST ANDARD GLACIER SOLUTION 

The usual solution to Equations (I) to (8) win now 
be summarized. The details of the perturbation methods 
used and the results can be found in Hutter (1981) and 
Morland and 10hnson (1980, 1982). Away from the upper 
surface 

ayy (y - Ys) cos a + sY~ (x)(Ys - y) sin a + C(S)2, 

+ sY~ (x )(Ys - y ) sin a + 0(52), 

where u(O) is given in Equation (10) to follow. The 
function Cl (x) is determined by matching with the 
boundary-/ayer solution valid near the free surface and 
is given by 10hnson and McMeeking (1984) as 

S2/3k d2u s (0)(s,0)/ds2 

Cl (9a) 
sin a (dus(O)(s,O)/ds)l/S 

where the (s,n) coordinate system is shown in Figure 2, 

I @f/S 

k = 3/3 2' r2 [i ]/r ~] 
and r is the gamma function . (Note that Cl appearing 
in 10hnson and McMeeking (1984) contains an error 
which we have corrected here.) The stretch rates in 
Equation (9a) are those tangential to the top surface at 
the surface. Cl (x) represents a shear stress induced in 
the core of the glacier by the relatively large 
longitudinal stress s xx present in the near~urface region 
of the glacier . 

v 

The motion of the ice is such that 

u = u(O) (x, y) + 0(5) = 4>(h(x),x,t) + 

+ ~ [h4 - (y - y)4) sinS a + 0(5), 
2 s 1 

(10) 

In these equations we have recognized that the only 
non-zero deviatoric stress component at the base is ax 
at leading order and so to the same order the strels 
dependence of 4> will involve only h. That is so because 
h determines the basal shear stress to leading order (see 
Equation (9». Lastly, the solution is completed by the 
determination of the glacier's shape from the kinematic 
boundary condition (6). 

The solution given by Equations (9) to (11) is a 
consistent approximation only if the basal sliding law is 
such that of> = 0(1) or smaller. Furthermore, the variation 
of 4> with x must be 0(1) or less as well. If these two 
conditions are met, then the stretch rate is consistent 
with s xx = 0(5). In addition, an examination of the 
kinematic boundary condition reveals that it is desirable 
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to choose Q = 0(6) for only then is it possible that 
steady states (ah/at = 0) could exist consistent with this 
solution when Q ~ O. In fact, the magnitude of 6 can 
be set by defining 6q(x,t) = Q(x,t) where q = 0(1) and 
it would be sensible to choose q to have a maximum 
value of I when averaged over several years. Thus 

6 (12) 

where Q is the average of Q over several years. It 
follows that a steady state for the glacier shape 
averaged over several years can be determined from the 
kinematic condition by requiring that ah/at is 0(62

) and 
therefore Equation (6) becomes 

a 6 
- [h(~(h(x),x) + _h4 sins Cl)] q(x) 
ax 5 

(13) 

where ~ is 41 averaged over several years not including 
a surge year . Additional in-<1epth discussion of the 
kinematic boundary condition and its role in 
determining the shape of the glacier can be found in 
Morland and 10hnson (l980 , 1982). Furthermore, note 
that the standard solution discussed in this section 
describes a flow whose spatial variation in the direction 
of the mean bed line is gentle. Consequently, this 
solution generally fails to be an accurate description of 
the flow near the margins of the glacier where the slope 
of the surface may become large. However, with some 
restrictions placed on 41, solutions valid at the margins 
can be found. Restrictions on the asymptotic behavior of 
~ near the margins which lead to valid margin solutions 
have been investigated by Morland and 10hnson (1980, 
1982). The present analysis is primarily concerned with 
the central region of the glacier and therefore we 
simply assume that ~ has a form which permits a valid 
solution near the margin or that the small margin region 
does not significantly affect the solution valid away 
from the margin, i.e. the margin region is passive. 

We note at this stage that the deviatoric stress sxx 
is much smaller than axy' except near the upper surface . 
To see how the magnitude of s xx can be increased we 
must seek ways of increasing the stretch rate au / ax . 
From Equation (10) we see that this can be done by 
increasing the magnitude of d4l/dx to larger than 0(1) 
or by inducing rapid variations of Ys with x perhaps by 
a sudden local accumulation of ice or snow. In the 
latter case, sxx would become comparable to uxy only 
when the fluctuations of Ys were so rapid with x that 
the perturbation scheme would break down . In any case, 
it is unlikely that such rapid local accumulations would 
take place in practice. Consequently, we confine our 
attention to the case where the rapid stre.tching is 
induced by the sliding law. 

RAPID STRETCHING: SHEAR STRESS SUPPORTS 
WEIGHT 

We will consider the bed on which the ice slides to 
be such that the dimension less basal velocity is of order 
I/y, i.e. O(l/v), where Y « 1. For this to be so, the 
magnitude of the function 41 must be O(I/Y) and we will 
rewrite it as (I/v)4, where 41 = 0(1). The magnitude of 
the basal velocity will determine the magnitude of the 
velocity in the ice as a whole and so we will consider 
an expansion of the form 

u(x,y) ~U(-I)(X,y) + u(O)(x,y) + 0(1). (14) 
Y 

From this and the flow law Equation (3), it can be seen 
that 
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(6/Y) au(-I)/ax + ... , 1 
(I/Y) au(-I)/ay + ... . 

(15) and 

Furthermore, the equilibrium Equation (la) implies that 
U x = 0(1). Therefore, if 6/Y is less than or equal to 
orJ'er unity, i.e. 6/v ( 0(1), then Equation (15) il)lR\ies 
t~at sxx = 0(6/Y) and that au(-I)/ay .. O. Hence u~-l) = 
u -I)(x). Once this has been established, we see that for 
6/v , 0(1), 

3(a;y+ s;x)sxx = (6/ Y)du(-I)/dx, 1 
6(a;y+ six) axy = au(O)/ay + ... , 

and the expansions for the stresses have the form 

axy a<0) + 6a(J) + 0(6) xy xy , 

sxx (6/Y) s~l + 6s<11 + 0(6). 

(16) 

(17) 

(18) 

(a) Longitudinal deviatoric stress small compared to the 
shear stress 

It now becomes necessary to consider the magnitude 
of 6/ Y versus I . In order to give a complete discussion 
of the solution regimes, first consider 6/ Y « I, i .e. 6 « 
v « 1. This case has been considered by Fowler (1982) 
and from Equations (17) and (18) we see that the 
solution is still dominated by shear stress, since u » 

Th I · . . b xy sxx. e so utlOn IS gIven y . 

a~) = (Ys - y) sin Cl, 

ayy = a~) + 0(1) = (y - ys) cos Cl + 0(1), (19) 

si~ (d4l/dx)/[3(ys - y)2 sin2 a] 

and Of. course uxx = ayy + 2sxx . Because the deviatoric 
stress IS a xy only to leading order , the function 41 will 
depend on the shear stress at the glacier bed, the 
position, and time only . From Equations (16), (19), and 
boundary condition (8) the ice velocity is given by 

u = (I/y) uC-1)(x) + u(O)(x,y) + 0(1), 

Y = (6/Y)[Y~( x)u(-I) + (Yb - y)du(-l) /dx] - (20) 

au(O) 
-- dy + 0(6) 

ax 

where 

and 

The kinematic condition leads to 

ah(x,t) (-I) 
-- = - (6/v)[h du / dx + 

at 

+ y;(x) u(-l)] + 6q(X,t) + 0(6). 
(21) 

Because 6/Y and 6 are of different orders of magnitude, 
it follows that if q = 0(1), such a case generally cannot 
be in equilibrium with the climate and will thin and 
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thicken relatively rapidly until the leading term in 
ah/at disappears. Such behavior has been studied by 
Fowler (1982), who analyzed the kinematic waves that 
the process would involve. If q = O(I/v), a steadY-5tate 
solution with ah/ at = 0(5) could exist. As before, the 
complete solution might require a boundary layer near 
the margin. Note illso from Equations (19) that there is 
a singularity in s~) at y = Ys and so the boundary-layer 
formulation of 10hnson and McMeeking (1984) must be 
used near the surface. 

(b) Longitudillal deviatoric stress comparable to the shear 
stress 

The previous case (5 « v « 1) involves a situation 
in which the shear stresses U xy are much larger than 
the longitudinal deviatoric stresses sxx' Thus it would 
not seem to be suitable for describing the mechanics of 
surging, where in our work in preparation on surging 
glaciers we have estimated s x x to be comparable with 
uxy(x..Yb)' This has been concluded also by Fowler (1982) 
for the different reason that the glacier would merely 
generate kinematic waves in response to seasonal 
changes. Furthermore, the expansion would break down 
and the solution would be inappropriate if d<l>/ dx 
became very large anywhere and such a phenomenon is 
often suggested as the basis for surging models. Instead, 
we will cons ider the case in which v = 0(5) and, 
without losing any general i ty, we can identify v with 5. 
This corresponds to a situa t ion in which the magnitude 
of the longitudinal deviatoric stress is comparable to 
that of the shear stress. 

In this si tuation , the stresses would have the form 

u = u(O) + 5u(l) + 0(52 ) 

and u = (I / 5)U(-I)(x ) + u(O)(x ,y) + 0(5) 

v = v(O)(x ,y ) + 5V(I)(X ,y) + 0(62 ). 

As a consequence 

and the flow law gives 

du(-I )/ dx = 3S<0)3 + 30<0)2 s(O) 
xx xy xx ' 

From the boundary conditions on y = Ys we find 

(0)( ) _ ° (1)( ) _ 2 ' (0) ( uxy x'Ys - , uxy x'Ys - Yss xx x 'Ys)' 

and on y = Yb 

V<°)(x' Yb) = 0, v(I)(x..Yb) y~(x)u(-l)(x), 

] 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 
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The equilibrium Equations (2) become at 
second order, respectively 

and 

~ z cos Cl. 
ay 

first and 

(31) 

(32) 

We find by integrating Equations (31) using boundary 
condi tions (27) and (28) that 

u~O) = (Ys - y) sin Cl and u~~) = (y - Ys) cos Cl (33) 

as the down-slope component 
by the shear stress . 

of weight is still supported ... -".. 
!he bounda.ry condjb\on (30) 

provide an equatIOn for s~2 
and" (25) together 

(34) 

Here we will use the conventional assumption that the 
sliding velocity at the ba~e depends only on the basal 
shear stress. In this case u~-I)(x) will be known in terms 
of the bed shear stress and therefore iJl terms of the 
profile of the glacier. Consequently, du~-I)/dx is then 
known and Equation (34) is a cubic algebraic equation 
for s~), which is easily solved . Note, however, that if 
we generalize the basal sliding law such that the base 
velocity also depends on the longitudinal deviatoric 
stress (which in the ~resent analysis is of the same 
order as Uxy.)' then u(- ) is a function of sxx(x..Yb) and 
Equation (3'1), when evaluated at the bed Y = Yb ' is a 
first~rder, non-linear ordinary differential equa1ipn for 
the longitudinal deviatoric stress at the bed S~)(x,yb) ' 
This would be the case when <I> depends on T, the 
equivalent shear stress and the basal shear stress, rather 
than on the basal shear stress alone. For flow of ice 
over protrusions on the base, viscous flow at the base is 
likely to be an important sliding mechanism and 
therefore it does seem that T would enter the sliding 
law . The value of s~) away from the base would be 

determined by solving R~uation (34) as a cUbif. )quation 
once the value of s.2 (x..Yb) 8nd thus du -1 / dx is 
known. Since the function S~)(X'Yb) would be the 
solution of ~ differential equation, the basal sliding 
velocity u(-l} will depend on conditions everywhere 
along the base and not just on the local aspects. Budd 
(1975) has suggested that the local rate of sliding 
depends on conditions everywhere in the glacier, but has 
not presented any mechanical model as clear as ours. 
Furthermore, the consequences of this possibility have 
not been explored in the literature on the mechanics of 
glaciers, except in the heuristic treatment by Budd 
(1975). We will not attempt to expand on this topic, 
except to say that it seems possible that novel dynamic 
beha vi or could arise from this feature as Budd has 
found in his surging models. We will also not consider a 
pressure-dependent sliding law, except to note that such 
extensions are relatively straightforward. 

Returning to the conventional case where Equation 
(34) is simply a cubic algebraic equation, we find it has 
only one real root 

(35) 

where r = - ~ du(-l)/dx and p _ !.. (0)2 
6 - 3 uxy 

The second-{)rder equilibrium Equation (32) can be 
integrated to give 
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U~p = yJ (x)(ys - y) sin a, 

U~) = YJ (x) [(y - ys) cos a + 

(36) 

where z 

4 
[
Sin a ] 6 

(0) , 
sxx (x,ys) 

a = 
27 

and II is plotted against z in Figure 4. When z is small 
compared to unity, II can be neglected. 

Next, we can integrate Equation (26) to obtain 

u(O) _ -.(.(0), x,t) sO) + 
lis. . IJ 

IJ 
(37) 

although we do not yet know s~). (Note that the 
standard summation convention has been adopted in the 
first term of Equation (37).) We can find this last 
quantity, if needed, by differentiating Equation (37) and 
inserting the result into Equation (25). Again, this may 
give a differential equation or an algebraic equation 
depending on whether 41 depends on s,1llX or not. 

Finally, we can use incompressibilIty to find 

(38) 

yb(x) u(-I) (x) - r (8U(0)/8X)dy . (39) 

Yb 

ft is of some interest to consider the solution when 
4I(s(O ,x,t) becomes small compared to unity. In that case, 
r in Equation (35) will be small and we choose to retain 
only the largest terms. We find 

s(O) = __ d41 (s(O) x t) 
xx 3u(0)2 dx " 

xy 

just as it would be in the previQus case when v « S, 
except now the smallness of s~V is determined by the 
magnitude of 41. The significant term in Equation (37) is 
now 

This integrates a 

and so the solution is essentially the same as Equations 
(20). Thus we see that the results for the case where the 
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leading term in the velocity u is O(<I>/S) behave 
satisfactorily when <I> becomes small and the standard 
and intermediate solution can be recovered. In fact, the 
solution of Equations (30) and (33) through (39) contains 
the solution for magnitudes of the basal velocity ranging 
from O(I / S) down to 0(1) and less, and thus one 
solution can be used for this entire range. 

It is important to note that in the solutions 
obtained so far the down-slope component of weight is 
supported by the basal shear stress to leading order . In 
general, the higher-<lrder terms will alter the basal shear 
stress so that it is not exactly equal to the down-slope 
weight, but of course this correction is small. As 
mentioned previously, the expansion breaks down in 
certain circumstances. Consider sliding laws of the kinds 
shown in Figure I. Assume that for some reason the 
basal shear stress, computed to leading order as h sin a, 
is comparable with Tm. This could occur because of 
high lubrication due to excess water in the melt season, 
which could cause the glacier to slide relatively rapidly 
at low basal shear stress . In regions moving slower than 
ut" h sin a < Tm and , as long as that condition is met, 
the preceding solutions can be used. However, as h sin 
ex approaches Tm' say in a thicker portion of the glacier, 
then 8<1>/ 8Tb becomes very large. In fact, at I, 841/8Tb = 
... and therefore acc9.rding to Equation (37) u(O) - CD. 

This means that utO ) will e..xc~ed the leading-<lrder 
approximation for velocity ut-I)IS - 4>/S and the 
expansion has broken down. In addition, if h sin a 
exceeds Tm as it would do in general for sliding speeds 
exceeding ut, between points I and 2 in Figure I, then 
the down-slope component of weight can no longer be 
supported by basal shear stress to leading order. Since 
the leading-order equations can no longer be satisfied, 
the perturbation expansion has broken down and the 
approximations are no longer valid . Of course. if the 
sliding speed exceeds ub in Figure I, then with sliding 
law (a) the basal shear stress could match h sin a once 
more. Because the velocity is a continuous function of 
position, there may be a substantial portion of the 
glacier sliding at speeds between I and 2 and, if we are 
dealing with law (b), there could be large portions of 
the glacier where h sin ex exceeds Tb. Thus it is 
interesting to consider such a possibility and this is 
dealt with in the next section. 

RAPID STRETCHING: LONGITUDINAL STRESS 
GRADIENT SUPPORTS PART OF THE WEIGHT 

Beyond the peak in Figure 1, some portion of the 
down-slope component of weight is borne by the 
longitudinal stress gradient to leading order. As this is 
not the case in the results discussed so far, we must 
seek another solution. We shall study now the situation 
where v « 6 so that sxx dominates axy. In particular, 
we are considering the case in which some of the 
glacier'S weight is supported by axx and we see from 
the equilibrium Equations (1) that this requires 

(-I) (0) ( ) (1/S)ctxx + a'xx + 0 S , 

(40) 

= (0) (I) ( 2) ayy U yy + 6a'xy + 0 6 , 

from which it follows that 

sxx = (lIs) ~ ahl ) + 0(1). 

As before u(O) = (y - Yb)cOS ex. From the flow law, 
Equation (3)~ we find that 

(41) 

and 
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[
3 ]( (-1»2 (0) 0(1 2) aU/ay = 262 aXX axy + 6 . (42) 

Consequently, these can be satisfied to leading order if 
we require 

u = (43) 

giving du(-4) / dx 3(a(-1 )3)/ 8. Since u(-4) is 
independent of y , this s~~s that a~:;I) is also 
independent of depth . It should be noted that the 
velocity has increased to 0(1 / 6)· and this must happen 
for regions beyond the peak in Figure I . Furthermore, 
from Equation (43) we now see that the case in which 
s supports part of the weight is consistent with a 
snaing law for which v 0(6·) . Therefore, for this 
solution we will identify v with 6" without loss of 
generali ty. 

From the equilibrium Equation (la) it follows that 

aa(O) da(-1) 
~ + .::..:...LL = - sin a (44) 
ay dx 

and thus 
da-1 

a~D) = J~~ (x 'Yb) - (y - Yb) ~in a + ~ ] . (45) 

The boundary condition at y = Ys is given by 

aW(xJls) = Ys'(x) a~i)(x) 

and together with Equation (45) this gives 

d (ha~~l» + h sin a - J~y)(X'Yb) + 
dx 

+ y~(x) a~p = O. 

If we restate the sliding la w as 

where 4> is 0(1) we can consider the inversion 

(46) 

(47) 

(48) 

il) which we take <1>-1 to be a single-valued function of 
ut-4) as it would be in the two cases illustrated in 
Figure 1. 

The differential Equation (46) must be solved with 
appropriate boundary conditions. If we consider a 
segment AB as in Figure 3 in which this solution is 
valid, then boundary conditions are required at A and 
B. Outside AB, we shall assume that the ice is moving 
slowly and the down-slope component of weight is 
supported by the basal shear stress to lead ing order . 

x 

Fig. 3. Schematic of a rapidly sliding glacier segment 
constrained by slowly moving portions. 

McMeeking and lohnson: Longitudinal stress in glaciers 

This means that the basal velocity is 0(1/6) at most 
outside AB. Near A and B the perturbation 
approximation for basal velocity of 0(1/6) will break 
down . However, we shall assume that the ic~ velocities 
are 0(1/6) at A and B. This means that ul -4) in AB 
must vanish at A and B, giving us an ad hoc matching 
to the more slowly moving ice on either side. This 
somewhat ad hoc matching condition is consistent with 
mass conservation and assumes that the local regions 
near A and B are relatively passive. Rigorously derived 
ma tching conditions would require the determination of 
the local solutions valid near the transition points A and 
B and this is not an easy task in the present problem. 
However, in defense of the approach taken here, it is 
quite common in perturbation problems of this type to 
find that the local solutions are passive. Therefore 
assuming u(4) vanishes at A we then note that 

u( -4)(x) r ~ (a~-}»3 dx, (49) 
xA 

siJlce du(-4)/dx = ~cl;i»3/8. Consequently, since 
at 0) is related to u( J(x) by Equation (48) and 
tflrefore to a~:;1) by Equation (49), we see that 
EAuation (46) is an integro-differential equation for 
at -I). To solve if we would have to apply the 
b~~ndary condition ut-4)(XB) = O. 

The integro-differential Equation (46) involves the 
balance between the body force h sin a, the stress 
resultant ha~:;I), the basal shear stress, and an effective 
basal shear stress yb(.x)f) :;1» due to the slope of the 
base. The value of hrf:;x at A and B will give the 
forces exerted by the rapid sliding region on the slowly 
moving ice on either side. The longitudinal stress 
involved in this thrust will be much larger than those 
involved in the solution for slow motion of the glacier. 
The forces involved will be transmitted to the base of 
the slowly moving sections and supported by shear ~tress 
over a physical length comparable to thickness h on 
either side of AB. Thus the sections on either side of A 
and B act as shear-stress concentrators. These shear 
stresses will tend to cause the total basal values to 
exceed the critical value Tm and thus cause the rapid 
sliding region to spread. In fact, the process would be 
similar to the spreading of shear bands in clay which 
obey a shear-stress-shear-velocity jump law across the 
band like curve (b) in Figure I as discussed by Palmer 
and Rice (1973). This is used as the basis for a surge 
model in our related paper. 

GLACIERS ON A GENTLE SLOPE 

In the previous sections we have been concerned 
with glaciers moving down moderate slopes. We will now 
consider the case of gentle slopes. When the average 
slope for the glacier is 0(6), we can rewrite sin a as P6 
and cos ex as j 1 - 62 p2 where p = 0(1) . The standard 
solution corresponding to large shear stress compared to 
longitudinal deviatoric stress then becomes 

axx 

axy 

y - Ys + 0(62
), ayy = Y - ys + 0(62

) 

6y(y - Ys) + 0(62
) 

where y = - p + y;(x), 

3 3 S 
U - ~Tb'x,l) + 2" 6 Y [(Ys 

(50) 

where for consistency cz, = 0(63 ). As before, there is a 
boundary layer near the free surface as discussed by 
Johnson and McMeeking (1984). Note that, since the 
slope is small, the force due to gravity which drives the 
ice down the incline is of the same order of magnitude 
as the driving force due to gravity which causes the ice 
to flow from deep to shallow regions. Furthermore, in 
the standard solution both of these are balanced by the 
shear stress and the longitudinal deviatoric stress is 
higher order. 
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If, on the other hand, we consider the case when 0.6 -r-------------------------, 
sxx = 0(6) and therefore comparable to axy' we then 
must have 

(51 ) 

where a(~) = (y - Ys)' a~p = - Y(Ys - y), and from u 
we see foat this solution corresponds to one in which 4> 
= 0(62 ). In addition, from the flow law w~ find that 
the leading, Qrder term in u is such that u( ) = u(2)(x) 
and then s~lJ is the solution of the cubic 

(52) 

This is v~ry similar to Equation (34) and when 6 2 U(2)(x) 
= 4>( 6Tb(lJ) depends only on the basal shear stress . The 
cubic equation will have a solution of the form of 
Equation (35). At higher order we find 

0.4 

o.~ 

o ~~------+---------~------_4--------~ 
o 0.5 1.0 1.5 2.0 

z 
Fig . 4. Functions aT/smg in expressions for stress in 

glaciers. The solid line is 11( z) and the dashed line is 
12(z). 

(2) _ If) [ (J)( _ fl) ]_ a xy - Ys'x 4s xx x'Ys) 2s-xJ/-x,y) 

2y" (x) [ ( ) I s (J) (x y ) 6 ] 
_ ~ (y - y ) s I (x y) + - xn ' s (21/ 6z1/ 2 - - zl/6 + I (z)) -

y s xx ' 3 21 S a 1/6 12 2 

_ s W(x'Ys) a I sW I 
/3 22/ Sy ax 

where z = [a(ys - y)6 + 1]1/2 - I, 

{ ]

6 
_ 4 y 
a = - (I) , 

27 sxx(x'Ys) 

and 11(z) is given in Equations (36) . 11 and 12 are 
plotted against z in Figure 4. When z is small compared 
to unity, 11 and 12 can be neglected . In addition 

u(3) = ~2c1>'(6Tb(J»(6~(I»)Tb(2) + 3tlty[(y - YS)2 - h2] + 

(54) 3 
+ - yS[(y - Y )( - h(] . 

2 s 

Note that this solution contains the standard solution as 
a special case since it can be recovered by allowing cl> to 
become smaller than 0(62 ) . 

We can also consider the situation when cl> = 0(6) 
which corresponds to large longitudinal deviatoric 
stresses compared to shear stress . However , aga in the 
shear stress will be balancing the driving forces due to 
gra vi ty. In this case we have 

(53) 

with that of u(l)'(x) . We assume that u(1) i~ determined 
by the basal shear stress and that s~) can be 
determined in turn from this . At higher order we find 

aW = 2sW'(x)(ys - y ) + 2111 (x)y~(x) . (56) 

Note that u(2) = u(2)(x) and shearing flow appears only 
at 0(67 / 3 ) . A similar solution can be found for cl> = 0(1) 
in which case u = 0(1) and s xx = 0(61

/
3

). However , we 
will consider next the situation when cl> is large and the 
forces due to gravity are not balanced by the shear 
stress a lone. 

In this situation 

ayy = a(O) + 0(62
) , axy = 6J1J + 0(62

) , 

} 
yy 

sxx s(O) + 0(6), u = .: u(-I) + 0(1) (57) xx 6 ' 

and cl> = 0(1 / 6), 

with a(O) = y - y and u(-I) 
yy s 

u(-I )(x)· Also 

sxx = 

6a(J) + 6
5

/
SJ2) + 0(67

/
3

) 1 xy xy , 

u = 6u(l) + 65/ 3u(2) + 0(67/ 3 ), 
(55) 

(I) _ I u(I)'(X)1 1
/
3 

and Syy - ± 3 with the sign chosen to agree 
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u( -I) , (x) \1/3 
s~) = s~)(x) = ± 3 and 

aW = (- fj + Ys(x»(y - ys) - 2AOl (x) (y - ys) + 

+ 2s~)(x) yg(x) 
(58) 
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which gives at the base 

aW(x'Yb) = - h(-P + y~(x» + 

+ 2h sl?j'(x) + 2si?j(x)ys'(x). 
(59) 

If the velocity at the bed depends on the shear stress, 
Equation (59) is an integro-differential equation in x 
and it must be solved with boundary conditions on the 
stress or velocity given at two values of x in a manner 
similar to the steep~lope case. 

CORRECTED SHEAR STRESS AT THE BASE 

We will now consider how the longitudinal stress 
gradient influences the shear stress at the base by 
introducing corrections to the leading-order estimate . 
Attempts have been made by various workers (Robin , 
1967; Collins, 1968; Nye, 1969; Budd, 1970; Hutter, 1981 ) 
to find this relationship in connection with experiments 
to relate bottom and surface topography . Their technique 
is to start with the exact equations, integrate through 
the glacier thi ck ness and make assumptions about 
dropping terms and then invoke the constitutive law . 
The simplest form of their result can be stated as 

(60) 

where T is the shear stress a xy integrated twice through the 
thickness and 

d 
G --.,..--

dx 
a~ (~'Ys) 
3Ba~ 1 

1/3 

with the sign chosen to agree with that of a~(~,Ys)/a~. By 
comparing our results for various flow regimes to Equation 
(60) wse can determine when their assumptions are 
appropriate and provide better results for situations when 
their assumptions fail. 

First, we consider the standard case for the steep 
glacier which would be valid when it is stuck to the 
bedrock. This is the case considered by Nye (1969). From 
the first of Equations (9) we find 

with the sign chosen to agree with that of a~s(~,Ysl/a~. 
Equation (61) can be simplified by choosing a so that y ~(~) 
disappears at the point of interest, as did Nye. We see that 
the term T is not present since it is 0(62) and we have 
kept only terms 0(65/ 3 ) . In any case, Johnson and 
McMeeking (1984) have not carried out the matching 
necessary to evaluate terms of 0(62) . Following Collins 
(1968) and Budd (1970) , Nye dispensed with T on empirical 
grounds. We see, however, that the assumption of Collins 
and Nye which leads to the term G in Equation (60) is in­
valid for this case. The gradient term in Equation (61) is G 
multiplied by 

3
5

/
3k 1 (a~s(~'Ys)/ a~)/3B 1 1

/
3 

2pgh sin a 
(62) 

or 35
/
3k / 2 times the ratio of the surface longitudinal stress 

to the basal shear stress estimated to leading order. The 
parameter k is given in Equation (9a). Of course, Budd, 
Collins, and Nye were unaware of the boundary layer and 
instead tried to estimate the relationship between the 
average longitudinal deviatoric stress and the surface strain­
rate to obtain their G. 

The influence of the boundary layer on shear stress 
can be understood from the following simple model. Con­
sider the region near the free surface. It is stretching or 
compressing to leading order and this requires a longitudinal 

McMeeking and lohnson: Longitudinal stress in glaciers 

stress deviator. Twice the longitudinal gradient of this stress 
integrated through the thickness of the boundary layer must 
be balanced by a shear stress at the bottom of the layer. 
To the underlying ice, this stress appears as if it is a 
non-zero shear stress at the upper free surface. Johnson and 
McMeeking (1984) have shown that the boundary-layer 
thickness is SI/3h so with Ys~~) 0 

" 
pgh sin a + 2 J

Ys a~ xx " 
~dx 

ax 
(63) 

which is almost identical to the results of Coli ins and Nye 
except that the integration is carried out only in the 
boundary layer. The last term in Equation (61) is an 
evaluation of this integral. 

In the case of the standard glacier solution on the 
gentle slope, Johnson and McMeeking (1984) did not carry 
out the matching to sufficient terms for the result we wish. 
However, the situation is likely to be similar to the steep­
slope case. 

Next consider the case when there is substantial sliding 
at the bed. For the steep glacier which is stretching rapidly 
so that the longitudinal deviatoric stress is comparable to 
the shear stress, we find from Equations (33) and (36) that 
when a is chosen so that y~(x) = 0 

pgh sin a + 

where 

z 4 " 6 {I a~(~'Ys)}2 - (pgh sin a) / - + 1 - 1 
27 3B ax 

(61 ) 

and 11 is plotted versus z in Figure 4. It can be seen that 
the result for this case bears some similarity to the standard 
glacier formula of Equation (61). In addition, from Equation 
(53) we see that the result for a glacier on a gentle slope 
in which the longitudinal deviatoric stress is comparable 
with the shear stress (with a chosen to make Y~(~) = 0) is 
the same as Equation (64) with the additional term 

+ 

{~B a~~ts ) }2/3 [ 
21 / 6z 1/ 2 

pg sin2 a 
- ; ZI/6 + 12 (z) ] + 

(65) 

where s~1)(~'Yb) must be obtained from the solution to 
Equation (52) at the base. 

Another solution on the gentle slope is given by 
Equation (55), where the leading-order velocity is o(s) and 
is independent of depth, but the down-slope component of 
weight is supported by basal shear stress to leading order. 
In this case, the longitudinal deviatoric stress is 0(1/61/ 3) 

larger than the shear stress. From Equations (55) and (56) we 
find that, when a is chosen so that Ys(~) = 0, the shear 
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stress at the base is given by Equation (60) with T omitted. 
Thus the estimate of Nye, Collins, and Budd is valid 
(omitting T) when the velocity at the base of a glacier on a 
gentle slope is 0(6) and therefore the glacier is stretching 
rapidly, but cannot be true when the base of the glacier is 
stuck to the bedrock, contradicting a suggestion of Nye. 

Finally, we consider the case where the down-slope 
component of weight is partly borne by the longitudinal 
stress gradient to leading order. The fact that the leading­
order longitudinal deviatoric stress is independent of depth 
makes it clear that Equation (60) with T omitted gives the 
corrected basal shear stress both for the gentle and steep 
cases. 

SUMMARY 

In the present paper we have examined glacial flow in 
cases where the longitudinal deviatoric stress becomes large. 
In particular, we have developed the theory for the case 
when the longitudinal deviatoric stress is comparable to the 
shear stress and the case when the longitudinal stress is the 
dominant stress component. In each case the stress state is 
strongly influenced by the character of the basal sliding. 
Furthermore, the stress state in these cases differs 
fundamentally from that of the standard solution where the 
shear stress is dominant and supports the weight. Lastly, we 
examined the effect of the longitudinal stress on the basal 
shear stress and compared the results with previous work on 
relating surface and bottom topography. 
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