
CORRESPONDING POLYHEDRA IN THE THREE SPACES 
OF CONSTANT CURVATURE 

ERNST ROESER 

1. Introduction. The five Platonic solids can be drawn in elliptic or hyper­
bolic space just as well as in Euclidean space. Their numerical properties are, 
of course, the same in all three. So are the various angles subtended at the centre. 
But the face-angles and dihedral angles are greater in elliptic space, smaller in 
hyperbolic. It is a special feature of the non-Euclidean spaces that we cannot 
change the size of a solid without changing its shape. The edge-length 2/, circum-
radius R, and in-radius r are conveniently expressed as functions of the mid-
radius p: the distance from the centre to the mid-point of an edge. With each 
non-Euclidean polyhedron we shall associate a corresponding Euclidean poly­
hedron of a definite size, whose mid-radius serves as a parameter for expressing 
all the metrical properties of the non-Euclidean polyhedron. When an elliptic 
polyhedron and a hyperbolic polyhedron have the same parameter, the edge-
length of the former is the complement of the angle of parallelism corresponding 
to the edge-length of the latter. 

For these purposes it is immaterial whether we take the space of positive 
curvature to be elliptic (single-elliptic) or spherical (double-elliptic). To simplify 
the formulae we shall employ the natural unit of length. In hyperbolic space this 
means that a horocyclic arc of length 1 has the tangent at either end parallel 
to the diameter through the other end. 

2. Corresponding polygons. Let us begin by recapitulating the results of an 
earlier paper [5]. 

In Euclidean space, spherical triangles are usually drawn on a sphere of 
radius 1, because then the geodesic lengths of their sides are equal to the angles 
subtended at the centre of the sphere. In hyperbolic space the same result is 
achieved by using a sphere of radius 

arg sinh 1 = log (\/2 + 1). 

On such a sphere, consider a circle of angular radius as < %ir or straight radius 
<rh, so that 

(1) sinh G-» = sin as < 1. 

Through this circle draw a plane and a horosphere (say, for denniteness, the 
horosphere curved in the same direction as the sphere). Draw p tangents to the 
circle in its plane, so as to form a regular p-gon, {p}, of in-radius ah and side 
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2lht say. With the same points of contact, draw p great-circular tangents on the 
sphere, and p horocyclic tangents on the horosphere, so as to form a spherical 
{p} of in-radius <rs and side 21 s, and a horospherical {p} of in-radius <re and side 

FIG. 1 FIG. 2 

21 e. The relation between each in-radius and side can be computed from a right-
angled triangle (Fig. 1). Using the appropriate trigonometry (hyperbolic, 
spherical, or Euclidean), we find 

(2) tanh lh = sinh ah tan —, tan ls = sin as tan —, le = <re tan —. 
p P P 

Since ah is the semi-chord of a circular arc <rs and of a horocyclic arc <re (Fig. 2), 
we have 

(3) sinh <jh — sin as = cre 

[7, p. 62, with 5 = 1 ] , and therefore 

(4) tanh lh = tan ls = /e. 

This last result can also be seen directly, since l8 and lh are a circular arc and 
its tangent in a diametral plane of the sphere, while le and lh are a horocyclic 
arc and its tangent in a diametral plane of the horosphere. In particular, when 
the hyperbolic {p} is ''asymptotic*' (with its vertices at infinity), 

h = °°, /« = 1. 

By (1) and (2), tanh ln < tan 7r/£; therefore a hyperbolic {£} has no corres­
ponding spherical {p} if 

tanh //, > tan —. 
P 

(This failure cannot occur when p = 3 or 4, but may occur for a pentagon or 
higher polygon.) By (4), 

tan ls = tanh lh < 1 ; 
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therefore a spherical \p) has no corresponding hyperbolic [p] if l8 > lir, that 
is, if the {p\ is a spherical triangle whose sides are obtuse. Thus the only 
regular polygon for which the correspondence holds both ways, for every possible 
length of side, is the square. 

The equation tanh ln = tan ls may be expressed geometrically [4, p. 3] by 
saying that 2/s is the complement of Lobatschefsky's angle of parallelism for the 
distance 2lh. 

3. Regular polyhedra. Analogous considerations in hyperbolic 4-space yield 
a definition for "corresponding" polyhedra. Instead of a common in-circle, these 
have a common mid-sphere (sphere touching all the edges) with its radius 
measured three different ways. 

Let {p, q], where (p — 2) (q — 2) < 4, denote a regular polyhedron whose 
faces are £-gons, q at each vertex, in Euclidean or non-Euclidean space, so that 
the number of edges is [2, p. 13] 

E = ipql [4 - (p - 2) (q - 2)]. 

Let <f> and ^ denote the angles subtended at the centre by a half-edge and by 
the in-radius of a face. Then 

(5) 

c o s <f> = 

COS \f/ = 

cos ir/p 
sin ir/q'1 

cos ir/q 
sin ic/p' 

s i n <f> = 

s i n yp = 

sin IT/h 

sin r/q' 

sin ir/h 
sm ir/p' 

tan </> = 

tan \f/ = 

sin x/fe 
cos x//) ' 

sin IT/h 

cos TT/^ 

where ft = V ( 4 £ + 1) - 1 [2, pp. 19, 21]. 
Let R denote the circum-radius, p the mid-radius, r the in-radius, a the in-

radius of a face, 2a the dihedral angle, and 2d the face-angle. These can be 

computed by solving the three right-angled triangles shown in Figure 3. The 
results are collected in Table I. 

The p and r of [4] have been interchanged for the sake of agreement with 
Sommerville [7, p. 123]. Note, however, that his 
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21, 2c/>, 20, 2a, p, q, a. 

For the extension to n dimensions see [8, p. 22]. 
In terms of Schlâfli functions [1, pp. 15, 23, 28], the volume of the spherical 

{p, q] is ES(%w — w/p, w/q, %w — a), while that of the hyperbolic {p, q] is 
EiS(%w — w/p, w/q, \w — a). 

TABLE I 
THE GENERAL REGULAR POLYHEDRON 

Elliptic or spherical space Euclidean space Hyperbolic space 

tan / = sin p tan $ 
tan R = tan p sec <j> 
tan r = tan p cos ^ 
sin ex = sin p sin \f/ 
cot a = cos p tan \f/ 
sin 6 = sec / cos w/p 

I = p t a n <t> 
R = p sec <t> 
r = p cos ^ 
a = p sin ^ 

0 = §TT — T/P 

tanh / = sinh p tan <t> 
tanh R = tanh p sec <f> 
tanh r = tanh p cos ^ 
sinh a = sinh p sin ^ 
cot a = cosh p tan yf/ 
sin 0 = sech / cos w/p 

4. A digression on rectangular polyhedra. It is interesting to see which 
non-Euclidean polyhedra {p, q] share with the Euclidean cube {4, 3} the 
property that the edges at each vertex form an orthogonal trihedron. This 
requires 

<2 = 3, a = 0 = \ T. 

Since 0 is greater or less than \ir — w/p according as the space is elliptic or 
hyperbolic, we have p < 4 in the former case and p > 4 in the latter. Thus we 
find an elliptic rectangular {3, 3} with 

cos p = cot \f/ = y/\, 

a hyperbolic rectangular {5, 3} with 

cosh p = co t^ = r, r = \{ VS + 1), 

and also, if we allow p to be infinite, a hyperbolic rectangular {6, 3} inscribed 
in a horosphere. In each case the edge 21 is given by 

cos / or cosh I = \/2 cos w/p. 

Table II lists the chief properties of these polyhedra, with the cube of mid-
radius 1 for comparison. (Note that the mid-radius of the rectangular dode­
cahedron is equal to its edge: p = 21.) 

By repeatedly reflecting such a solid {p, 3} in its faces, we obtain a regular 
honeycomb {p, 3, 4}, filling the whole space. 

{3, 3, 4}, when drawn on a hypersphere in Euclidean 4-space, has the same 
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vertices as the regular cross polytope #4, analogous to the octahedron /33 [2, 
p. 121]. There are sixteen cells {3, 3}. By identifying antipodes we derive a 
honeycomb of eight rectangular tetrahedra filling elliptic space [7, p. 124]. 

{4, 3, 4} is the ordinary space-filling of cubes. 
{5, 3, 4} was described by Schlegel and Sommerville [6, p. 444; 8, p. 17]. 
{6, 3, 4} was described by Coxeter and Whitrow [3, pp. 426, 427]. 

TABLE II 

T H E RECTANGULAR POLYHEDRA 

Elliptic or spherical {3,3} Euclidean {4,3} Hyperbolic {5,3} Hyperbolic {6,3} 

ïïx, sin2i? = I 
sin2 p = \ 

I = ±7T, COS 21 = 0 

* 2 = ! 
P2 = l 

' 2 

21 = V2 

sinh2 R = %T 
sinh2 p = T 
sinh2 r = \T 
cosh 21 — T 

R = 00 

p = 00 

r = 00 

cosh 2/ = 2 

5. Corresponding polyhedra. The formulae in Table I apply to polyhedra 
{p, q] in the three spaces separately. In each case we can assign a value to p and 
deduce all the other properties. Corresponding polyhedra are given by identify­
ing the Euclidean p with the elliptic sin p and the hyperbolic sinh p, say 

sin ps = pe = sinh phj 

whence 
tan ls = le = tanh lhl 21 s = \ir — 11(24), 

and sin crs = ce = sinh 0 .̂ 

The remaining relations are not quite so simple, but we can express all the 
properties in terms of pe and le ( = pe tan $), as follows: 

tan R8 = 

tan rs — 

V(i - P/) 
2T~ sec <f>, Re = pe sec 0, t anh i?>, 

V(l + P / ) 
2T sec 4> 

Pe 

V(l - P / ) 
cos \p, re = pe cos \p, t anh r/, = Pe 

V(l + P / ) 
cos \p 

cota8 = •>/ 1 — pe
2 tan ^, ae = \-K — \p, cotah = •>/ 1 + p / tan ^ 

sin 0, = A / 1 + le cos —, 9e = \ir — —, sin 0* = ^ / 1 — /e
2 cos—. 

P P P 
It is interesting to observe that 

cot2 as + cot2 ah = 2 tan2 ^ = 2 cot2 ae 

and 

whence 

sin2 05 + sin2 Bh — 2 cos2 — = 2 sin 0e, 

cos 20s + cos 20/, = 2 cos 20e. 
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6. Limitations of the correspondence. In elliptic or spherical space, the 
largest possible {p, q] has 

Rs = Ps = rs = |TT, ls = $, o-s = î , as = 7̂T, 0S = ir/q. 

Referring to a table of the five Platonic solids [2, p. 293], we see that <t> > \T 
for the tetrahedron {3, 3}, <f> = \-K for the octahedron {3, 4}, and 4> < \TT for 
the remaining three. Since 

tan I s — tanh lh < 1, 

an elliptic {£, g} has no corresponding hyperbolic {p, q} if /s > J T , that is, if 
the elliptic {p, q} is a tetrahedron of edge greater than Jr . 

In hyperbolic space, the largest possible {p, q\ has 

Rn = 4 = °° i tanh p» = cos <t>> sinh p̂  = cot 0, 0„ = 0, 

tanh rA = cos <j> cos ^ = cot — cot —, 
p q 

sinh ah = cot 6 sin i£ = cot —, 

cot ah — esc </> tan \f/ = tan —, 

[1, p. 28]. Since tanh lh = sinh ph tan <£ = sin ps tan $ < tan <£, a hyperbolic 
{p, q) has no corresponding elliptic {p> q) if 

tanh lh > tan <£ 

(which implies <f> < IT). Thus, for the correspondence to hold, a hyperbolic 
hexahedron or dodecahedron or icosahedron must not be too large. 

The only regular polyhedron for which the correspondence holds both ways, 
for every possible size, is the octahedron. 
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