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DIVISIBLE SEMIPLANES, ARCS, AND RELATIVE 
DIFFERENCE SETS 

DIETER JUNGNICKEL 

0. Introduction. In this paper we shall be concerned with arcs of 
divisible semiplanes. With one exception, all known divisible semiplanes 
D (also called "elliptic" semiplanes) arise by omitting the empty set or a 
Baer subset from a projective plane II, i.e., D = II\S, where S is one of 
the following: 

(i) S is the empty set. 
(ii) S consists of a line L with all its points and a point p with all the 

lines through it. 
(iii) S is a Baer subplane of II. 

We will introduce a definition of "arc" in divisible semiplanes; in the 
examples just mentioned, arcs of D will be arcs of II that interact in a 
prescribed manner with the Baer subset S omitted. The precise definition 
(to be given in Section 2) is chosen in such a way that divisible semiplanes 
admitting an abelian Singer group (i.e., a group acting regularly on both 
points and lines) and then a relative difference set D will always contain a 
large collection of arcs related to D (to be precise, —D and all its 
translates will be arcs). This seems worth studying since the use of such 
arcs has already provided interesting non-existence results for ordinary 
difference sets [17] and for relative difference sets corresponding to 
divisible semiplanes defined by Baer subsets of type (ii) above ( [14] and 
[15] ). Thus the author expected the study of arcs in divisible semiplanes 
in general to be interesting per se, and to provide a common setting for 
the results mentioned above. After reviewing some basic definitions and 
results in Section 1, we will define arcs in Section 2; first properties will be 
investigated leading to a characterization of those divisible semiplanes 
admitting "hyperovals". In Section 3, we will discuss the connection to 
relative difference sets. After giving examples of maximal arcs in divisible 
semiplanes arising from a Baer subset of type (ii) in Section 4, we shall 
concentrate on type (iii) semiplanes in the remaining five sections. As will 
become clear, the existence problem for large arcs in such semiplanes 
poses interesting questions regarding the interaction of Baer sub-
planes and ovals (resp. conies) in both Desarguesian and non-
Desarguesian planes. It also leads to a possible geometric attack on a 
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non-existence proof for the corresponding relative difference sets, a 
problem studied by algebraic means by Ganley and Spence [8]. 
Specifically we will give a conjecture (and some evidence for its truth) that 
would imply the non-existence for relative difference sets corresponding to 
type (iii), with the exception of IT = PG(2, 4). 

1. Divisible semiplanes and relative difference sets. Let D be an 
incidence structure consisting of mn points and mn lines, split into m point 
classes (resp. parallel classes) of n points (resp. lines) each. If any two 
points /?, q in the same point class (written p ~ q) are not joined at all, 
whereas any two points in distinct classes are joined by precisely one line, 
if each point is on exactly k lines, and if the dual conditions likewise hold, 
we call D a divisible semiplane with parameters n, ra, k. (Many authors use 
the term "elliptic semiplane" instead. Note, however, that divisible 
semiplanes are a special case of divisible designs in general (see e.g. [13] ), 
which is the reason for our terminology.) An easy counting argument 
shows that k(k — 1) = n(m — 1). 

With the exception of an isolated example of Baker [0] (with parameters 
n = 3, m = 15 and k = 7), all known divisible semiplanes arise in the 
following way [3]: Let n be a projective plane of order g, and omit from II 
a set S of one of the following types: 

(i) S is the empty set. 
(ii) S consists of a line L together with all its points, and a point p 

together with all the lines through p. 
(iii) S is a Baer subplane of II, i.e., a subplane of order \[q. 
The resulting structure D then is a divisible semiplane. Of course, type 

(i) just yields D = II again, i.e., the projective plane II itself is a divisible 
semiplane with parameters n = 1, m = q1 -h q + I, k = q + 1. We will 
not study this case in the present paper. In case (ii), we have to distinguish 
between the subcases p e L and/? £ L, respectively. Up <E L, we obtain 
a symmetric net of order q, i.e., a divisible semiplane with parameters 
n = m = k = q. If p <£ L, we obtain a biaffine plane of order q, i.e., a 
divisible semiplane with parameters n = q — 1, m = q + 1, k = q. 
Finally, in case (iii) D is a Baer semiplane of order q, i.e., a divisible 
semiplane with parameters n = q — \[q, m = q + \fq 4- 1 and k = q. 
It is well-known that IT may be reconstructed uniquely from D in all of 
these cases (see [3] ). 

We mention in passing that Dembowski also proved that any divisible 
semiplane D which does not arise from a projective plane necessarily 
satisfies n < k — \/k; also, a necessary condition for the existence of 
such an example is the existence of a symmetric design (see e.g. [1] for 
background on designs) with parameters (m, k, n) (defined on the point 
classes and parallel classes). For example, Baker's semiplane [0] corres­
ponds to a symmetric (15, 7, 3)-design. 
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We will be interested in divisible semiplanes D admitting a Singer group, 
i.e., a group G acting regularly ( = sharply 1-transitively) on both the point 
and line set of D. It is well-known that such a semiplane may be 
represented as the development 

dev D = (G, {D + x:x e G}, e ) 

of a relative difference set (RDS) D in G. This is a A:-subset of G for which 
the k(k — 1) differences d — d (d, d! e Z), d ^ d') are pairwise distinct 
and cover all elements of G excepting those in a certain subgroup TV of 
order n. We will restrict ourselves to the case of abelian RDS's in this 
paper. (There is a more general notion of RDS, corresponding to divisible 
designs in general. See, e.g., [6] and [13].) Then the point classes of D are 
the cosets TV + x(x e G) of N. For proofs, see e.g. [13]. 

Finally, let us mention the known examples of relative difference sets 
for divisible semiplanes. As Baker's example does not admit such a 
representation, we only encounter examples corresponding to semiplanes 
arising from projective planes. 

(i) Projective planes. The Desarguesian plane PG(2, q) admits a cyclic 
Singer group; indeed, this classical result of Singer [24] has provided the 
reason for present day terminology. 

(iia) Symmetric nets. Each projective plane over a commutative 
semifield ( = division ring in the terminology of [12]) gives rise to a 
symmetric net D admitting a commutative Singer group G. If D has odd 
order, G is elementary abelian; otherwise G is isomorphic to a direct 
sum of groups Z4. These results are due to Hughes [10]; cf. also [13] for 
simple proofs. 

(iib) Biaffine planes. The Desarguesian plane PG(2, q) yields the 
biaffine plane BAG(2, q) admitting a cyclic Singer group. This is due to 
Bose [2]; see also [13] for a more general result. 

(iii) Baer semiplanes. The only known example is described by the RDS 
with parameters n = 2, m = 7, k = 4 in Z14: D = {0, 1, 4, 6}. This 
corresponds to D = PG(2, 4)\PG(2, 2). (There are, however, non-abelian 
examples for q = 9 and q = 16, see Section 8 and [13, Corollary 4.10].) 

We shall say more about these examples and discuss some necessary 
conditions later, as far as they are related to arcs in the corresponding 
semiplanes. But first we will have to study the basic properties of arcs in 
divisible semiplanes. According to a result of Lam [20], all cyclic relative 
difference sets with n ¥= 1 and k ^ 50 are of one of the types discussed 
above. A final remark: Relative difference sets yielding semiplanes 
belonging to a projective plane are equivalent to certain quasiregular 
collineation groups of such planes. (A group G is called quasiregular if, for 
each orbit, each group element fixes either none or all of the elements in 
the orbit.) See [3] and [8]. 
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2. Arcs and ovals in divisible semiplanes. Recall that an arc in a 
projective plane is a subset A such that no line intersects A in more than 
two points. We will use a similar definition for semiplanes. Thus let D be a 
divisible semiplane, and let A be an /z-subset of the points of D. A is called 
an arc (more precisely an h-arc), provided that 

(Al ) \A n L\ ^ 2 for each line L 

and 

(A2) \A n P\ ^ 1 for each point class P. 

Equivalently, (A2) requires that any two points of A are joined in D. 
Condit ion (Al ) requires no further comment, whereas (A2) is not quite as 
natural . Clearly, one would not want to consider the point classes arcs; so 
some condition is needed. If D belongs to a projective plane II , the point 
classes correspond to lines of I I ; so one might consider replacing (A2) by 
the weaker condition \A Pi P\ ^ 2. As we will see, (A2) is satisfied by the 
examples of arcs arising from relative difference sets, which is our 
motivation for requiring this stronger condition. The following lemma is 
similar to well-known results for projective planes, except for parts (iii) 
and (iv) which are immediate consequences of (A2). Thus we will leave the 
details of the proof to the reader. 

2.1 L E M M A . Let A be an h-arc in a divisible semiplane D with parameters 
n, ra, k. Then the following hold: 

(i) h = k -f 1 with equality if and only if \A H L| G (0, 2} for each 
line L. 

(ii) The number of tangents (i.e., lines L with \A C\ L\ = 1) to A in a point 
p of A is k — h + l. 

(iii) For each point p £ A, there is at most one point pf e A with 
p - p'. 

(iv) If D arises from a projective plane I I , then A is also an arc of II. 

As usual, we will call a A-arc an oval and a (k + l)-arc a hyperoval of D. 
Not surprisingly, hyperovals can only arise in very special situations: 

2.2 P R O P O S I T I O N . Let A be a hyperoval of a divisible semiplane D with 
parameters n, m, k. Then either 

(i) D is a projective plane of even order k — 1 or 
(ii) D is a biaffine plane of even order k. 

Proof. Case 1. A" is odd, i.e., k -f 1 is even. Let/? be any point not on A. 
By Lemma 2.1 (i), all lines through/? meeting A meet A in precisely two 
points. By 2.1 (iii) this shows that p is joined to all points of A. So 
each point on A has to form a point class by itself, i.e., n = 1, and D is a 
projective plane. A well-known result of Quist [22] (see also [9] or [12] ) 
states that this can only happen if D has even order. 
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Case 2. k is even. Similar arguments as in Case 1 show that now for each 
point/? £ A there is a unique point /?' G A with/? — /?'; hence n ¥= 1. 
Note that in this way each point class meets A in exactly one point. Thus 
m = k + 1, hence « = A: — 1 from A(/c — 1) = w(m — 1), and D is a 
biaffine plane of even order k. 

Generalizing another result of [22], we now show that each oval in a 
(projective or) biaffine plane of even order extends to a hyperoval. This 
fact was crucial in the arguments of [15] and [17] concerning ovals related 
to relative difference sets. 

2.3 PROPOSITION. Let A be an oval in a projective or biaffine plane D of 
even order. Then A is contained in a unique hyperoval of D, obtained by 
adding the nucleus of A {i.e., the point of intersection of all tangents of A). 

Proof For projective planes, this is Quist's result [22]. Thus let D be a 
biaffine plane of even order k. Let II be the projective plane belonging to 
D. By Lemma 2.1 (iv), A is a k-arc of IT. Also, by (A2) the point of 
intersection of all point classes of D (considered as lines of II) may be 
added to A to obtain an oval A' of II. By Quist's theorem, A' extends to a 
hyperoval H of II by adjoining its nucleus/?; since the infinite line L^ of 
n (the line deleted with all its points in defining D) has to meet H twice or 
not at all and since A' n L^ = 0, we see that/? £ L^, i.e., p <E D. Thus 
A U {/?} is the desired hyperoval of D. 

As for examples of arcs and ovals in semiplanes, it is easy to construct 
such sets in the symmetric net or biaffine plane case by using suitable 
ovals of the corresponding projective plane; we shall do this in Section 4. 
As we will see in the later sections, the Baer semiplane case is totally 
different, posing considerable difficulties. But first we will describe the 
connection between relative difference sets and ovals. 

3. Relative difference sets and ovals. The following result generalizes 
Lemma 2.1 of [17]; other special cases have been used by Jungnickel [14] 
and [15]. 

3.1 PROPOSITION. Let D be an abelian relative difference set in G for a 
divisible semiplane D = dev D with parameters n, m, k. Then — D + y is 
an oval for each y e G, and the tangent to — D + y at —d~\-yis the line 
D - 2d + y. 

Proof The proof of [17] carries over to the present situation, giving the 
validity of condition (Al). Now assume — d + y, —d' + y e TV + x\ then 
d — d' & N and thus d = d'. Hence each point class meets —D + y at 
most once, proving the validity of condition (A2). 

Proposition 3.1 can be used to obtain some non-existence results for 
abelian relative difference sets; see [3], [7], [14], [15], [17], [18] and [19] for 
such results in cases (i) and (ii). The implications of Proposition 
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3.1 for case (iii), i.e., relative difference sets describing a Baer semiplane, 
are discussed in the present paper. 

We mention three general consequences of Proposition 3.1: 

3.2 COROLLARY. Let D be the divisible semiplane belonging to an abelian 
RDS D. Then the mn ovals —D + y (y e G) form a divisible semiplane 
isomorphic to D. 

3.3 COROLLARY. Let D be the divisible semiplane belonging to an abelian 
RDS D with parameters n, m, k. Then dev(Z), — D) is a point divisible design 
with parameters n, m, k, Xx = 0, A2 = 2 and intersection numbers 0, 1,2. 
Such designs exist in the cases described in Section 1. 

3.4 COROLLARY. — 1 is never a multiplier of an abelian RDS. 

Note that 3.4 generalizes a well-known result of Johnsen: — 1 is never a 
multiplier for a planar abelian difference set. The relative difference sets 
described in Section 1 thus furnish us with a large supply of ovals. More 
examples will be constructed in the following sections. But first let 
us show how one can use Proposition 2.1 to reconstruct from the RDS 
D = {0, 1, 4, 6} c Z14 the projective plane II = PG(2, 4) and the Baer 
subplane II() = PG(2, 2) omitted from II in defining the divisible 
semiplane D with parameters n = 2, m = 1 and k = 4. This is both 
interesting in its own right and also quite instructive when contrasted to 
the results on Baer semiplanes in Section 5. 

3.5 Example. Thus let D = dev{0, 1, 4, 6} mod 14. By Proposition 3.1, 
-D = {0, 8, 10, 13} is an oval with tangents D, D - 12 = {2, 3, 6, 8), 
D - 8 = {6, 7, 10, 12}, and D - 2 = (2, 4, 12, 13}. By Lemma 2.1, -D is 
a 4-arc in the projective plane II = PG(2, 4). Thus we will have 4 further 
tangents corresponding to the point classes of D: these are the lines 
partially given by {0, 7}, {1, 8}, {3, 10}, {6, 13}. Note that the 4 tangents 
A D - 12, D - 8 and {6, 13} are concurrent in 6. So ,4 = {0, 6, 8, 10, 13} 
is a 5-arc in II (though of course not in D), and this extends to a hyperoval 
of II. Hence the remaining 4 tangents D — 2 and {0, 7}, {1, 8}, {3, 10} 
have to be concurrent in IT0, say in a point x0. Applying the elements in 
G = Z14 to the line (2, 4, 12, 13, x0] of II, we obtain the 14 lines of II 
not contained in II0; here x0 + /' = X; (indices modulo 7). Also, we know 
that x0 is on the lines {0, 7}, {1, 8}, and {3, 10}. Again applying G, we 
see that (0, 7} contains the points JC0, x4 and x6. So the 7 lines of II in II0 

are just the images of (0, 7, x0, x4, x6) under Z14. Note that this 
corresponds to the ordinary difference set {x0, x4, x6} mod 7 for PG(2, 2). 
In fact, one may obtain G and D by using the Singer group Z7 for PG(2, 2) 
and extending it by its multiplier group (2); see [13, Proposition 4.9]. 

We shall consider a non-abelian RDS for a Baer semiplane of order 9 in 
Section 8; in particular, we will see that Proposition 3.1 does not hold for 
non-abelian groups. 
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4. Some examples of maximal arcs. In this section, we shall study some 
examples of maximal arcs in symmetric nets and in biaffine planes. The 
reader is referred to [9] for arcs in Desarguesian projective planes. Let us 
first consider the case of symmetric nets. Denote by S(q) the symmetric 
net belonging to PG(2, q). Note that this makes sense, as JPGL(3, q) is 
transitive on non-incident point-line pairs; thus all symmetric nets derived 
from PG(2, q) are isomorphic. We already know that S(q) contains an 
oval, by Proposition 3.1. Now choose any oval H of PG(2, q), and a line L 
with \L n H\ = 2. Using this line L and one of the points in L n H for 
defining S(q), it is easily seen that A = H\L is a (q — l)-arc of S(q). 
Now let q be odd. If A is not maximal in S(q), we may choose a point 
p e S(q) such that A' = A U {/?} is an oval in S(q). By Lemma 2.1, A' is 
also a g-arc of PG(2, q). But A' intersects the oval H of PG(2, q) in q — 1 
points. For q ^ 7, we have g — 1 > (g + 3) /2 ; by a result of [22] (see also 
[21, Theorem 16] ), this implies Af c / / , a contradiction. Thus A is indeed 
a maximal (q — l)-arc of S(q) for all odd values q ^ 7. Now let i? be any 
maximal (g — l)-arc of S(q); then B is a (g — l)-arc of PG(2, g) too. If 
q ^ 123, then 

4 4 

then Z? extends to an oval H of PG(2, q) by a famous result of Segre (see 
[9, Theorem 10.4.4] ). Thus for q ^ 123, the only maximal (q — l)-arcs of 
S(g) are those arising from an oval of PG(2, q), as described above. Thus 
we have: 

4.1 T H E O R E M . S(q) contains a maximal (q — \)-arc A for all odd 
q ~ 7. For q ~ 123, any such arc extends to an oval H of PG(2, q)\ one has 
\H Pi L\ = 2, where L is the line of PG(2, q) used in defining S(q). 

Note that the first part of the result remains true for any projective 
plane of order q containing an oval H; of course, one has to use a line L 
with \H n L\ = 2. Note further that the resulting symmetric net 
will, in general, depend on the choice of L. We also remark that the 
analogous construction for even q only yields ovals in the symmetric 
net. In fact, there is a deeper reason for this: By another result of 
Segre (see [9, Theorem 10.3.3] ), each /z-arc of P<7(2, q) (q even) with 
h > q — y/q + 1 is contained in an oval, and thus in a hyperoval 
of PG(2, q). By Proposition 2.1 (iv), each /z-arc A of S(q) (q even) with 
h > q — \fq + 1 thus is contained in a hyperoval H of PG(2, q). Because 
of Proposition 2.1 (i), the special line L used in defining S(q) has to meet 
H. But then \L n H\ = 2. Since A is an arc of S(q), condition (A2) implies 
that the special point p is one of the two points in L n / / . Hence H\L is 
an oval of 5(2 , q) containing A. Thus we have: 

4.2 T H E O R E M . Let q be even. Then every h-arc of S(q) with h > q — 
yfq 4- 1 is contained in an oval of S(q). 
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Note that the same type of argument does not work for odd q. 
Similarly, we now consider BAG(2, q), i.e., the biaffine plane derived 

from n = PG(2, q). First let q be odd and choose a conic C in IL Choose 
the special line L ^ and the special point oo for defining D = BAG(2, q) 
such that \C n L^ = 2 and O O E C . Then A = CXL^ is a (q — 2)-arc in 
D. If q — 2 > (q 4- 3)/2, A is a maximal arc of Z); this again follows from 
the result of Quist [22], as in the symmetric net case considered previously. 
Thus A is maximal for q ^ 9. Similarly, if we choose L ^ to be a tangent 
of C and again oo G C, we obtain a (g — l)-arc ^4' in BAG(2, q)\ by the 
same argument as before, .4' will be maximal for q ^ 7. Finally, let g 
be even and consider a hyperoval H instead of C. Choose L ^ with 
ILQQ O 7/| = 2 and oo G 7/. This time we will obtain a (g — l)-arc 4̂ in 
BAG(2, q). If q — 2 > (q + 2)/2, 4̂ will be maximal; here one uses the 
same type of argument as before, only quoting [21, (Theorem 20) ] instead 
of Quist. So A is maximal for q ^ 8. Thus we have shown: 

4.3 THEOREM. BAG(2, q) contains a maximal (q — \)-arc whenever 
q = 7; /'/ also contains a maximal (q — 2)-arc if q = 9 w odd. 

Of course, BAG(2, q) also always contains an oval resp. hyperoval (for 
even q)\ this follows from Proposition 3.1 or by a direct argument as 
above, using for L ^ a line which misses C respectively II. By the results of 
Segre already mentioned (see [9, Theorems 10.3.3 and 10.4.4] ), we see that 
the construction given above is the only possible one if q is large enough. 
More specifically: 

4.4 PROPOSITION. If q = S is even or q ^ 123 is odd, then each maximal 
(q — \)-arc of BAG(2, q) is constructed as described above. Ifq = 227 is 
odd, this also holds for maximal (q — 2)-arcs of BAG (2, q). 

Note that Theorem 4.3 remains valid for any projective plane TI 
containing an oval or hyperoval, respectively; of course, for odd orders, 
the biaffine planes derived from II and containing maximal (q — 1)- and 
(q — 2)-arcs, respectively, do not have to be isomorphic. 

We have now seen how to use ovals of PG(2, q) to construct large 
maximal arcs in S(q) and BAG(2, q), respectively. Next, let us consider 
how maximal arcs of PC(2, q) (which are not ovals or hyperovals) may be 
used. Thus let A be a proper maximal arc of PG(2, q), i.e., \A\ = q\ then in 
fact \A\ < q by well-known results of Segre and Talini, see [9, Theorems 
8.6.10 and 8.7.2]. Let D denote either BAG(2, q) or S(q). Even if A is 
contained in the point set of D, A cannot be an arc of D; for otherwise we 
could adjoint the special point/? used in defining D to A to obtain a larger 
arc of PG(2, q) by (A2). But if we choose/? as one of the points of A, and if 
we choose the special line L as a tangent of A in p (for the symmetric net 
case) or as an exterior line of A (for the biaffine case), then ,4\{/?} will 
always be a maximal arc of D. Thus we have 
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4.5 PROPOSITION. Let D = BAG(2, q) or D = S(q) and assume the 
existence of a maximal h-arc of PG(2, q). Then D contains a maximal 
(h — \)-arc. 

We refer the reader to [9] for examples of proper maximal arcs in 
PG(2, q). 

5. Arcs in Baer semi planes: Upper bounds. In the remainder of this 
paper, we shall consider arcs in Baer semiplanes. This turns out to be 
considerably more difficult (and thus more interesting) than the study of 
arcs in symmetric nets or biaffine planes. Whereas we have seen in Section 
4 that in these cases there is a fairly straightforward connection to the arcs 
and ovals of the corresponding projective plane, no comparable result 
exists for Baer semiplanes. In the present section we will show that any 
oval in a projective plane II of order q (q ^ 7) can only contain /z-arcs of 
a corresponding Baer semiplane D with h < q^ — q. In particular, we will 
never obtain an oval of D in this way (unless q = 2); moreover no 
Desarguesian Baer semiplane of order q > 4 contains any oval. In fact, 
for q ¥= 2, no example of an oval in any Baer semiplane is known to the 
author. We begin with a simple but fundamental observation. 

5.1 LEMMA. Let II be a projective plane of order q~ and il() a Baer 
subplane of II. For each oval A of "II, at most q + 1 tangents of A belong 
to IT0. 

Proof Assume that q H- 2 tangents Gh . . . , G'• +2 °f ^ a r e m ^o- First 
let q be even. Then all tangents pass through a common point, the nucleus 
p of A. Hence p is in II0; but no point of II0 is on q + 2 lines of II0, a 
contradiction. Now let q be odd. Then the dual II0 of II0 contains q -f 2 
points (corresponding to the tangents G,, . . . , G + 2 ) n o three of which are 
collinear, since any exterior point of A in II0 is on precisely two tangents 
to A. Thus II0 would contain a (q + 2)-arc, again a contradiction. 

In the Desarguesian case, we will prove a stronger result in Section 7. 

5.2 PROPOSITION. Let II be a projective plane of order q , II0 a Baer 
subplane of IT and D the corresponding Baer semiplane. Let A be an h-arc 
of D with h = q" — q, and assume q = 7. Then there is no oval of II 
containing A. 

Proof. We may assume h = q1 — q. If A is contained in an oval of IT, 
pick such an oval Af. Then A" = A\A is a (q + l)-arc of IT which may be 
(partially) contained in II0. Since A is in I I \ I I 0 , each point x G A is on a 
unique "special" line Gx G IT0. By condition (A2), none of these special 
lines can meet A in more than one point. Thus each special line is either a 
tangent of A' or meets both A and A". By Proposition 5.1, at most q + 1 
special lines can be tangents which leaves at least q~ — 2q — 1 "special 
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secants" meeting both A and A". Clearly each point p of A" can be on at 
most q 4- 1 special secants (since/? e II() if p is on at least two such lines). 
Thus at least q — 2 of the points in A" belong to IT0. But now each point 
in A" n I l 0 is on at least q ~ 3 lines in I l0 joining it to the remaining 
points in A" n II0. Hence each point in A" is on at most 4 special secants. 
But for q ^ 7, we have 4(q + 1) < q~ — 2q — 1, a final contradiction. 

Before applying Proposition 5.2, we consider the remaining cases 
for q: 

5.3 PROPOSITION. With the notation of Proposition 5.2, one has h = 20 
/or g = 5; h = 12 for q = 4; /z ^ 8/<?r q = 3; and h ^ 4 /or q = 2. 

Proof Again, let 4̂ be an /z-arc of D contained in an oval A' of II and 
write A" = yl'Vl. We will once more consider the number c of points in 
IT0 n A". Then each of the remaining q + \ — c points x e / l \ n 0 is on a 
unique "special" line Gx of n o . We now have to use case distinction. First 
let q = 5 and assume c = 1. The unique point/? <^ A" C\ n ( ) then is on at 
most 6 special lines; furthermore, by Proposition 5.1 we may also have 
at most 6 special tangents. These special lines Gx account for at most 12 
points x ^ A. The remaining 13 points of A' have to be on special lines Gx 

which are secants not containing p. So there are in fact at most 5 special 
tangents (since 13 is odd), and at least 7 secants Gx each of which can 
contain at most one point of A, by condition (A2). Hence 

h = \A\ ë 6 + 5 + 7 '= 18. 

Similarly, for c ¥= 1 one obtains the following bounds: 
c h ^ 

6 + 10 = 16 
2 2.5 4- 6 + 4 = 20 
3 3.4 4- 5 + 3 = 20 
4 4 . 3 + 6 + 2 - 2 0 
5 5.2 + 5 + 3 = 18 
6 6.1 + 6 + 4 = 16 

The case q = 3 is handled similarly. Finally, for the cases q = 4 and q = 2 
one considers a hyperoval A' containing A (instead of an oval); then 
tangents cannot occur anymore, and a similar (but simpler) case 
distinction gives the desired results. 

Examples of arcs of D contained in an oval of n will be considered in 
Sections 6 and 7; we will see that the bounds of Proposition 5.3 are 
reasonably good. For the Desarguesian case, the bound of Proposition 5.2 
will be improved in Section 7. First we will apply Propositions 5.2 and 5.3 
to prove the results already mentioned in the introduction to this 
section. 

5.4 THEOREM. Let IV be a projective plane of order q~ ¥- 4, II() a Baer 
subplane and D the corresponding Baer semiplane. Then any oval of D is 
a maximal q -arc of n . 
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This is immediate from 5.2 and 5.3. By well-known results of Segre and 
Tallini (see [9, Theorems 8.6.10 and 8.7.2]), no Desarguesian plane of 
order n contains a maximal «-arc. Thus we have: 

5.5 C O R O L L A R Y . Let D be the Baer semiplane B(q ) of order q derived 
jrom PG(2, q ) . Then D does not contain an oval, unless q = 2. 

As we have seen in Example 3.5, the case q — 2 is indeed an exception 
to Corollary 5.5. With the notation of 5.2 and 5.3, one has \A" n i l 0 | = 1 
in this example, and 3 of the special lines for A are concurrent in the point 
p = A" n I l 0 , whereas the fourth special line is a tangent. As another 
application of 5.4, we combine this result with Proposition 3.1 and 
obtain: 

5.6 P R O P O S I T I O N . Let D be a relative difference set for a Baer semiplane 
D of order q in an abelian group G, and let IT be the corresponding 
projective plane. Then the ovals ~D + y (y e G) of D are maximal 
q -arcs in U unless q = 2. 

5.7 C O R O L L A R Y . The Baer semiplane B(q ) derived from PG(2, q ) 
does not admit a representation by an abelian relative difference set, unless 
q = 2. 

Corollary 5.7 is, of course, well-known; by [8] one even has the stronger 
result that an abelian relative difference set for a Baer semiplane of prime 
power order q2 exists only for q = 2. We close this section by observing 
that Corollary 5.5 may be strengthened if q is sufficiently large: 

5.8 T H E O R E M . Let A be an h-arc of the Baer semiplane B(q~) derived from 
PG(2, q ). If q ¥= 2 is even, one has 

h g q2 - q + 1; 

if q is odd, one has 

h ^ q 2 - q - + 7 - . 
4 4 

Proof. First let q be even. If A has more than q — q 4- 1 points, then A 
is contained in a hyperoval Af of PG(2, q) by a result of Segre (see [9, 
Theorem 10.3.3] ). This contradicts Propositions 5.2 (for q ^ 8) and 5.3 
(for q = 4), respectively. Now let q be odd; if 

h > q2 - - + - , 
^ 4 4 

then A is contained in an oval A' of PG(2, q \ see [9, Theorem 10.4.4]. 
Again, this contradicts Propositions 5.2 and 5.3. 
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6. Arcs in Baer semiplanes: Some general constructions. In this section, 
we will give some constructions of relatively large maximal arcs in Baer 
semiplanes, which of course still fall far short from being ovals. The first 
construction will work for any projective plane of order q admitting an 
abelian Singer group. 

6.1 THEOREM. Let H be a projective plane of order q admitting an 
abelian Singer group G Then II contains a Baer subplane II, for which the 
Baer semiplane D = I I \ I I , contains a maximal (q + q -f 2)/2-arc. 

Proof By the proof of Theorem 4.4 of [17] we may represent II by a 
difference set D in G containing a sub-difference set D0 (in the subgroup H 
of elements of G fixed under the multiplier q ) such that dev D0 is a Baer 
subplane II0 of II. Then the translates Ux of II0 (x e G, IIY = II0 + x) 
form a partition of II into Baer subplanes. By Proposition 3.1, — D is an 
oval of II and — D0 is an oval of II0. We claim that each of the remaining 
q^ — q Baer subplanes Hx(x £ H) contains at most one (and thus exactly 
one) point of —D. For assume —d, — d e IIx\ then —d = h + x, 
-d = h' + x for suitable A, hf e H. Thus d - d = h' - h <= //, so 
d, d e D0 c //, since D0 is a difference set for H. But then x Œ H 
and n v = n 0 . 

Similarly, we show that each IIV (x £ H) contains at most one (and 
then exactly one) tangent of —D. Recall that the tangents of — D are 
the lines D — 2d (d e D), see Proposition 3.1. Assume D — 2d, 
D - 2d e n v . Then, as above, Id - 2d e / / , i.e., 2(d - d) e H. As 
multiplication by 2 is an automorphism for // , we see aJ — d e //, hence 
d,d^H and IIA. - II0. 

Now let II, be one of the Baer subplanes II x (x <£ H). Thus 
S = — JOXTTJ consists of q points of the semiplane D = IIXIIj. Write 
/? = ( - / ) ) fi II , . We claim that the q + 1 lines of II, through/? are se­
cants of —D. In fact, they are the lines D — d — d0, where/? = — d and 
d0 G D0: Clearly, —d e H 4- x, so — d — d0 G H + x for all d0 e D0. 
So each line D — d — d0 is in II, + x\ finally, this line contains both 
p = —d and —d0. Thus — D0 is a (q + l)-arc in D. Now consider the re­
maining q^ — q — 1 points^ e ,S\( —Z>0). Each such y is on a unique 
line Gy e II, . As we have seen, exactly one of these lines is a tangent of 
— A say the line Gz. So — Z) U {z} is a (# + 2)-arc of D. Finally, each 
of the remaining lines Gy is a secant of — D for which both points of 
Gy n (-D) are in S. Then we may select just one point on each 
of these (q — q — 2)/2 lines. This then gives, together with — D0 and z, a 
0/2 + q 4- 2)/2-arc y4 of D. 

Finally, assume that A is not a maximal arc of D. Then there exists a 
point u <£ —D such that A' = A U {u} is an arc. Note that (if (7 is even) u 
is also not the nucleus w of —A since then z and w are on the common 
line Gz G II, . Now A' is also an arc of II, and A' has (q~ + q + 2)/2 
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points in common with the oval —D (resp. the hyperoval —D U {w}, if q 
is even) of II. Since 

q1 + g + 2 ^ g1 + 3 

2 2 ' 

we obtain A' c — D resp. yT c — D U {w}, by the results of [22] and [21] 
already quoted in Section 4. So z G — D oi z = w, a contradiction. 

6.2 COROLLARY. The Baer semiplane B(q ) derived from P<7(2, q ) 
contains a maximal (q^ 4 q 4 2)/2-arc. 

We shall now construct other examples of maximal arcs in B(q^). First, 
we need an auxiliary result. 

6.3 LEMMA. Let {x, y, z} be any triangle in PG(2, q ). Then there are 
precisely q 4 2g 4 1 Baer subplanes containing {x, y, z ) . 

Proof. As is well-known, each quadrangle of PG(2, q ) is in a unique 
Baer subplane. Thus each point u which is not contained in any of the 
lines xy, xz and yz defines a unique Baer subplane LTW. Now there are 
q — 2q^ -f 1 choices for w, but each Hu contains q — 2q + 1 points u' 
with IIM = i l^ . Hence we obtain 

(q4 - 2q2 4- l ) / (^2 - 2q + 1) = q2 + 2(7 4- 1 

distinct Baer subplanes through (x, 7, z}. 

This simple result already is sufficient to construct further families of 
maximal arcs in B(q"), provided q is even. 

6.4 THEOREM. Let q be a power of 2. Then B(q ) contains both maximal 
(q 4 2q)/2-arcs and maximal (q 4 3q — 4)/2-arcs. 

Proof Let H be a hyperoval of PG(2, q ) and choose three points x, y, z 
on // . Each of the remaining q2 — 1 further points u on H defines together 
with x, y, z a unique Baer subplane LTW. By Lemma 6.3, we see that there 
exists a Baer subplane i l 0 of PG(2, q ) for which LT0 n / / = (x, y, z }. Use 
n ( ) in defining the Baer semiplane 

D = n \ n 0 = B(q2). 

The 3(q — 1) lines of II0 containing exactly one of the points x, y, z each 
meet H in a point of D; these 3(q — 1) points form a (3q — 3)-arc A of D. 
As usual, we need the fact that each point of H\II0 is on exactly one line 
in n ( ). The points of H\A in D are then each on a secant in n o which has 
both points of intersection with H in H\(A U (x, y, z} ). We can choose 
just one point on each of these (q — 3q 4 2)/2 lines and add it to A. Thus 
we obtain a (^r 4 3q — 4)/2-arc A' in D. Using Martin's result as in the 
proof of 6.1, we see that Af is maximal. 
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To obtain also maximal (q + 2g)/2-arcs, consider next three points 
x, j \ z such that x,y e H and z £ H. The same type of argument will now 
yield a maximal arc with 

2# + = 
2 2 

elements. 

Note that the case q = 4 yields a maximal 12-arc in 5(16), showing that 
the bound for q = 4 in Proposition 5.3 is best possible. 

Further results on B(q") (in particular for odd q) require more effort; 
this will be the topic of the following section. 

7. Arcs in Baer semiplanes: The Desarguesian case. In this section, we 
will construct further families of maximal arcs in the Baer semiplanes 
B(q~)\ moreover, the bound given in Proposition 5.2 can be improved in 
the Desarguesian case. We begin with an auxiliary result which probably is 
known, though we could not locate any reference for it. 

7.1 PROPOSITION. Let C be a conic in H = PG(1, q1) and let II0 be a Baer 
subplane of II. Then both the number of points of C in II0 and the number 
of tangents of C in II0 is one of {0, 1, 2, 3, 4, q + I}. If II0 contains q + 1 
points of C, then C0 = TL0 O C is a conic of II0. 

Proof Write C0 = C n II0 and assume \C0\ ^ 5. Coordinatize II by 
using 4 points uy v, w, x in C0 as the quadrangle of reference. Now there is 
a unique conic C0 in II0 containing w, v, w, x and a given further point y of 
C0 (see e.g. [9, p. 141] ); let the equation of this conic be f(z) = 0. Thus / 
is a second-degree polynomial over GF(q). But / a l s o defines a conic C in 
II. Since any 5 points in general position determine a unique conic of II, 
we obtain C = C and C0 = C0. Hence \C0\ = q + 1 in this case, and C() is 
a sub-conic of C. 

Now consider the tangents of C which belong to II0. First let q be even, 
and let p be the nucleus of C. If at least two tangents belong to II0, we 
have p e IT0. But then all q + 1 lines of II0 through p are tangents of C. 
Finally, let q be odd. By dualizing, the tangents of C form an oval of Hd 

(whose tangents are the points of C), since any point x <£ C is on either 
none or exactly two tangents in this case. Note that C is again a conic (this 
follows, for instance, from the theorem of Segre [23] ); thus the desired 
conclusion follows from the first part of the proof. 

7.2 THEOREM. Let q be an odd prime power. Then B(q^) contains a 
maximal (((q^ 4- 3q — 4)/2) + e)-arc, where e takes at least one of the 
values 0 and 1. 

Proof Choose a conic C of II = PG(2, q^) and a subplane II0 with 
IQI = Q + 1> where C() = II0 n C. This can be done as in the proof 
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of 6.1, and is also implicit in the proof of 7.1. Choose three points x, y, z 
in C(). By Lemma 6.3, there are exactly q" + 2q Baer subplanes ^ n o con­
taining {x, y, z} . Any point u in n \ I I 0 will determine a unique such 
Baer subplane IIM. Since C\C0 contains only q~ — q points, there are 
at least 3q Baer subplanes IIW with Hw n C = {x, y, z} . Now consider 
the tangent to C in one of x, y, z, say the tangent Tx in x. Choosing any 
point w in !TV\II0, we will obtain a unique Baer subplane Hw containing 
x, y, z and Tx. But any Baer subplane containing x, y, z and a further 
point on Tx contains q points ¥= x of Tx. Thus there are precisely q Baer 
subplanes containing x, y, z and Tx. One of these is n o : if C = — D and 
x = — d0, then Tx = D — 2d0 belongs to Il0 (using the notation of the 
proof of Theorem 6.1). So exactly q — 1 of the 3q subplanes IIM men­
tioned above contain Tx. A similar assertion holds for the tangents Ty 

and Tz in y and z respectively. Thus there are at least 3 Baer subplanes 
IIM with IIM n C = {x, y, z} which contain none of Tx, Ty and Tz. 
Let ITj be such a Baer subplane and define 

D = n 0 \n , = B(q2). 
As usual, each point b G C\C0 is on a unique "special" line Gh G i l j . 

By our choice of I l j , each of x, y and z is on q — 1 of the special 
lines. These special lines induce a (3q — 3)-arc A of D. The remaining 
q^ — 3q + \ points in 

C = C\(C0 U {x,y,z}) 

yield special lines which either meet C a second time or are tangents of C 
belonging to i l j . Since q — 3q 4- 1 is odd, the number of special tangents 
is odd. Since q + 1 is even, Proposition 7.1 implies that the number of 
special tangents has to be 1 or 3. Assume first that there is a unique special 
tangent G... We may then adjoin a and one of the points on each of the 
(q — 3q)/2 special secants to A; this yields a (q" + 3q — 4)/2-arc A' in 
D. Similar arguments as before show that A' is maximal. Finally, if there 
are 3 special tangents, we obtain a (q" + 3q — 2)/2-arc in the same 
way. 

At this point, it is clear that the difficulties in handling the case B(q2)y 

q odd, stem from the presence of tangents in PG(2, q ) (which can be 
ignored using hyperovals in the case of q even). It would thus be nice to 
know the number of tangents of a conic C in PG(2, q") which belong to a 
given Baer subplane IT0. The following conjecture would seem reasonable, 
at least in the Desarguesian case: The number of tangents of C in n 0 

equals the number of points of C in LT0. This was true in the examples 
considered in the proof of Theorem 6.1. However, it is not true in general. 
Consider the case q = 3 of Theorem 7.2. There we found at least 3 Baer 
subplanes LTW with IIM Pi C = {x,y, z} and Tx, Tv, Tz <£ LTW. Here the 6-arc 
A belonging to x, y, z (relative to one of these Baer subplanes chosen) 
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leaves only one point in C which then is on a tangent. So for all three 
choices of IT,, we have lllj n C\ = 3, but only one tangent of C belongs to 
n , . These remarks also show that for q = 3 we get a maximal 7-arc from 
Theorem 7.2 (and not an 8-arc). 

It is our next aim to construct a further class of maximal arcs in B(q~), 
q even, from hyperovals on PG(2, q^) and to show that they have the 
largest possible size for such examples. This requires a further auxiliary 
result similar to Proposition 7.1. 

7.3 PROPOSITION. Let H be a regular hyperoval ofH = PG(2, q~), q even 
(so H consists of a conic C and its nucleus p), and let II0 be a Baer subplane 
of n . Then 

\H n n 0 | e {0, 1, 2, 3, 4, q + 2}; 

if \H D n 0 | = q + 2, //ie/7 H0 = H C) IT0 /s a regular hyperoval of IT(), 
and p is the nucleus of H0. 

Proof Put H0 = H n n o . First assume /? G 7/0 and without loss of 
generality |//0 | â 4. Then C0 = C n IT0 is a conic in I l0 with nucleus/?, by 
the results of [16]. Thus we may now assume that p <£ H0. We have to 
show that \H0\ = \Il n C\ = 4 in this case. Assume the contrary. Then 
| n n C\ = q + 1 and II n C is a conic C() in II(), by Proposition 7.1. But 
then again by [16], C() has nucleus/? and thus/? G 7/(), a contradiction. 

It would be interesting to know if results analogous to 7.1 and 7.3 hold 
in non-Desarguesian planes or for non-regular hyperovals in Desarguesian 
planes. 

7.4 THEOREM. Let q be a power of 2. Then B(q~) contains a maximal 
(q2 + 4q - \0)/2-arc. 

Proof Choose a regular hyperoval / / = C U {/?} in PG(2, qr), and 
select three points x, y, z in C. Each further point u G C defines a unique 
Baer subplane I \ containing x, y, z, u. If ITW contains a fifth point in C, it 
also contains/? by Proposition 7.3. Since the Baer subplane through the 4 
points x, y, z, p is unique, there is at most one such IIv (in fact, there 
is such a IIA by [16] ). So there are choices for u with |IIM n H\ = 4. Let 
II0 be one such Baer subplane and define D = n\IT ( ) = B(q2). The 
4(q — 2) lines in II0 joining one of x,y, z, u to a point in H\YL0 determine 
a 4(q — 2)-arc A of D. The remaining q2 — 4q + 6 points /? in 

tf' = / / \ ( ^ U {JC,^ , z, w } ) 

are each on a unique line G/? G II0, and Gb meets / / ' in a second point. 
Adjoining one of the two points in Gh C\ H' for each of these 
(q~ — 4q 4-6)/2 secants to ^ yields the desired (^^ 4- 4g — 10)/2-arc ^4'. 
The maximality of yT follows from Martin's [21] result in the usual way. 
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Note that we thus obtain a maximal 11-arc in 5(16), whereas Theorem 
6.4 yields a maximal 12-arc. But for q ^ 8, Theorem 7.4 is best 
possible: 

7.5 THEOREM. Let q = 2a with a ^ 3, and let A be an h-arc of B(q~) 
which is contained in a regular hyperoval H of the corresponding plane 
PG(2, q1). Then 

h ^ + A«- 1Q 

2 

with equality if and only if H is constructed as in the proof of 
Theorem 1.4. 

Proof Assume that A is any (q~ + 4q — 10)/2-arc of B(q) contained in 
a hyperoval H of II = PG(2, q2). Let II() be the Baer subplane of II used in 
defining B(q). Each point x G A is on a unique "special" line Gx G II(). 
This yields q" 12 + 2q — 5 special lines by (A2). But each special line Gx 

intersects H a second time; this second point of intersection is always in 
H\A. Any point in H\A which is not in II0 occurs on at most special line, 
and any point in II0 n H on at most q + 2 — c special lines, where 
c = |II0 Pi H\. We claim that H\A contains exactly 4 points in II0. 
Note that 

2 

\H\A\ = ^ - 2q + 7. 

We prove the claim by counting the maximum possible number M of 
special lines, depending on c: 

<• 0 1 2 3 4 

1 1 7 "» 1 

<7~ a" cr q~ q~ 
M — - 2q + 7 — - </ + 7 — + 5 — + </ + 1 — + 2q - 5 

2 2 2 2 2 

Thus indeed M ^ 4. If we have M > 4, we obtain M = g + 2 
by Proposition 7.3; in this case H0 = II H H is a regular hyperoval 
of H(). But then no special line can meet //(), and we obtain at most 
q~/2 — 3q + 5 special lines, a contradiction. We have now seen that A 
is necessarily a maximal arc (so h ^ Ml in general), that |II() n / / | = 4 
and that we obtain enough special lines if and only if each of the four 
points in II() Pi H yields q — 2 special lines and each of the remaining 
q^/2 — 2q + 3 points in H\A yields one special line. But then A is 
constructed from H as described in the proof of Theorem 7.4. 

We leave it to the reader to prove by a similar argument 
(using Proposition 7.1) the following analogue of Theorem 7.5 for odd 
prime powers. Note that any oval is a conic in this case, by Segre's 
theorem [23]. 
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7.6 THEOREM. Let A be an h-arc of B(q^) (q = 5 odd) which is contained 
in a conic of PG(2, q2). Then h ^ (q2 + 5q - 10)/2. 

Theorems 7.5 and 7.6 thus considerably improve Proposition 5.2 for the 
Desarguesian case. Whereas we have seen in Theorem 7.4 that the bound 
of 7.5 is best possible, we have not been able to show this for odd values of 
q. All we can show here (apart from the more precise results in 6.2 and 7.2) 
is the following: 

7.7 THEOREM. B(q") (q odd) contains a (q 4- 4q — \5)/2-arc A which 
extends to a conic C of PG(2, q"). 

Proof. Select three points x, y, z of a conic C in IT = PG(2, q"). Each 
further point u of C determines a unique Baer subplane IIZ/ containing 
{A\ y, z, u). By Proposition 7.1, we have |IIM n C\ e (4, q 4- 1} for 
each u. If one always had |IIM Pi C\ = q 4- 1, one would obtain a par­
tition of the q — 2 points in C\{x, y, z} into (q — 2)-sets which is 
impossible. Thus we may choose a subplane n ( ) with |II0 n C\ = 4, say 
n ( ) n C = {x, y, z, u}. Each of the 4 points in II0 n C is on at least 
q — 3 lines of n o intersecting C \ I I 0 (of the q + 1 lines through x, say, 
in n 0 , one may be a tangent, and three join x to j>, z, u). This yields a 
4(̂ r — 3)-arc A'. Each of the remaining q — Aq -f 8 points in C \ n o is on 
a unique special line in n o . Since q~ — Aq + 3 is odd, at least one special 
line is a tangent or a further line meeting n o n C; in either case, we may 
augment ^ ' to a (4q — 1 l)-arc v4/r. Finally, we can adjoint to A" at least 
further (q — Aq 4- 7)/2 points, even if all other special lines are secants. 
This yields the desired arc A, which of course is not necessarily maximal in 
this case. 

We conclude this section with a table giving examples of maximal arcs 
for a few small values of q and collecting the general results proved in 
Section 5 to 7: 

q maximal /z-arcs A in B(q") for h = 

2 4 
3 7 
4 11; 12 

5 16; IX or 19 

7 29; 33 or 34 

8 37; 40; 42; 43 

9 46; 52 or 53 

11 67; 75 or 76 
13 92; 102 or 103 
16 137; 144; 150; 155 
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q even q2 + q + 2 q1 + 2q q2 + 3q — 4 q2 + 4q — 10 

general upper bound: h ^ q — g + 1 for q ¥^ 2 

7 q2 + 4<z - 10 
if /I is contained in hyperoval of PG(2, q~)\ h = 

4 
</ odd q2 + q + 2 q2 + 3q — 4 q1 + 3q — 2 

. or • 
2 2 2 

some h with (<y2 + 4q - 15)/2 ^ h ^ (q2 + ^ - 10)/2 

general upper bound: /Î ^ min î <jT — \, q~ — — + - / 
v 4 2 J 

7 6/2 + 5? - 10 
if /4 is contained in conic of PG{2, q~)\ h = 

8. Arcs in Baer semi planes: The Hughes plane of order 9. We have seen 
that large arcs in B(q ) cannot arise from conies and regular hyperovals in 
PG(29 q~). Indeed, B(q ) does not contain any oval. So one has to consider 
non-Desarguesian planes if one wants to construct a Baer semiplane 
containing an oval. Clearly, this will in general require methods which are 
quite different from the ones used in this paper. It seems reasonable to 
consider at least one small example, though. We will therefore study one 
of the three known non-Desarguesian planes of order 9 in this section. We 
have selected the Hughes plane for three reasons: 

(i) It admits a representation which is particularly convenient for 
computations related to our problem. 

(ii) In [5] and [21], several arcs (including maximal 9-arcs) are listed 
explicitly. 

(iii) The Hughes plane also admits S3 X Z13 as a quasiregular 
collineation group which is interesting in connection with the problem 
whether Proposition 3.1 holds for non-abelian relative difference sets. (It 
does not, as we shall see.) 

We shall work with the description of the Hughes plane n of order 9 
used by Hughes [11] and Martin [21]. The point set of II is 

{X-.X = A, B, C, D, E, F, G; i e= Z13} 

and the lines are obtained from the action of Z13 on the following 7 base 
lines: 

L\ = {^0' A]9 A3, A9, B0, C(), Z)0, E0, F0, G()}; 

L2 = {A0, B]9 i?8, D3, Z)n , E2, E5, E6, G7, G9); 

L3 = {^0> C\> Q > #7» E9> F3> F\\-> G2* G5> ^ 6 } ; 

L4 = {A0, B7, B9, Dx, D8, F2, F5, F6, G3, G n } ; 
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L5 = {A0, B2, B5, Bb, C3, C n , £",, £8 , F7, F9}; 

L6 = Mo. c v C9< D2, D5, D6, £3 , £ , , , F„ Fx}; 

L7 = {^0, fl3, 5 „ , C2, C5, Q , I>7, A,, G„ G8}. 

More precisely, the lines of II are the 91 sets Lt + k, where Lf H- /c is 
obtained from L, by adding /c to all subscripts (/' = 1, . . . , 7, /c G Z13). As 
{0, 1, 3, 9} c Z13 is a difference set for PG(2, 3), it is clear that the points 
y40, ...,AU together with the lines Lx + k (k <^ Z13) form a Baer 
subplane IT0 of II. The corresponding Baer semiplane D then has as its 
lines the orbits of Z13 on the base lines L\ = L^AQ} (/ = 2, . . . , 7). Note 
that a subset S of D is an arc if and only if 

(i) \S O (L; + k) I â 2 for all / = 2 , . . . , 7 and all x G Z13; and 
(ii) S contains no two points with the same subscript. 
Thus condition (A2) is particularly easy to check in this representation 

of D. It is then immediately seen that none of the arcs of Martin [21] is an 
arc in D, even after removing the points in II0. In fact, none of his arcs 
contains an /z-arc of D with h > 5. It was no problem, however, to find 
a 7-arc in D: for instance, S = {B3, Z?10, C2, Du, E6, F4, G0} is a maximal 
7-arc of D which extends to a maximal 8-arc of II by adjoining the point 
F0 (note that F0GQ is the line Lx G II0). 

We now turn our attention to the RDS-representation of D. The Hughes 
plane II admits S3 X Z13 as a quasiregular collineation group, and thus 
there exists an RDS with parameters m = 13, n = 6 and k = 9 in this 
group. The following example is equivalent to one due to Carol Whitehead 
(see [8, p. 153]): 

D = { (id, 2), (id, 5), (id, 6), (r, 1), (r, 8), (or, 7), (ar, 9), 

(TQ, 3), (TO, 11) } 

where the elements of S3 are o = (0, 1, 2), a2 = (0, 2, 1), T - (1, 2), 
TO = (0, 1), OT = (0, 2) and id. To see the asserted equivalence, one essen­
tially has to multiply the example of [8] by 4, followed by a shift of -hi; 
then only notational differences remain. We have chosen this transforma­
tion, because it allows us to show the connection between the 
RDS-representation and the one given before. In fact, write the 
coordinates in Z13 as subscripts and identify the elements of S3 with B, C, 
D, E, F, G as follows: 

B = T, C = a", D = ra, E = id, F = a, G = OT; 

then L'2 = D, L'3 = DOT, L\ - Do, U5 = DT, L'6 = DTO and L'7 = Do2. 
Thus we have D = dev D. Now the set — D of inverses of elements in 
D is 

-D = { (id, 7), (id, 8), (id, 11), (T, 5), (r, 12), (OT, 4), (CJT, 6), 

(TO, 2), (TCJ, 10) } 

https://doi.org/10.4153/CJM-1987-051-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-051-1


RELATIVE DIFFERENCE SETS 1021 

or, in the old notation 

-D = {£7, 2s8, £ , , , #5, 51 2 , G4, G6, Z)2> #io}-

It is easily checked that the only lines of D intersecting — D more than 
twice are L2 + 4 (containing i?5, i?,2 and D2)> L2 — 3 (containing £5, G4 

and G6) and L2 — 1 (containing D2, D]0 and G6). Thus — D is not an oval 
of D (so Proposition 3.1 does not hold in the non-abelian case). The 
largest arcs of D contained in — D are 7-arcs. For instance, the subset 

S' = iE7> E8> EU> G4> D\Q> B\2> Gô) 

is a maximal 7-arc in D which is also maximal as an arc of n . We have not 
found any larger arc in D, but no exhaustive search has been done yet. 

Relying on computer results of Denniston [5], we can however give a 
partial answer. Note that the Baer subplane IT() is the real subplane of II, 
i.e., the unique Baer subplane fixed by all collineations (cf. [4] ). In [5], it 
has been shown that there are (up to equivalence under collineations of II) 
exactly 3 maximal 9-arcs in II. Denniston's notation is different from the 
one used here; but it is easily checked that these arcs of II contain no arc 
of D of size > 6 . As we have seen, we can obtain larger arcs of D by using 
complete 7- or 8-arcs of II. Thus we note: 

8.1 PROPOSITION. Let IT be the Hughes plane of order 9, and let II0 be the 
real Baer subplane of n . Then D = I I \ I I 0 contains maximal 1-arcs, but 
does not contain 9-arcs {i.e., D does not contain an oval). 

Note that this leaves the question of possible 8-arcs of D. Also, there are 
3 other classes of Baer subplanes in the Hughes plane of order 9 (see [4] ); 
their corresponding Baer semiplanes might conceivably contain ovals. 

9. Arcs in Baer semiplanes: Concluding remarks. As we have seen, the 
existence of large arcs in Baer semiplanes is a rather difficult problem. We 
have been able to show that B(q ) never contains an oval. On the other 
hand, any Baer semiplane belonging to an RDS would have to contain an 
oval (many ovals, in fact), and these ovals would not extend in the 
corresponding projective plane (unless q = 4). So it would seem 
interesting to investigate arcs in non-Desarguesian Baer semiplanes. We 
offer the following conjecture: 

9.1 CONJECTURE. The only Baer semiplane containing an oval is B(4). 

By the results of Section 5, the validity of 9.1 would imply the validity of 
the following: 

9.2 CONJECTURE. If there exists an abelian RDS for a Baer semiplane of 
order q~, then q = 2. 

This would then strengthen the results of Ganley and Spence [8] who 
have proved that q is never a prime power (unless q = 2) and that each 
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prime divisor of q is =1 mod 4. Both conjectures seem rather difficult. 
Still, the study of arcs in Baer semiplanes offers a new way of attacking 
Conjecture 9.2. It is also an interesting geometric problem in its own right, 
leading to questions about the interaction of Baer subplanes and arcs, as 
we have seen. In particular, the study of large arcs in non-Desarguesian 
Baer semiplanes (and the construction of examples) seems a nice problem, 
even if Conjecture 9.1 can be proved. 

We will close this paper by determining a few more properties of a 
putative Baer semiplane D = dev D of odd order q belonging to an 
abelian relative difference set. 

9.3 LEMMA. Let D be an abelian RDS in G for a Baer semiplane D of odd 
order q^. Then 2d — 2d' £ N for all d, d G D with d ¥= d'. Hence any two 
tangents of —D intersect in D. 

Proof. Note first that 2d ¥* 2d for d ^ d\ since otherwise d — d = 
d — d. Also, N contains all involutions of G, since otherwise, with 
g = d — d, one would have a second difference representation g = 
-g = d - d. Now let d ¥* d and assume 2d - 2d G N. Write 
x = d - d; so x £ N, 2x G N. Let G = S © Gj, where S is the Sylow 
2-subgroup of G. Since 

\G\ = (q2 + q + 1) |tf|, 

we have S ^ TV; so we also have N = S (B Nh for some A^ < Gj. Now 
let x = s H- g with ^ G G, and s e £. Then 2x = 2s + 2g G Ar, and 
hence 2g G iV,. Since N] has odd order, this implies g G TVJ and thus 
x = s - h g G i V , a contradiction. Hence 2d — 2d £ N whenever d ¥= d. 
By Proposition 3.1, the tangents of — D are the lines D — 2J (d G D). If 
two such lines (say D — 2d and D — 2dr) do not intersect in D, they 
belong to the same parallel class of D; but then 2d — 2d G TV, 
contradicting the first part of the lemma. 

9.4 PROPOSITION. Let A be an oval in a Baer semiplane D = IT\n ( ) of odd 
order q~, and assume that any two tangents of A intersect in D. Then the 
points of n o which are on no tangent of A form an oval H in n o , and 
the point classes of D not meeting A are the tangents of H. Moreover, each 
point in such a point class is on a unique tangent of A. 

Proof. In II, the g"-arc A has 2q tangents: Each point/? G A is on the 
unique tangent of A in D (denoted by T ), and also on a unique tangent in 
Il0 (corresponding to the point class of/? and denoted by Bp). Since q is 
odd, each point of II is on an odd number of tangents of A. We now 
consider points x G n o and count all flags (x, G), where G is a tangent of 
A. Since each T contains a unique point x G n ( ) and each B contains 
q -h 1 points in II(), we obtain q (q 4- 2) such flags. Denote by tx the 
number of tangents through x\ so 
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2 tx = q\q -h 2). 

Since each * is on at most one Tx, we have /v ^ q + 2 for all JC; since fY and 
g are both odd, tx ^ q + 2 implies /Y ^ g. 

Denote by ^ the number of points x <= II0 with tx = q 4- 2. Then 

42(<7 + 2) ^ 7(<7 + 2) + (<T + 4 4- 1 - ><)? 

and thus y ^ (g^ — q)/2. Thus at most (g" -h 3q + 2)/2 points x satisfy 
/Y ^ g. But there are q -f 1 lines G,, . . . , G + 1 of II0 which do not 
intersect A. These lines cover at least 

(? + 1) + ? + (<? - 1) + . . . + 1 = 

points x' of n ( ); one has equality if and only if each point of II() is on 
at most two of the lines Gt. Each point x' is on at most q tangents of A in 
n o and thus satisfies tx, = q. By the previous argument, we have to 
have equality in both inequalities. Thus y = (q^ — q)/2 points x satisfy 
tx = q + 2, and the remaining points xf satisfies tx, = q. 

Since each x' with tx> = q is on exactly one or two of the Gh we see that 
the Gi form a dual oval in n(); they are, in fact, the tangents of an oval H 
formed by the q + 1 points xf which are on exactly one of the Gf. Thus 
each point of H is on q Baer tangents B of A\ so the points of H are 
the points in i l 0 that are on none of the tangents T (Note that the re­
maining points x' with tx, = q are the exterior points of //, whereas the 
points x with tx = q + 2 are the interior points of H.) 

Finally, consider a point z of D on one of the Gf (i.e., a point in a 
point class that does not meet A). Since L is odd, /_ = 1. Since Gt is not a 
tangent of A, each z is on at least one of the tangents T Also, each point 
x' e Gi n n ( ) (excepting G, Pi H) is an exterior point of //; thus x is on 
exactly q — 1 Baer tangents and on one of the tangents T This already 
yields (q~ — q) + q tangents T (at least one for each of the q~ — q choices 
for z and for each of the q choices for xr), proving the last assertion. 

Results 9.3 and 9.4 together give further restrictions on the arcs 
belonging to a putative abelian RDS of Baer type (in the case of odd 
order) and thus provide some more evidence for the validity of Conjecture 
9.2. In particular, IT0 would have to contain an oval. On the other hand, 
these results give some indication of what type of construction could be 
useful if one searches for counter-examples to Conjecture 9.1. 
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