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1. Introduction

For z in D and £ in 3D, we denote by p2(Q the Poisson kernel ( l - |z | 2 ) | l— z£|~2 for
the open unit disc D. We ask for what countable sets {an:ne^J} of points of D there
exist complex numbers Xn with

0 < £ |An|<oo and £ !„?„„ = 0,
n = l n = l

by which we mean that the series converges to zero in the norm of Ll(3D).
For each a in D, we have ||pa||i = 1- Therefore, given A = {ln} in I1, the series

Z"=i ^nPan converges in the norm of L^BD) to an element of Ly{3D), which we denote
by 77. Plainly, ||77||i = IWIi=Z"=i W> a n d so T is a bounded linear mapping of/1 into
L\3D). In this notation, we are asking for what {an} the kernel of T is non-zero.

It is known [1] that Tl1=Li(dD) if and only if the sequence {an} is non-tangentially
dense for 3D, that is almost every point C of 3D is the limit of some subsequence of {an}
that converges to £ non-tangentially. As pointed out in [1], it follows at once that
ker 7V{0} if {an} is non-tangentially dense for 3D.

We show (Theorem 2) that if l i m ^ ^ \an\ = 1, then kerT#{0} if and only if {an} is
non-tangentially dense for 3D. After drawing a few corollaries, we obtain partial results
for the more complicated case in which {an} is allowed to have limit points in D. Our
proofs make substantial use of ideas from Brown, Shields and Zeller [2].

In Section 3, we are concerned with sums of Poisson kernels with positive coefficients.
We say that a subset A of D is a positive Poisson basic set (P.P.B. set) if, for every
positive continuous function / on 3D, there exist sequences {An} and {an} with Xn

positive and an in A, such that

/(C)= I KPaSQ
n = l
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432 F. F. BONSALL AND D. WALSH

for all £ in dD. We are indebted to W. R. Rudin for asking one of us (in effect) what
subsets A of D are P.P.B. sets.

Our work on Rudin's problem has benefitted greatly from frequent discussion with
W.K. Hayman. We are also indebted to him and to T. J. Lyons for access to their
forthcoming paper [5] in which they obtain a remarkable solution to the problem. This
solution can be stated as follows.

Let zmn = rnexp(i[pmn) with r n = l - 2 ~ " , ^mn = 2nm2'n, and let E denote the set of
pairs (w, n) such that there exists a point a of A with rn^|a |^rn + 1 and i/̂ m „ ̂  arg (a) ^

Theorem (Hayman and Lyons, [5]). A is a positive Poisson basic set if and only if

(m,n)eE

for all £ in 3D.

It follows at once from this theorem that A is a P.P.B. set if every point of 3D is a
non-tangential limit of points of A.

In the present paper, we give an independent approach to the problem, based on
duality. Let h1 denote the space of differences of positive harmonic functions on D. With
0<(5<l, let K(a,S) = {zeD:d{z,a) ^3}, where d( , ) is the pseudo-hyperbolic distance
function on D, that is d(z,a) = \z-a\ \l-az\~\ and let A(3)= [j {K(a,3):aeA}.

We prove (Theorem 10) that A is a P.P.B. set if and only if

sup/i(z) = sup/i(z)
zeD zeA

for every function h in hl; and also prove that A is a P.P.B. set if and only if A{3) is a
P.P.B. set for some 3 with 0<<5< 1. As a corollary, we show that A is a P.P.B. set if it is
uniformly non-tangential for 3D.

Since the proofs of these results are quite transparent, it would be very interesting if
they could be extended to yield the Hayman-Lyons theorem [5].

In Theorem 15, we give an approximation theorem for continuous functions, in which
the coefficients of the Poisson kernels are determined.

2. Vanishing /'-sums

For / in Ll(3D) and z in D,f(z) will denote the Poisson integral of/ at z; and [ , ]
will denote the bilinear form

[/,#]= (2*)-1 7f(eie)g(eie)dd
o

on L\3D) x L°°(3£>) and also the bilinear form
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on I1 x/°°. Throughout this section {an} = {an:neM} is a countable subset of D.
The key to the characterization of those countable sets {an} for which kerT#{0} is

the following elementary lemma.

Lemma 1. Let {XJel1. If J£., knPan = 0, then if.^JLl-aj)-1 = 0 for all z in D.
For real sequences {?.„} the reverse implication holds.

Proof. We write uz(Q=(l-zQ~1 for z in D and £ in 3D. If 77 = 0, then, since
u.eL°°(dD), we have

0 = [ T 7 , u J = £ An[pan,uz]= £ Xnuz{an),
n = l n = 1

and so Xn°°=i An(l -anz)~x = 0 for all z in D.
Suppose on the other hand that {An} is a real sequence. Since po(() =

1 +Zn°°=i ((flO"+(<£)") for C in 3D, we have

for all z in D. If £ " = 1 ln(l— aj)~l = § for all z in D, then we also have, for all z in £),
£ r = 1 A n ( l - a n z ) - 1 = 0 and £ » = 1 ^ l - a ^ - ^ O . Then X,"-, A.pJz) = 0 for all z in D,
and it follows that £n°°= t Anpan = 0.

Theorem 2. Let limn..,,, |an| = l. ^ e " kerT#{0} if and only if {an} is non-tangentially
dense for dD.

Proof. Suppose that A = {An}e/1\{0} and that Tk = £"= x A ^ ^ 0 . By Lemma 1, we
have, for all z in D,

Geometric series expansion and change of order of summation gives

£ Xna
k
n = 0 (k = 0,1,2,...), (1)

and therefore
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n = l

for all z in C. It now follows at once from Brown, Shields and Zeller [2, Theorem 3]
that {«„} is non-tangentially dense for 3D. Alternatively, we can complete the proof by
using Theorem 7 below.

Corollary 3. Let l i m ^ ^ \an\ = 1. Then Tll = Ll(dD) if and only j /ker T # {0}.

Proof. Theorem 2 and [1].

Corollary 4. Let limB_0O|an| = l. Then Tl1 is closed in Lx(dD) if and only if either
Tl1=L1(dD) or T*L">(dD) = lco. The second alternative occurs if and only if {an} is an
interpolating sequence for Hx.

Proof. Let Tl1 be closed in, but not equal to, Ll(dD). By Banach's closed range
theorem [3, p. 488], T*U°{dD) is closed in Z°° and is the annihilator of ker T in /°°. Since
ke rT = {()}, we therefore have T*Lx(dD) = l°°. Conversely, if T*Lx(dD) = lco, then, again
by Banach s closed range theorem, Tl1 is closed in L^dD).

We note next that, for g in L°°(dD), we have

T*g={g(an)}. (2)

For, with A = {An} in I1, and g in L°°(<3D), we have

£ Xn[pan,gl= £
B = l

Thus T*La>{3D) = la> if and only if every bounded sequence is of the form {h(an)} with h
a bounded harmonic function on D; and, by Garnett [4], this holds if and only if {aB} is
an interpolating sequence for H™.

Corollary 5. Let limll_00|aII| = l. The set of sequences {g(aj} with g in L°°(d£>) is
closed in / " if and only if either {an} is an interpolating sequence for Hx or {an} is
non-tangentially dense for 3D.

Proof. By (2), the set of sequences {g(aj} with g in LX(3D) is T*L°°(dD). By
Banach's closed range theorem, this is closed in Z"° if and only if Tl1 is closed in Ll(3D).
Thus Corollary 4 applies.

Corollary 6. Let {an} be an interpolating sequence. Then each element f of the closed
linear span of {pan:neN} in Li(dD) is of the form
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/ = t *J>», (3)

mthY?-i\*J{«*>, and

n = l

where Bn is the Blaschke product with its zeros at the points ak with

Proof. Let X be the closed linear span of {pan:neN}. Since 771 is closed in Ll(dD),
we have Tll =X. Thus each / i n X is of the form (3), and we have

Notation. With C in 3D, b > 0, 0 < a < n/2, we define

and

We define the /Inn boundary of an open subset G of D to be the set of £ in 5D such that,
for every a with O<OL<K/2, there exists b>0 with D(C,b,cc)<=G.

We note that the firm boundary F of an open subset G of D is a Borel subset of 3D.
For, let F(b,a) = {i;edD:D(t;,b,x)cG} and F{<x) = \J{F{b,<x):b>0}, so that
F = P){F(a):O<<x<7t/2}. The set F(b,ix) is closed, for if zeD(C,b,a), then zeD(CM)
for all f' sufficiently near C- Since F(6, a) is a decreasing function of each of its variables,
F(a) and F are of the forms \J {F(bn,ot):neN} and f) {F(an):neN} respectively.

The idea of the following theorem derives from Lemma 4 in Brown, Shields and
Zeller [2], which serves a somewhat similar purpose.

Theorem 7. (i) If there exists an open subset G of D\{an} such that the firm boundary
ofG has positive Lebesgue measure, then {an} is not non-tangentially dense for 3D.

(ii) Let {an} be not non-tangentially dense for 3D, but let there exist k in /'\{0} such
that X " = i ^ i 1 - a n z ) ~ 1 = 0 / o r a " z '" D- Then there exists an open subset G of D\{an}
such that £"=, AII(r-an)"1=0 for all z in G and the firm boundary of G has positive
Lebesgue measure.

Proof, (i) Let G be an open subset of D\{an} such that the firm boundary F of G has
positive Lebesgue measure. If {an} is non-tangentially dense for dD, there exist C in F
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and a subsequence {ank} that converges non-tangentially to (. Thus there exists a with
0<a<rt/2 and D(t,b,a) n {am:keN} non-void for every b>0. But, since (eF, there
exists b>0 with D(t,b,ot)c:G<=D\{an}.

(ii) By [1] or [2], there exists g in H°° with

sup{|f(a,I)|:«elVI}<l<||f||co. (4)

Let G = {zeD:\g(z)\>\}. Then G is an open subset of D\{an}. Since ||g||00>l, £ =
{CedD:\g(Q\> 1} has positive Lebesgue measure, and, for almost all ( in E, g(z)-*g(Q as
z-+£ non-tangentially. Thus for such £ and a in (Q,n/2), there exists b>0 such that
|g(z)|> 1 for all z in D(£,b,<x), that is D(£,b,a)<=G. This shows that the firm boundary of
G has positive Lebesgue measure, and so the theorem is proved unless there is a point a
in G with

j i = £ -Ua- f l J -^O. (5)

By (1), we have

£ ABai(l-allz)-*=0 (/,* = 0,l,2,...;zeD). (6)
n = l

F o r | z | < l / 4 , w e h a v e C[<=z| —I— |< r̂a|) |-zr|C 1 — I*31™! 1̂ 1) * < 2 A a n d s o

(5) and (6) now give

z*
n = l

n = l

Assuming (5), we can define nn = n i?.Jia—aJ '; and, since a is at positive distance from
the complement of G, we have £"= j |/xn| < oo. We have proved that

n = l
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when \z\ < 1/4. and therefore for all z in D. It follows that

and therefore

o

P(a)=
n = l

for all polynomials p. By dominated convergence, it follows that for all h in

n = l

and hence

By taking /i=g™ with m sufficiently large, we have contradicted (4).

Remarks. If £™=, Xnpan = 0, then Lemma 1 allows us to apply Theorem 7(ii).

If Iim,7_(00|an| = l, then D\{an] is a connected open set. Thus if £™= t AB(z-an)"*
vanishes on a non-void open subset of D\{an}, it vanishes on all of D\{an}. Since each
an is at positive distance from {ak:k¥=n}, it follows that An = 0 for all n. Thus Theorem
7(ii) shows that, if lim,,_00|a,1|= 1 and k e r T # 0 , then {an} is non-tangentially dense for
3D, completing the proof of Theorem 2, where we quoted [2].

Corollary 8. Let Q be the set of limit points in D of the set A = {an:neN}, let QnA
be void o*r finite, and let D\il be connected. Then ker T # {0} if and only if A is non-
tangentially dense for dD.

Proof. Let k belong to ll\{0} with £ J L , ; j l - < v ) ~ l = 0 for all z in D, and suppose
that A is not non-tangentially dense for 3D. By Theorem 7(ii), there exists a non-void
open set G in D\A with £f= j A^z - a j " ' = 0 for all z in G. Let F be the closure of A.
Then D\F is connected and GczD\F. Thus £n°°=, An(z - an) ~

l = 0 for all z in D\F. If
a n ^n , then sufficiently small neighbourhoods of an contain no other ak, but contain
points of D\F, and so An = 0. Thus there exists a positive integer N such that An = 0 when
n > N . Therefore ^ = 1 AB(z - an) ~

J = 0 for all z in D\F. But this is impossible, since the
points an are distinct.
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Corollary 9. Let at most countably many limit points of the sequence {an} be in D and,
for some k in ll\{Q), let

£ An(l-anz)-1=0(zeD).

Then {an} is non-tangentially dense for 3D.

Proof. Let A = {an:neN}, and suppose that A is not non-tangentially dense for 3D.
Then, by Theorem 7(ii), there exists a non-void open set G in D\A with
X"=i^n(z-afi)~1=0 f o r a11 z i n G- L e t F b e the closure of A and let E = FnD. By
hypothesis, £ is a countable relatively closed subset of D. Therefore D\E is connected,
for each pair of distinct points of D\E are joined by uncountably many circular arcs in
D and each point of E is on only one of these arcs. Since G<=D\E, it follows that
Z"= i ̂ n(z ~ an) ' = 0 for all z in D\E. If an is an isolated point of A, then kn = 0.
Therefore we may assume that, for every n, an is a limit point of A.

Since F = £ u ( 3 D n F ) , F is a countable union of closed sets, namely 3Dr>F and the
one-point subsets of E. Since also F is a perfect set, these closed subsets of F are
nowhere dense in F, contradicting Baire's category theorem. This contradiction shows
that {an} is non-tangentially dense for 3D.

Remark. The following example shows that Corollary 8 can fail if D\Q is not
connected. Let {2an} be a countable subset of D that is non-tangentially dense for dD.
For a, z in D, we have

pa(z) = (l-\a\2\z\2)\l-dz\-2,

and therefore, for £ in 3D,

Since {2an} is non-tangentially dense for dD, there exists X in /^{O} with £"= 1 Anp2a

Therefore, for all £ in 3D,

n= I n=1

Thus YJ™= I KPan = 0, but obviously {an} is not non-tangentially dense for 3D.

3. Sums with positive coefficients

Notation. We denote by h1 the set of real harmonic functions f on D such that
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sup 2j\f{reie)\dd<ao,
0>r>1 0

or, equivalently, the set of differences of positive harmonic functions on D. As is well
known, hl is the set of harmonic functions fi,

for real Borel measures /i on [0,2n\.
The pseudo-hyperbolic distance function on D is denoted by d( , ), that is

d(a,b) = \a-b\\l-db\~1. With a in D and 0<c5<l, K{a,5) denotes the closed ball
{zeD:d(z,a)^8}, and, given a subset A of D,

A(d) = {J{K(a,d):aeA}.

We recall, from the introduction, that a subset A of D is a P.P.B. set if every positive
continuous function / on 3D is of the form

f(O=t toJiQiC
n = l

with Xn positive and an in A for every n.
Our main result is the following theorem.

Theorem 10. The following statements are equivalent to each other.

(i) A is a P.P.B. set.

(ii) For all h in h1, supzeD/j(z) = supZ£i4^(z).

(iii) For all h in hl and some 5 in (0,1), supzeDh(z) = supzeA{g)h(z).
(iv) For some 5 in (0,1), A(S) is a P.P.B. set.

The proof depends on the following three elementary lemmas, of which the second
and third are probably well known.

Lemma 11. Let X be a compact Hausdorff space, F a set of non-negative continuous
functions on X, 0 ^ K < 1. If, for every positive continuous function f on X and e>0, there
exists v in F with

then every such function f is of the form
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/(*)=£ vn(x)(xsX),
n = l

with v1,v2,... in F.

Proof. Let / be a positive continuous function on X. Take fx=f, and, having
chosen the positive continuous function /„, take vn in F with

0< fJLx) - vJLx) < K2" + K H / J U (X eX),

and take fn+l=fn-un. We have /B+i = / - £ * = 1 «*> and

Lemma 12. Let a,beP with d(a,b) = S<l, and let h be a positive harmonic function
on D. Then

(i) h(a)^
(ii) \h(a)-h(b)\^2S(l-d)-lh(b).

Proof. This is an easy consequence of Harnack's inequality and the invariance of the
distance function d( , ). Let T be a Mobius transformation of D onto D with z(0) = a,
and let c = t~1{b). Then

Take g(z) = h(x(z)). By Harnack's inequality,

(1 - <5)( 1 + ,5)" ^(0) ^g(c) ^ (1 + <5)( 1 - <5) - '

that is
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The first of these inequalities gives (i) and

h{a)-h(b) ^26(1-dylh{b),

while the second gives

Given a subset A of D and 0<<5<l, define A{8,n) by A(8,0) = A and A(8,n + l) =

Lemma 13. Let 0<8<A<l. Then there exists a positive integer m such that, for
every subset A of D,

A(A)<=A{8,m).

Proof. Define T on [0,1] by Tx = (x + <5)(1 + ̂ x)"1. For all x in [0,1), we have

x<Tx<l,d(x,Tx) = 8.

Take Ao = 0, An=TAn_j. Then {An} is an increasing sequence in [0,1) with limit t, say.
Continuity of T gives Tt = t, and so t = l. Take m to be the least positive integer with

Let b belong to A(A)\A, so that there exists a in A with 0<d(a,b)^A. Let T be the
Mobius transformation of D onto D with r(a)=0 and i(b)>0. Then
•c(b) = d(0,z(b)) = d{a,b)^A. Choose n<Lm with An_!<T(i)^An. Then we have
d(Ak_i,Ak) = d, d(AK-ut{b))£6. Let zk = T~\AJ (0^k<n). Then zo = a, d(zk.l,zk) = 8
(1 gfcgw-1), and d(zn.ub)^5. Thus

Proof of Theorem 10. (i)=>(ii). Let h belong to h1 and M = sup26/1/i(z). If M = + oo,
then supzeDh(z)= +oo. Assume that M < + o o and take g = h — M. Let ^ be the real
Borel measure on [0,2TI] with fi=g, and let WED. By (i), there exist positive kk and ak in
/4 with

k=l

Therefore

gM= I 4

(ii)=>(i). Let K be the uniform closure in CK(dD) of the set of finite sums with
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non-negative coefficients of the functions pa with a in A. By Lemma 11, with K = 0 , it
suffices to prove that K = C£(dD), the set of non-negative continuous functions on 3D.
Let geCR(dD)\K. By the Hahn-Banach theorem, using the subadditive positive-
homogeneous functional p on CR(dD) defined by

inf{||/-u||co:u6/C},

there exists a real Borel measure \i on [0,2%\ with

and

Thus, with h = fi, we have heh1, supze/4/i(z)^0. Therefore, by (ii), supzeDh(z)^0, —/̂  is
a positive measure, \l"g{e") dfi(t)SO. This contradiction gives K = C£(dD).

(ii)=*(iii). Obvious (for all 8).
(iii)=>(iv). Replace A by A(8) in (ii)=>(i).
(iv)=>(i). Suppose that 0< A< 1 and that /4(A) is a P.P.B. set. Take 8 = 1/4. By Lemma

13, there exists a positive integer m with A(A)czA(8,m). Then A(8,m) is a P.P.B. set, and
it is now sufficient to prove that A is a P.P.B. set whenever .4(1/4) is.

Assume then that A(l/4) is a P.P.B. set, and let F denote the set of linear
combinations with positive coefficients of the functions pfl with a in A. Let / be a
positive continuous function on 3D and let e > 0. Then there exist positive kk and points
bk in /4(l/4) with

=/(CMC e 3D).

Since, by Dini's theorem, the convergence is uniform on dD, there exists n with
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Choose aua2,...,aa in A with d(ak,bk)g 1/4. By Lemma 12,

\Pak(Q ~Pbk(O\ ^iPbM Pak(Q^?Pbk(Q-

Take tf(O=lZZ=i^PJC). Then

/ n

- Z ^AJ
* = 1

We have now proved that, for every positive continuous function / on 8D and every
positive e, there exists v in F with

By Lemma 11, it follows that every such / is of the form

00

/ ( 0 = Z »*(0 (C

with yk in F. Thus /4 is a P.P.B. set.

Definitions. Let A be a subset of Z) and E a subset of 3D. We say that /4 is uniformly
non-tangential for £ if there exists a fixed a with 0<a<7t/2 such that, for every ( in £
and every b>0, D(C,b,a) n A is not void. [Z)(CA<x) is defined in Section 2]. We say that
A is radial at all points of £ if, for each £ in E, there exists a sequence of points of A
that converges radially to (.

Corollary 14. Each subset of D that is uniformly non-tangential for 3D is a P.P.B. set.

Proof. Let A be a subset of D that is uniformly non-tangential for dD with the fixed
angle a. Then there exists 5 with 0<5< 1 such that A{5) is radial at all points of dD. In
fact, it is enough to take any 5 with sina<(5<l. For, given b>0, we have z = x+yi in
D(b, a) n A, that is with b > 1 — x > \y\ cot a. For such z,

= \y\\l-xz -1
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and the last term tends to sin2a as x-+l.
Let heh1 with supzeA(i)h(z) = 0, and let (i, F be the corresponding real Borel measure

and function of bounded variation on [O,27r]. Thus

i P{t) d^ /

We prove first that ^({ro})^0 for each point t0 of [0,2TI]. There exist points bn = rne
i'° in

A(S) with 0 < r n < l and l i m ^ r ^ 1. Let £nW=(l-rn)(l+rn)-1P6n(t)- Then |H|oo = l,
and

(t = h)
0

By Lebesgue's theorem of dominated convergence, it follows that

In

0

n-»co 0

We prove next that F'(t)^0 whenever the derivative exists, finite or infinite. Suppose
that F'(t0) exists, and let bn be as above. Since Fatou's theorem is valid for radial
convergence even when the derivative is infinite, we have

Let X be the countable set of discontinuities of F, N the set of points of [0,27r]\.Y at
which F'(t) does not exist (in [ — 00,00]), and let Y be the complement of X u N. It is
known (see Saks [6, Theorem 9.1, p. 125]) that \n\(N) = 0. Let £ be a Borel subset of
[O,27t]. Then n(Er\X)^0 and /i(£nN)=O. Also, since F(r)^0 at all points of En Y, it
is known that n(En Y)^0 (see Saks [6, Lemma 9.4 p. 126]). Thus /i(£)^0, -\x is a
positive measure, /i(z)^0 for all 2 in D. It follows that, for all functions h in h1, we have

sup h(z)= sup h(z).
zeD zeA{i)
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Therefore, by Theorem 10, A is a P.P.B. set.

Remarks. For ( in 3D and 0 < p < 1, let G((,p) denote the open disc in D of radius p
that is tangent to dD at (,. We are indebted to W. K. Hayman for the observation that if
A is a P.P.B. set, then every open tangent disc G((,p) contains points of A. To see this,
note that zeG(C0,p) if and only if pz((0) > (1 — p)/P- Suppose that G(£0>P) r\A = 0. Then

If, for some w in D, pw is of the form

with ln>0 and an in A, then integration gives £"= t in = 1, and so

This shows that w is not in G(C0,p) , and so A is not a P.P.B. set.
Taking A = D\G(£0,p), we have an example of a set v4, radial at all points of 3£>\{£0},

that is not a P.P.B. set.
On the other hand, a slight modification of the proof of Corollary 14 shows that, if A

is non-tangential at every point of dD and uniformly non-tangential for Z with 3D\Z
countable, then A is a P.P.B. set. For, given t0 in [0,2n], we have an in A such that {an}
converges to e"° non-tangentially. Then [p0n(to)] ~ lPaSt) converges boundedly to e,0(t),
and so (i({to})^0 as before. Therefore, given a Borel set E in 3D, we have //(E\Z)^0.
That /i(£ n Z) ^ 0 is proved as before.

In the proof of Corollary 14, we need to use radial convergence because Fatou's
theorem can fail for non-tangential convergence to e"° if F'(t0) = + oo.

Every real or complex continuous function on dD can be expressed as a uniformly
convergent series ££L, /.tpak(0 with the ak in a given P.P.B. set. In fact, let A be a P.P.B.
set, / a real continuous function on 3D and e>0. Then there exist ak in A and real Xk

with £?=i W<H/||i +«. such that

with the series uniformly convergent on 3D. For, we have non-negative continuous
functions /+, /_ with / = / + — / _ , | / | = / + + / _ . There exist ak in A and non-negative
ak, j?t with

k=l k=l
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The series are uniformly convergent, and, taking Xk = ak — f}k, we have

* = i

and / is of the required form.
For applications, it may be valuable to have uniform approximations for a given

function with known coefficients Xk. By imposing stronger conditions on the set A, we
obtain an approximation theorem of this kind.

Theorem 15. Let {/•„}, {Rn} satisfy 0^rn^Rn<l, l i m ^ . r ^ l ,
lim^^w 1(l—rn)~

1=0, limn^00(/?n-rn)(l-rB) 1=0. Let A be a subset of D such that,
for some arbitrarily large n and for each k in (1,2,...,2ri), there exists ak=pke

i'1"' in A
with rn^pk^Rn and (k — l)n/n^ i/̂  ^kn/n.

Then, given a complex valued function f continuous on 3D and a positive constant e,
there exists a positive integer n such that, with a1,a2,...,a2n as stated,

1 ^
Y fie'^p

Znk=i

Proof. Let / be a complex continuous function on 3D, M = ||/||oo, e>0, and, for
^ r < l , let

nre19)^! f(e")PrMt)dt.

Choose nt such that

W°) - f(rne
w)\ <e/4(nZn

Then choose n 2 ^" i such that, for n^n2, |/(c'*)-/(e*)|^e/4 whenever \<t>-il/\^n/n.
Finally, choose n^n2 such that there exist aua2,...,a2n in A of the stated form, and
such that (Rn-rn)(\-rny

l + nn-\\-rny
l<5 with 2<5(l-(5)-1<e/4M. Note that, with

n, we have

d(ak, rne
lt) ^ d(ak, rne^

with 2(5(1 — (5)"1 <e/4M. By Lemma 12, for such t, we have
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It follows that

|/(rnC'e)-(2n)-1
2n

* = i

In | kn/n

k=l
(/(?')-/(?*•>)) Prnele(t)dt

Tk T f(e"")(Pr^(t)-Pak{ff)dt
k=l

In « kn/n

<e/4 + M Z — 1 I

<e/2.
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