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Linear Substitutions and their Invariants.

By D. G. TAYLOR.

(Received 15th April 1912. Read Hth June 1912.)

Introduction.

The main points of this paper are :—
(i) The construction of a linear substitution from its poles

or linear invariants and its multipliers (§§ 3, 7);
(ii) a formula for r repetitions of a substitution (§ 4);

(iii) a specification of the types of linear substitutions of
order r, with examples of the simplest of those
types(§§9ff.);

(iv) The geometrical illustration of the case of three vari-
ables (§§15 ff.)

§ 1. Take a triangle, sides a, b, c. Form a second triangle with
sides a', b', c equal to the medians of the first, and a third with
sides a", b", c" equal to the medians of the second. From the
relations between sides and medians

o'2 = - J«2 + £62 + Jc2, etc.,
it follows that

q"2 6"2 _ c " 2 _ 9

so that the third triangle is similar to the first;
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or the four functions of the sides which form the denominators are
invariants for the transformation, except for the numerical factors
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+ f in the first case, - f in the others. We are evidently
dealing with a linear substitution, expressing the squares of the
medians in terms of those of the sides; it is a substitution of
order 2, and possesses independent linear invariants equal to the
number (three) of the variables. Increasing the coefficients in the
ratio 4 :3, we reduce the determinant of the substitution to unity,
and it then takes the form, with xv Wj, x3, in place of a1, b\ c",

«,'= - )
**'= f*.-^ + l*» \ (1)

x \ *S xi ,

giving = = = 1,
as, x2 x3

«,' + «/ + *»'
Xy+Xt + X,

«a - a;3 _ a!| - as, _ « , - « , _ = _

Since

the expression for the area is also invariant, and the medians will
always form a triangle.

§2. The General Linear Substitution.

Let a, /?,... be symbols taking the values 1, 2,...n. Then we
denote by (I) the linear substitution in n variables

(I) followed by (m) leads to the substitution (m) (I) given by

For the result of r repetitions of (I) we shall use the
notations {l)r, and

The variables may be regarded as homogeneous " point" co-
ordinates in space of ( n - 1 ) dimensions. A set of values
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Xa, e (a=l , 2, ... «), will then define a "point" Pe, and a linear
equation

L==2p x =0
a a a

may be said to specify an "(n - 2)-plane," i.e. a linear (n-2)-
dimensional locus. Two sets of values of the x's determine the
same point when the ratios of corresponding values are equal; and
likewise for the p's. The point P into which P is changed by the
substitution will be called the transformed of P.

If a point is unaltered by the substitution, its coordinates
must satisfy for some value of k the equations

kx (3)

Eliminating the x's, we obtain the characteristic equation for k :

ln - k, = 0.

n l > 'nJ )

Assuming for the present that no root is repeated, each root kt

determines an invariant point or pole* Pe of the substitution.

§ 3. Given the n poles Pe, assumed not to lie on a plane locus,
and the n corresponding roots kt, assumed all different, we can
construct the substitution uniquely. The coordinates of Pe being
xa,t, (a =1,2, ...n), put

'u> xn> • • • xni i >

which does 'not vanish. Substituting the coordinates of the
Pe in (3), and the appropriate values of k, we have n* equations
of the type

* Hilton, Finite Groups, HI. 6.
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Solving for the I's the n equations obtained by keeping o constant
and making e vary, we find

where X „ is the co-factor of x R in D.
O.p ap

These expressions for the I's, substituted in (2), give the
substitution in terms of the poles and roots alone.

The substitution (2) contains n- coefficients, and therefore
(ri* - 1) independent constants. The knowledge of P', the trans-
formed of a given point P, involves {n-V) relations between
these constants. Thus (n+ 1) such pairs will in general determine
the substitution. The poles constitute n pairs, being points which
coincide with their transformeds; and the knowledge of the roots
is equivalent to that of an (ra+l)"1 pair, as is clear from (2)
and (5).

§ 4. Consider the effect, on the coordinates of the pole Pe, of
repeated application of (I). One application changes x into kx ;
hence r applications will change it into Ifx . The substitution
(l)T has the same poles as (I), but the root associated with each
pole, or what we may call the multiplier of the pole, is the rth

power of the old multiplier. Hence the coefficients of (l)r are
given by

In words, the coefficients of the r-times repeated substitution are
linear functions of the ra powers of the roots of the characteristic
equation of the original substitution, with coefficients independent
of r.

As an example, (6) may be used to obtain the result of two or
more repetitions of the substitution of § 3.

§ 5. In order that a given substitution may be of order r, we
must have

lv)
a = a constant, say Xr.
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Since 2 as Xgc has the value D or zero according as a, /3 are equal

or not, we must therefore have

*J = A', (€=1, 2, . . . » ) ;

whence A; = Xp , p being an r tb root of unity.

Hence the substitution (I) is of order r, provided

B.I a = X2px X n , (7)
op e

 re ae pf' v '

where X is a constant, and p an rttl root of unity.
We may without loss assume X = 1; and we can now construct

substitutions of order r with a given set of poles.

§ 6. Consider the assumptions made up to this point.

(i) We have assumed that the characteristic equation (4) has
no repeated root. But (7) defines a substitution of order r,
whether there are equalities among the pe or not. When the pe

are all equal, the substitution is identical; but short of this,
equalities among them will determine distinct valid types of
substitution.

Consider now the derivation of the poles from the substitution
(§2). If e.g. &! = &„ the others being distinct, the poles P3, P4,...Pn

are uniquely determined as before; but only (n — 2) of the n
equations obtained from (3) by writing kx instead of k will be
independent. Hence to the repeated root kt there correspond, not
two unique poles, but a line (linear one-fold) of such ; each point
on the locus satisfies the conditions for a pole, and any two of
them will serve for Pj, P2. Similarly in other cases: equalities
among the roots do not prevent us from obtaining n poles, but
simply impair the uniqueness of that determination. Thus, in
constructing a substitution from a given set of poles, the associa-
tion of equal roots with two poles Pu P,,, confers the polar property
on every point of the line PaPj; and the association of equal
roots with (« + l) poles confers the polar property on every point
of the s-plane which they determine.

(ii) We have assumed that D the determinant of the poles (§3)
does not vanish. If it does, there are n poles on an (n - 2)-plane ;
which is impossible, unless every point of the (n - 2)-plane is a
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pole. But then all the n poles may be taken arbitrarily on this
(n - 2)-plane, which involves all the roots k( being equal, and the
substitution reducing to identity.

§7. The substitution (2) changes the linear function ^pa<>-a into

aV a/3 "I3 P) ^ a V « ) P

If this function is invariant we must have for some value of k

Elimination of the jo's leads to the same equation.for A as in § 2,
rows and columns of the determinant, however, being interchanged.
Thus, associated with each root k( there is not only a pole or
invariant point P£, but also an invariant linear function or (n - 2)-
plane Lf; and the substitution can be constructed from the L's and
k's as readily as from the P's and k's. It is clear that L must be
the (n - 2)-plane determined by the (n - 1) poles other than P ; and
this will now be formally proved.

Denoting the coefficients or coordinates of L by p , p , .. p ,

put
E = pa,

and let the co-factor of p* be P - . Let (I1) be the substitution
constructed from the L's and k's.

Then by (8),

Solving for the l"s,

But if Lf is the (n - 2)-plane determined by the (n - 1) poles other
than Pf, clearly

thus (9) becomes

whence, by (5), (V) = (

https://doi.org/10.1017/S0013091500034052 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500034052


123

§8. The simplest expression of a substitution will be that in
which the invariant system is made the system of reference. This
is always possible, as we have seen, though, in the case of equal
roots kc, not unique. If then P is defined by

the substitution takes the form
x'a = kaxa,(a=l,2,...n), (10)

and the x are themselves the invariant linear functions.x

§9. Substitutions fall into types according to the equalities
among the roots Af. If «! of them are equal to p,, s2 to p., etc., we

have the type («„ «2, ...), the order of the numbers within the
brackets being immaterial. Since the number of roots is n, and
among them there are not more than r different values, the number
of types for given integers n, r is the number of partitions of n into
r or fewer parts. Thus, the types for r = 2 fall under the symbol
(n - 8, 8), and for r = 3 take one of the forms (n - s, s), (n - s - t, s, t).
We proceed to consider the type ( » - l , 1), which admits of very
simple expression.

§10. Type ( n - 1 , 1).

Put * e = l , (1 * £ * « ) ,

k
e
 = P> (£>s)>

where p is an rth root of unity, other than unity itself. From (5),

^ = 0-/>)2 xJZfJD, OS*.),'

In particular, if s = l, and \a, pa are written respectively for

V

where 2X u = 1 .
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The reduced number of arbitrary constants in this formula is
due to the fact that the coordinates of the poles Po, Ps, ...Pn only
enter in the expressions for the co-factors of the coordinates of P,
in D. This was to be expected, for the equality of the (»»-l)
roots confers polarity on every point of the (n - 2)-plane defined
by these (n - 1) poles ; so that these poles are not unique.

Representing the substitution pictorially by the determinant
of the coefficients, and removing the factor (1 - p) from each row
to the outside, we have for (12) the form

(13)

where <r = p(l - p)~\ Since this determinant has evidently the
value

the determinant of the substitution (12) itself has the value /J"*"1.

Thus the general substitution of order r and type (n — 1, 1) is
given by

where 2A.a/uo=l, and p is an r01 root of unity other than unity

itself. For order 2, p = - 1 ; for order 3, p = <•> or or; for order
4, p = ±i; and so on. We do not regard as distinct two substitutions
in which the ratio of corresponding coefficients is constant. Thus
one different in form, but essentially identical with that just
written, would be obtained on multiplying each term upon its right
by p any r"1 root of unity.

Similarly, for the type (n - 2, 2) the formula (14) is replaced by
X'a = P

where S A.a/*a = 2 A.'a/*'a = 1 ; and so in other cases.

§ 11. A simple case of (13) arises when the diagonal elements

are all equal. Putting A.,/*! = X ^ = ... = \n/xn =—, we can write

(13) in the form
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1+ncr, A , ^ 1 , ... A,A-1 ; , .

AjAf1, 1+ncr, ... A;A~] i

-1, ... 1+ncr |

.(15)

where the A's are arbitrary. As a still more special case, we can
make the determinant symmetrical by writing

+ A1= ±A,= ... = 1.

From the table which follows:

r

2

3

i

P

- 1

t

cr

~i

J(»- i )

1+ncr

i + •=•(—i)

we can deduce the following simple forms:

(i) n = >5,

(4)"
[iii) TI =

r =
-

4, r

- 1
1
1
1

2.

1,
1,

= 2

*

i,
-i.

i ,

i ,
- l ,

l,
i,

l
l

- *

l,
l,

- l ,
1,

l
l
l

- l

(ii) n = 3, r = 3.

^3| «, 1, 1
1 , 0), 1

1, 1, *
(4-7"
(iv) n = 2, r = <

In (ii), (a is either imaginary cube root of unity, as in (iv), i is
either square root of - 1; and the elements on either side of the
leading diagonal may be affected if desired with any symmetrical
alteration of signs.

(i) is the substitution arrived at in § 1.

9 Vol. 30
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Invariants of Linear Substitutions.

§12. We have seen (§7) that, in the case of any linear sub-
stitution, there is associated with each root k( of the characteristic
equation a linear invariant L , defining an invariant (n — 2)-p]ane
in the (n- l)-dimensional space. Consider now the invariants of
higher degree than the first.

The general homogeneous function of degree r in n variables
fr(xv xn ... xn), has terms in number

_n(n + l)...(n + r - 1 )
" r~ r!

If this function remains unaltered under the substitution,
except for a numerical factor k(r\ we obtain at once on equating
coefficients of corresponding terms in the x's, and thereafter
eliminating the coefficients of /„ a determinantal equation, con-
structed of the r-dimensional products of the l~ and of degree ,Hr

in Ur). Assuming the roots of this equation for .the present all
different, we have therefore nHr distinct invariants of degree r.

But this number tallies with that of the r-dimensional products
of the linear invariants L£; which latter therefore comprise the
complete system of invariants of degree r. Further, the roots of
the equation in Ur) must be no other than the r-dimensional
products of the roots ke of the original substitution.

§ 13. Now suppose that the roots of the equation in UT) are not
all distinct, i.e. suppose one or more relations of the form

subsist between the k(. Then the corresponding invariants will
have equal multipliers, and hence any linear function of them will
also be invariant. The number of independent invariants is
unaltered, but the system ceases to be unique; or in other words,
invariants appear with one or more arbitrary constants.

Suppose (i) &! = A:a. Then we shall not have, associated with
this repeated root, two uniquely determined linear invariants, but
a single infinity of such, any two of which may be chosen as
L,, L,, and the others being of the form L, + XL, (A. arbitrary).
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Consequently, among the invariants of degree r we shall have the
type

SX.LjLj—, (A.J, A,, ... arbitrary),
and others, such as

Uy. 2A,L;Lr-«, etc.

Similarly for other equalities among the roots.
Suppose (ii) that k\ = k$%~'. We then have the invariant

containing an arbitrary constant
(17)

§14. Relations of the type (16) are especially likely to arise
when the substitution is itself of order r. The imaginary r01 roots
of unity consist of conjugate pairs, the real root +1 (and - I
when it occurs) being for this purpose self-conjugate. Hence
relations may arise of the type

kyky' = hs&6'= .-• = 1,

leading to the quadratic invariant, in which the A's are arbitrary,

and similarly invariants of higher degree may arise.
Further, the relations

*!=*;=. . .=*r»=i
confer invariancy on the form

2A.L;, (A^ A,,... arbitrary) (18)

Examples of this will occur in the sequel.

§ 15. We now turn to the case of three variables, with its
geometrical interpretation. We saw (§3) that a substitution in
three variables is determined by four points and their transformed*.
Let P, Q, R, S be given along with their transformeds F , Q', R', S\
Then since cross-ratio is unaltered by a linear substitution, the
transformed T of any fifth point T is the intersection of the rays
FT', Q'T', which satisfy

F(Q'R'ST') = P(QRST),
Q'(FR'S'T') = Q(PRST).

The poles Pu P,, Pa coincide each with its own transformed; hence
the positions of one other point Q and its transformed Q' will
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specify the substitution. For any fifth point T it is easily shewn
that

P1(P2TP3T') = P,(P2QP3Q') = hlh,
and so for the pencils at P2, P3.

When the roots are distinct, A, defines the pole P, and the
invariant line P2P3, and so for the other roots, without ambiguity;
the lines being invariant in the sense that in general a point on
either of them is transformed into another point on the same line.

Thus a substitution of order r will link up the points on each
invariant line in sets of r each; i.e., a point Qj will take up, on
successive applications of the substitution, positions QB Q3, ...Q,,
Q,; and the ranges (QaRoSaTa...), ( Q ^ S ^ ..) will be homo-
graphic. In particular, a substitution of order 2 will set up an
involution of points on each invariant line: and similar theorems
hold for pencils through the invariant points.

A point Q: not on one of the invariant lines will also take up a
cycle of positions Q,, Qj,,.. Qn Q:, but not in a line; and a line M,
not through a pole, will take up a cycle of non-concurrent
positions.

§16. When ki = ks> the pole and line specified by k\ remain as
before; but, instead of definite poles P,, P3, we find the condition
of invariancy satisfied by every point on the line L,; which is
thus invariant in the special sense, that every point on it is trans-
formed into itself. I t follows that every line through Pu since it
cuts L, in a second invariant point II, is invariant in the less
special sense. Any point and its transformed are now collinear
with P j ; and any line and its transformed are concurrent with
L,. This is homology* with P, as centre, and 1^ as axis; and
the parameter, or constant cross-ratio (P,QIIQ'), where Q' is the
transformed of Q, has the value &,/£,.

Repeated applications in this case will transform any point Q,
into positions Q» Q,, ... all on the same line through P , ; and if
the substitution is of order r, Qr will coincide with Q,. If r = 2,
the points on any line PjII through P, will with their transformeds
determine an involution. For all values of r > 2 the transforma-
tion is imaginary.

• Russell, Pure Geometry, Ch. XXXI.
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17. Let a relation of the form

hold between the three roots ka, kg, tey. Then by (17) there is
an invariant of degree r with an arbitrary constant, viz.,

If «= 0, two roots kr
a, k* of the characteristic equation of (l)r

are equal, and any line l>a + XL through P~ will be invariant for
this substitution, as also any point on L- ; i.e. the result of r
repetitions of (I) will be a homology.

Again, put r = 2, 8=1. Then we obtain that for a substitution
in which A£ = kjc , every conic touching L™, L at their inter-
sections with La is invariant. This holds, e.g. for a substitution of
order 3, with ka, kg, k = 1, u>, co2 respectively.

Lastly, formula (18) shows that for a substitution of order 3
in three variables, there exists a doubly infinite family of invariant
cubics, with nine inflexions lying three by three on the invariant
lines.

§18. The substitution (1) of §1 is a case of §16. The
equation for k reduces to

Associated with the multiplier k= 1 is the pole P,(l, 1, 1) and the
invariant line

Associated with the multiplier k = - 1 there are, as poles, all points
on L,; and, as invariant lines, all lines through P] ; and the latter
may be expressed in terms of the three symmetrical, but not
independent,

L\=x2-xK l,'s = xs-xv L'^Sj-Ej.

It follows that every quadratic of the form

is invariant, with multiplier +1 .
Among these are the symmetrical forms

X] 2
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