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1. Introduction, Definitions and Notations

The present paper on functions of bounded variation relative to a set has its
point of departure in the work of R. L. Jeffery [10]. Below we recapitulate Jef-
fery's class U of functions of bounded variation relative to a set, we state and prove
a number of preliminary lemmas and theorems, we introduce a suitable pseudo-
metric space (X, d) of such functions, and the analogous space (X, p), and prove
that (X, d) is separable, that every closed sphere in (X, d) is compact and that
(X, p) is complete. These results extend known results of C. R. Adams, and C. R.
Adams and A. P. Morse for the space of usual .SFfunctions.

Let S be a subset of the closed interval [a, b] such that S is dense in [a, b]. We
define the class U of functions F(x) in the following way: F(x) is defined on [a, b]
such that for every point x0 in [a, b], F(x) tends to finite limits as x tends to x0 +
and to ^o ~ o v e r t n e points of S; these limits will be denoted by F(x0 +) and
F(x0 — ) respectively.

We now introduce the following definition:

DEFINITION 1.1. Let F(x) belong to the class U and E be a subset of [a, b]
with a and /? as its g.l.b. and l.u.b. Let

D ; (a < Xi < x2 < • • • < xp < ft)

be any subdivision of [a, /?] with xt e E. The l.u.b. of the sums VD defined by

VD = | F ( a ) - F ( x 1 - ) | 1

for all possible subdivisions D is called the total variation, VS(F; E), of F(x) on E
relative to the set S. If VS(F; E) < +oo, then F(x) is said to be BV-S on E.

From theorem 3.1 and lemma 2.2 it follows that a function which is of
bounded variation in the ordinary sense on [a, b] is a BV—S function and the
BV—S variation of a function F(x) on a dense subset of [a, b] is the same as that
of the ordinary variation of the function F(x-) [or F(x + )] on [a, b]. However,
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there are examples of functions that are BV—S on an infinite subset E of [a, b]
but not BV on E. Therefore the set of functions which are BV—S on [a, b] {that
is, the set of functions F(x) for which the total variation of F(x — ) [or F(x+)]
on [a, b] is finite} includes as a proper subset the functions which are BV on
[a, b]. It may be noted in this connection that various authors have studied the
properties of BV functions on a set. These studies can be found in most of the
references appended in the list of the bibliography.

Throughout our discussion we suppose that S is a fixed set which is dense
in [a, b], and consequently U becomes a fixed class of functions as defined above.
We denote the set of points x of S for which F(x-) = F(x) = F(x + ) by SF,
where S is as above and F(x) is any function belonging to the class U. From
theorem 3.4 onwards we suppose that S is Lebesgue measurable and mS = b — a.

2. Preliminary lemmas

LEMMA 2.1. Let F(x) belong to the class U. Then the set of points for which
F(x—) # F(x + ) is countable. Also the subset of S for which we do not have
F(x~) = F(x) = F(x+) is countable.

PROOF. For each positive integer n, let En denote the set of numbers x such
that

| F ( J C - ) - F ( J C + ) | > — , a+-<x<b--.
n n n

The set En cannot have a cluster point, and hence it is finite. The set \J ™= t En is
therefore countable. Similarly for the second part of the lemma and this completes
the proof.

We now define the function G(x) on [a, b] as follows:

G(a) = F(a), G(b) = F{b),

G(x) = F(x-)for a < x < b.
It is easy to verify that

F(x+) = lim G{t]) as {r\ > x, r\ -» x),
and

G(x) = limF(£ + ) a s ( £ < x , £ - x).

Clearly G(x) = F(x) at each point of the set SF.

LEMMA 2.2. ifE is dense in [a, b] andifF(x) belongs to U, then

VS(F; E) = Vb
a{G).

PROOF. The symbol x shall mean: can be made to differ by £ (> 0) by going
far enough in the limiting process indicated by ->. The symbols xo+ and xr + l —
shall mean a and b respectively.
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To prove VS(F; E) ^ V*(G) we consider any subdivision

D : (a — x0 < xt < x2 < • • • < xr+l = b)

of [a, b] with xteE (i = 1, 2, • • •, r) and then take points r\l satisfying
xt < fjj < xi + l and nt -> x{ (except for t]0 = a, nr + 1 = b). Denoting by VD the
sum

i = 0

we have

VD&i \F(m-)-F(xi+l-)\ =
i=0 i=0

Hence
FS(F; E) g Fo

fc(G).

To prove the reverse inequality we consider any subdivision D of [a, b],
then take points £f satisfying <*; e £, x;_ t < £t < xt (except for £0 = a, £r+1 = >̂).
Then

i = 0 i = 0

and. hence
VS(F; E) = Vi(G).

COROLLARY 2.2.1. If E is dense in [a, b], then VS(F; E) = VS(F; [a, b]).

LEMMA 2.3. Let a < c < b. If F(x) is BV-S on [a, c] and on [c, b], then it
is so on [a, b]; further ifceSF then

VS{F; [a, b]) = VS(F; [a, c])+ VS(F; [c, b]).

LEMMA 2.4. If F(x) is BV-S on [a, b], then F(x+) is bounded on [a, b].
The proofs of these results are straightforward.

Let F(x) be BV-S on [a, b]. We define the function n(x) on [a, b] as fol-
lows:

n(a) = 0 and n(x) = Ka*(G) for a < x g b.

Clearly the function n(x) is non-decreasing on [a, b].

LEMMA 2.5. If F(x) is BV—S on [a, b], then F(x) can be expressed as
F(x) = n(x)—v(x), where v(x) is non-decreasing on SF.

PROOF. We define V(JC) by v(x) = n(x)~F(x). Let x^ and x 2 (> x^ be any
two points of SF. Then
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-v(*,) = {n(x2)-F(x2)}-{K(Xl)-F(Xl)}

= 7t(x2)-n(Xl)- {G(x2)-G(Xl)}

and the lemma is proved.

3. Some results on BV—S functions

THEOREM 3.1. If F(x) is of bounded variation on [a, b], then it is BV-S on
[a, b] and in any case

Vs(F;[a,b])^ Vb
a(F), F(x)sU.

PROOF. We first suppose that Vb(F) is finite. Let

D : (a = x0 < Xt < x2 < • • • < xr + l = b)

be any subdivision of [a, b]. Take points £;, ^ of S with xt < £,• < m < xi+1

(except for £0 = a, rjr+1 = b). Then

i = 0

Now letting ^ -> xt, ni -> xi + 1 over the points of 5 we obtain

Since D is arbitrary, we have

(1) ys(F; [a, b]) ^ Vb
a(F).

So F{x) is BV-S on [a, b]. If V£(F) is infinite, then clearly (1) holds.

NOTE. It is clear that if F(x) is monotone or continuous on [a, b] then

VS(F; [a, b]) = Va
b(F).

If (BV) denotes the set of all functions which are of bounded variation on
[a, b] and (BV-S) the set of all functions which are BV-S, then by Theorem
3.1, (BV) c (BV—S). The following example shows that (BV) is a proper subset
of (BV-S).

EXAMPLE. Let S be a dense subset of [a, b] and let E be an infinite subset of
[a, b] with a and b as lower and upper bounds. Let 0(x) be any non-decreasing
function on [a, b] and £ /?„ be a divergent series of positive terms with lim /?„ = 0.
Choose a strictly monotone sequence {aB} from E. Suppose that {an} is increasing.
We define the function F(x) on [a, b] as follows:
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F(x) = <t>(x) + P« ^ * = <x2n(n = 1, 2, 3, • • •),
= 4>{x) elsewhere.

It is easy to see that F(x±) = <p(x±) for all xe [a, b]. For any two points c,
d{> c)o(E

\F(c+)-F(d-)\ = |0(c + )

which shows that F(x) is BV—S on E. Now consider the subdivision
a ^ <xt < a2 < • • • < oc2m < b and denote by V the sum

\F(a)-F(a1)[+ £ |F(a,)-F(a,
i = l

Then

Since ^ j8n is divergent, it follows that F(x) is not of bounded variation on E.

THEOREM 3.2. (cf. [2], Th. 2; [4], Lemma 1; [9], § 7).
Let {Fn(x)} be a sequence of functions in the class U and So = n {SFn;

n = 1, 2, • • •}. If Fn(x) -> F(x) e U at each point of the set Eu {a,b} such that
E <=. So n SP andE is dense in [a, b], then

lim inf V^Fn; [a, ft]) ̂  FS(F; [a, 6]).
n-*oo

PROOF. We suppose that VS{F; E) is finite. If VS(F; E) is infinite the proof
is analogous. Let e > 0 be arbitrary. There exists a subdivision

D : (a = x0 < xt < x2 < • • • < xr+1 = b)

with xt e E (i = 1, 2, • • •, r) such that

or

VD{F) = i\F(xi)-F(xi+1)\
i = 0

Since VD(Fn) -* VD{F) as n -* oo; a positive integer n0 exists such that for n S; «0

Fs(Fn; [a, b]) ^ VD{Fn) > VS(F; E)-e.
So,

lim inf Vs(Fn; [a, 6]) ^ FS(F; £ ) - « .
n~*co

Since 6 > 0 is arbitrary, we obtain by using corollary 2.2.1,
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lim inf Vs{Fn; [a, b}) ^ VS(F; [a, b}).

DEFINITION 3.1. LetF(x) e UandD : (a = x0 < x^ < x2< • • • < xr+l = b)
be any subdivision of [a, b] with xt e SF(i = 1, 2, • • •, r). We denote by B(x) =
B(x; F, D) the function whose graph is the polygonal line joining the points
(Xj, F(xi)) (/ = 0, 1, 2, • • •, r). B(x) is said to be a Polygonal function associated
with F(x).

It is clear that

VD{F) = £\F{xi)-F(xi+l)\ = VD(B) = VS(B; [a,b]).
i = 0

So,
VS(F; [a, b]) > VS(B; [a, b]).

THEOREM 3.3. (cf. [3], § 2). If F{x) is BV-S on [a, b] and SF is dense in

[a, b], then it is possible to choose a sequence {Bn(x)} of polygonal functions such
that Bn(x) -> F(x) at each point of SF and

lim Vs(Bn; [a, bj) = V^F; [a, b]).

PROOF. Let {/>„} be a sequence of subdivisions

n . (n _ Y(") <- v(») ^ v(") ^ . . . ^ v(") _ u\Un • V" — X0 <• Xl < X2 < < Xrn+l — °)

of [a, b] with x\n) e SF (i = 1, 2, • • •, rn) such that Dn <= Dn + 1 for each n and the
set E = \j {Dn; n = I, 2, • • •} is dense in [a, b]. Writing Bn(x) = B(x; F, Dn)
we have

(2) Vs{Bn; [a, b]) ^ VS(F; [a, b]).

Let e > 0 be arbitrary. Then a subdivision D : (a = x0 < xt < • • • < xr+1 = b)
with xte E (i = 1, 2, • • •, r) exists such that

£ \F(Xi)-F(xi+1)\>Vs(F;E)-s.
i = 0

Since x/s are points of E, we can choose a positive integer n0 such that D c Dn

for all n ^ n0.
Then for n ^ n0

(3) Fs(Bn; [fl, b]) ^ £ F(Xi)-F(xi + 1)\ > VS(F; E)-e.
1 = 0

Combining (2) and (3) and noting corollary 2.2.1, we obtain

lim Vs(Bn; [a, b]) = VS(F; [a, bj).
n-*oo

It is clear that Bn(x) -» F(x) at each point of the set E. Let f be any point of SF - E.
Choose points £,', £" of E with £' < £ < £" such that n(£")-n(!;') < \B.
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Let m be a positive integer such that {', £," e Dn for all n ^ m. Then for all
n ^ m

This proves the theorem.

THEOREM 3.4. (cf. [13], p. 222). Let !F = {F(x)} be a sequence of functions
in the class U. If there is a positive K such that \F{x±)\ ^ K, a < x < b; \F(a)\,
\F(b)\ ^ K and VS(F; [a, b]) ^ K for every F(x) e &, then there exist a sub-
sequence in ^ which converges to a function (p(x) almost everywhere in [a, b],
where <j>(x) is of bounded variation in [a, b].

To prove the theorem we require the following lemma:

LEMMA 3.1. (cf. [13], p. 221). Let & = {F(x)} be a sequence of functions in
the class U and So = n {SF; Fe ^}. If each F{x) is non-decreasing on So and
if there is a positive K such that \F(x±)\ ^ K, a < x < b; \F(a)\, \F(b)\ ^ Kfor
each Fe ^F, then there is a subsequence {Fn(x)} of functions in ̂  which converges
to a function <\>{x) almost everywhere in [a, b], where <j)(x) is non-decreasing on
[a, b].

The lemma can bs proved in the usual way.

PROOF OF THEOREM 3.4. By lemma 2.5, each F(x) in !F can be expressed as
Fix) = n(x) — v(x), where n(x) is non-decreasing on [a, b] and v(x) is non-
decreasing on 5 0 = n {SF; Fe IF). Clearly n{x) belongs to the class U. Also
Vs(n; [a, b]) = n(b). So n(x) ^ k for all x e [a, b]. Since v(x) = n(x)-F(x), v(x)
belongs to the class U and |v(x+)| ^ 2k, a < x < b; \v(a)\, \v(b)\ ^ 2k. By
lemma 2 ([13], p. 221) there is a subsequence {nn(x)} of {n(x)} which converges
to a non-decreasing function a(x) everywhere in [a, b].

Let En denote the set of points in [a, b], where

v . (* - ) = VB(JC) = vn(x+) and Eo = n {En; n = 1, 2, • • •}.

Then Lebesgue measure of Eo is b—a. Applying lemma 3.1 to the sequence
{vn(x)} (where So is to be replaced by So n ^o) we obtain a subsequence {vn.(x)}
which converges to a non-decreasing function p(x) almost everywhere in [a, b].
Let cj)(x) = cc(x) — P(x). Then 4>{x) is of bounded variation on [a, b] and the
sequence {Fm(x)} converges to <j>(x) almost everywhere in [a, b]. This proves the
theorem.

4. The space (X, d)

Let X denote the set of all functions x{t) in the class U which are BV— S on
[0, 1]. To each pair x, y of functions in X we associate the real number d(x, y)
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defined by

(4) d(x, y) = r\x(t)-y(t)\dt+\T(x)-T(y)\,
Jo

where the integral is taken in Lebesgue sense and T(x) stands for Vs(x; [0, 1]).
Since d{x, y) = 0 implies T(x) = T(y) and x{t) = y(t) almost everywhere in
[0, 1], it follows that d is a pseudo-metric for A'and therefore (X, d) is a pseudo-
metric space.

The pseudo-metric (4) is analogous to that introduced by C. R. Adams [1 ]
and C. R. Adams & A. P. Morse [4] to study the properties of the space {BV) of
functions of bounded variation. The above two papers contain interesting and
elaborate discussions of the space (BV). Here we wish to mention only two
properties of the space (X, d) leaving out, of course, possible scope of further
study.

THEOREM 4.1. The space (X, d) is separable.

PROOF. Let E denote the set of all polygonal functions in X with rational
corners. Then clearly E is countable. Let x(t) be any function in X. By theorem
3.3, it is possible to choose a sequence of polygonal functions {Bn{t)} in A'such
that Bn(t) -> x(t) almost everywhere in [0, 1] and T(Bn) -> T(x). For each Bn(t)
we can choose a polygonal function Pn(t) in X with rational corners such that
\Bn{t)-Pa(t)\ < l/n for all te [0, 1] and \T{Bn)-T(Pn)\ < l/n. So the sequence
{/>„(/)} converges to x(t) almost everywhere in [0, 1] and T(Pn) -*• T(x). Therefore
d(Pn, x) -> 0 as n -* -> and hence x is an accumulation point of E. Thus the set
.Zfis dense in X. This completes the proof.

THEOREM 4.2. Every closed sphere in (X, d) is compact.

PROOF. Let x0 be an element of X and

Y = {x;xeX and d(x, x0) ^ r},

where r is a positive number. Since Af is separable, Y considered as a subspace of
X is a Lindelof space. Let 6(t) = 0 in [0, 1]. Then 9 is an element of X. For any
x in Y,

d{x, 6) % d{x, xo)+d(xo, 6) ^ r+d(x0, 6).
So

(5) d{x,e)=\\x{t)\dt+T{x)^M,
Jo

where Mdenotes the constant r+d(x0, 6). If t is a point in (0, 1), then

(6) |JC(/±) | g max {|*(0)

We show that max {|JC(O)|, |JC(1)|} ^ 2M. If possible, assume that max {|x(0)|,
\x(l)\} > 2M. If |x(r)| ^ M almost everywhere in [0, 1], then $o\x(t)\dt g M
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which with (5) gives T{x) = 0. So \x[t±)\ = |x(0)| = |*(1)| > 2M. This contra-
dicts (5). Hence there is a subset E of [0, 1] of positive measure such that
\x(t± )\ < M for all t e E. Let t be any point of E n Sx. Then

\x(0)-x(t)\ + \x{t)-x(l)\>M.

So, T(x)>M which contradicts (5). Therefore max {|x(0)|, |x(l)|} g 2M.
Combining this with (6) we get \x(t + )\ ^ 3M for all t e (0, 1).

Let {xn(t)} be any sequence of points in Y. Then

\xH(t±)\ £3M,0<t<l; \xn(0)\, \xn(l)\ < 3M

and Vs(xn; [0, 1]) < 3M. By theorem 3.4, there is a subsequence {xnt(t)} which
converges to a function x(t) in X almost everywhere in [0, 1]. We may choose
{xnt(t)} and take the function x(i) such that {xn.(t)} converges to x(t) also at
t — 0,1. Let T = linij..^ inf T(xn.). We choose a subsequence {T(xm)} of {T(xm)}
which converges to T. By theorem 3.2, T ̂  T(x). Let AT = T — T(X). We define
the function y(t) on [0, 1] as follows:

y{t) = x(0, 0 < r ^ 1,

= x(0) + A: for r = 0 if x(0) > x(0 + ) ,

= x(0)-K for if x(0) g x(0 + ).

It is clear that y e Zand T(j) = T(x) + K. Further

= r
Jo

Then d(xm., y) -» 0 as / -» oo. We have

rf^, *o) ^ d(^»,» 3') + rf(^m,» ̂ o) ^ r + d(xm, y).

Letting j -» oo we get J(j>, x0) ^ r. Thus every sequence in Fhas a cluster point in
Y. So by lemma ([12], Ch. 5, § 4) Yis compact.

5. The space (X, p)

Let A' denote the family of all sets

{*}" = {r,yzX and d(x,y) = 0}

for x e l . For convenience, we write x for {x}~. For any two members x, y of X,
let

p(x, y) = inf {J(a, /?); a e x and /? e >?}.

Then ( J , p) is a metric space ([12], Ch. 4, § 15).

THEOREM 5.1. The space (X, p) is complete.
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PROOF. Let {*„} be any Cauchy sequence in X. Then there is a positive number

M such that p(xn, d) ^ Mfor all n, where 9(r) = 0 in [0, 1 ]. Let an be any member

of xn. Then d(<xn, 6) = p(xn, d) ^ M for all n. Following the method of theorem

4.2, we obtain a subsequence {aB((0} which converges to a function x(t) in X

almost everywhere in [0, 1] such that d(xn., x) -* 0 as / -> oo. Since d(<xni, x) =

p(xn., x) it follows that the sequence {xni} converges to 3c which implies that the

sequence {xn} converges to x. This completes the proof.

Finally, the author is thankful to Dr. B. K. Lahiri for his kind help and sug-

gestions in the preparation of the paper. Also, the author is thankful to the referee

for his helpful suggestions.
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