TOPOLOGICAL ASPECTS OF SUITABLE THEORIES

by H. SIMMONS
(Received 6th May 1974)

Roughly speaking a suitable theory is a theory T together with its formal
provability predicate Prv (.). A pseudo-topological space is a boolean algebra
B which carries a derivative operation d and its associated closure operation c.
Thus we can pretend that B is a topological space. We show that the Linden-
baum algebra B(T) of a suitable theory becomes, in a natural way, a pseudo-
topological space, and hence we can translate properties of T into topological
language, as properties of B(T). We do this translation for several properties
of T, including (1) satisfying Godel’s first theorem, (2) satisfying Lob’s theorem
and (3) asserting one’s own inconsistency. These correspond to the topological
properties (1) having an isolated point, (2) being scattered, (3) being discrete.

In Section 1 we define and discuss the relevant properties of suitable theories.
In Section 2 we discuss pseudo-topological spaces, and in Section 3 we look at
the various topological analogues of properties of suitable theories. Finally,
in Section 4 we give various other remarks and open problems.

This paper is a partial continuation of (1), in particular we follow up the
final paragraph of (1). We assume some familiarity, but not a detailed
knowledge of (1).

1. Suitable theories

Let L be some fixed first-order language. We use o, 64, 0, as variables over
the set of L-sentences. We are concerned with certain pairs {7, P), where
T is an L-theory and P is a function taking L-sentences ¢ to L-sentences P(o).
(A theory is a consistent, deductively closed set of sentences.) We say two pairs
(T, P>, {T,, P,) are equivalent if T, = T, = T (say) and T+P,(6)—P,(0)
holds for each sentence ¢. It will not be necessary to distinguish between
equivalent pairs since any fact we use (prove) about one pair will be true of all
other pairs equivalent to that pair.

Consider the following three properties (which (7, P) may or may not have).

(ADQ) (Vo)[T to=T +P(0)]
(SND) (Yo, 6,)[TU{P(a,~0,)} -P(a,)=P(a,)]
(PN) (Vo)[P(0) is {T, P)-nice]
A sentence v is T, P)-nice if Tv—P(v). We make the following definition.
Definition, A suitable theory is a pair {7, P} satisfying (ADQ), (SND), (PN).
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The standard examples of suitable theories are those where T is a number
theory and P is obtained from a formal provability predicate. A further
discussion of the motivations for this definition occurs in Section 1 of (1),
however, the following remarks should be noted.

In (1) it is assumed that P is obtained from a certain formula Prv, and
names [~ ¢ 7 for each sentence o, by putting P(6) = Prv ("6 71). Nevertheless,
only the function properties of Prv (/= . 1) are used (i.e. the results proved in
(1) also hold for the present definition of suitable). The definition given here
also covers the case where names ™ ¢ ™ for sentences do not exist but formulas
D,(v) defining them (i.e. D (v) means “v = "¢ 7] ”’) doexist. In this case we
can put

P(o) = (Yo)[ D,(v)-Prv (.)].
Finally note that the definition of (1) contains a clause (CNS) concerning the
formal consistency statement CON(T). Most of the results of (1) and all those
given here do not use (CNS), so we have dropped this clause.

We feel that the present definition is slightly better than the previous one,
and since the results of (1) hold for the present definition (modulo the (CNS)
clause) we may quote certain of these results.

There are certain properties of suitable theories which we will use all the
time (often without saying so). These are Lemmas 1.1 and 1.2 of (1) and the
following lemma. This lemma, which was pointed out to me by Angus
Macintyre, we overlooked in (1), where it would have slightly simplified some
of the arguments.

Lemma 1. For each suitable theory (T, P) and sentences ¢, 0,,
T F(P(O’l) A P(az))HP(al A 0’2).
Proof. Use the tautologies ¢, — (0,0, AG,), 6, AG,—064, 6, AG,—0,.

Let L be some fixed refutable sentence, i.e. TH7.1 for each theory 7.
Although the following lemma is not strictly relevant here, it is worth noting
and its corollary will motivate some of our results.

Lemma 2. Let (T, P) be a suitable theory. Then {T, P> has (CNS) (of (1))
if and only if THFCON(T)—7P(1), and {T, P) has (SNC) (of (1)) if and only if
Ti7P(1)->CON(T).

Corollary. If (T, P) has (CNS, SNC) then T—7P(L)->CON(T).

The sentence P(1) will occur a lot, it is worth remembering this corollary
whenever it does.
As in (1), given a suitable theory (T, P) we put, for each sentence o,

6" = P(o)-o0,

o~ = P(70)—0.
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The following theorem (which is essentially Theorem 2.1 of (1)) shows the signifi-
cance of 6*. The significance of ¢~ will become clear in Section 3.

Theorem 1. Let (T, P) be a suitable theory and o a fixed sentence. There is
a sentence 8 such that
T ée(P(6)—0)
if and only if
T =P(c*)—-P(0).
Also if such a 6 does exist then THé—a™.

This theorem is a local version of Gidel’s diagonalisation lemma. As an
example of its use let us consider Godel’s first theorem.

Let (T, P) be a suitable theory. If (T, P) satisfies certain other conditions
then we can use the diagonalisation lemma to obtain a sentence 7y such that

T Fyes7P(y).
We can then show that not Tty, or, more precisely,

Thy=>T1,

Now 7P(y) and P(y)— 1 are logically equivalent so the theorem shows that
(for a general suitable theory) such a sentence 7 exists if and only if
T +P(LH)—P(1)
and when y does exist
ThyeoLt,
(Notice that +* is P(L)—> 1, i.e. 7P(1).) Thus we have

(G) THL =Tk
as a version of Godel’s first theorem. The formalisation of this, namely
(FG) TrPQL*)-P(1)
is a necessary and sufficient condition for the existence of a sentence y.

This gives us two properties, (G), (FG), which a suitable theory may or
may not have. (These are not the same as the (G), (FG) of (1), although they
are related. The (G), (FG) of (1) are concerned with Gddel’s second theorem.)

Two other properties are Lob’s property

(L) (Vo)[Troe*=Tta]
and its formalisation
(FL) (Yo)[T +P(c*)—~P(o)].

To show that certain suitable theories have (L) Lob first used the diagonalisation
lemma to obtain a sentence d (as in the theorem) and then argued as follows,
Clearly TU{P(6)}}-6—0 so that (by Lemma 1.2 (iii) of (1)) T+P(8)—P(o).
Hence if THo¢* then THP(8)—0,i.e. TH6. Thus THP(5), and so THo. However
given the theorem, we can restate this argument as (FL)=>(L). (This implication
was proved in (1).)

B.M.S.—19/4—2C
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Informally we say a theory is strange if it asserts its own inconsistency.
Remembering the Corollary of Lemma 2 this gives us a fifth property.

(S) THFP().
We note the following.

Theorem 2. The following implications hold.
(S)=>(FL)<>(L)=(FG)=(G).

Proof. For each sentence ¢ the sentence L—¢ is a tautology and so (for
each suitable theory {T, P)») THP(1)—P(s). Thus (S)=(FL). We noted above
that (FL)=(L), and similarly (FG)=(G). Clearly we have (FL)=>(FG) so it
is sufficient to show (L)=>(FL). This implication follows from the next lemma.

Lemma 3. For each suitable theory {T, P and sentence ¢, T—(P(c )= P(c))*.
Proof. Let 1 = P(6*)—P(c) so that

TU{P(1)} FP*(c*)~P*(0)
and
Tu{P(¢*)} -P*(c)~ P(o).

But THP(c*)-P*(c*) so that
TU{P(z), P(c*)} -P(0)
which gives TH1*, as required.

2. Pseudo topological spaces

A pseudo topological space is a boolean algebra B = (B, A, v, -, £,0,1>
(we assume that 0 # 1) which carries an operation d satisfying the following.

0) d)=0.
(1) (¥x, ye Bdxv y) = dx)v d(»)]
@) (VxeB[d(x) S dx)].

Such an operation is called a derivative operation. A closure operation is an
operation ¢ such that (0, 1, 2) hold (with d replaced by c¢) as well as the following.

3) (VxeB)x = e(x)].
The following lemma is easily proved.

Lemma 4. Each pseudo topological space (B, d) carries an associated closure
operation ¢ given by ¢(x) = x Ad(x) (for each x € B).

Let U be a set carrying a topology T, let B = P(U) with the obvious boolean
algebra on B, and let d be the derivative operation of 7. Then d satisfies (0, 1)
but not necessarily (2). In fact, d satisfied (2) if an only if T is T}, (see (2) for
details). Every T, space is T, and every Tp, space is Ty. These inclusions are
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strict. Thus T, spaces are the standard examples of pseudo-topological spaces;
for these the associated closure operation given by Lemma 4 is the closure
operation of the given topology.

We will be concerned with pseudo-topological spaces which are definitely

not genuine topological spaces.

Many definitions, theorems, etc., for topological spaces make sense for
pseudo-topological spaces. For instance we have the ““ set” of limit points
L = d(1), and the “ set” of isolated points / = 1—L. Also, for each x € B,
the element is(x) = x—d(x) is the analogue of the set of isolated points of x.

By analogy with genuine topological spaces we make the following definitions
(given a pseudo-topological space (B, d)).

(a) (B, d) has an isolated point if I # 0.

(b) (B, d) has a dense set of isolated points if c¢(I) = 1.

(c) <B, d) is scattered if (Vx # 0)[is(x) # 0].

(d) {B, d) is discrete if I = 1.

3. Topological analogues

Let B(T) be the Lindenbaum algebra of the theory 7. The elements of
B(T) are equivalence classes of sentences, where two sentences oy, ¢, are
equivalent if THe¢,<0¢,. The connectives A, v, 7 then induce in a natural
way operations A, v, — on B(T), making B(T) into a boolean algebra. We
will confuse the elements of B(T') with the sentences they contain, thus at any
one time ¢ may be a sentence or the corresponding equivalence class of sentences.
We note that the ordering of B(T') is given by

6, S 0,THo—>0,

and 0,1 are given by 0 = 1,1 = 71,

For the standard suitable theories {7, P) the algebra B(T) itself is not very
interesting. To see this we use the following theorem of Tarski.

Theorem 3. For each theory T the following are equivalent.

(i) B(T) is atomless.

(ii) For each sentence ¢ which is consistent with T, the deductive closure
of Tu{e} is not complete.

The standard suitable theories (T, P) all satisfy (ii) and so B(T) is atomless.
Also (assuming the countability of the language L) B(T) is countable and so is

uniquely determined.
The function P can be considered as an operation on B(T), since

Tko,-6,=THP(0c,)-P(a,).

Thus we also have an operation d on B(T) given by d(6) = —P(75). This
gives us the following.
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Theorem 4. FEach suitable theory (T, P) gives rise to a pseudo-topological
space {B(T), d>.

Proof. (ADQ) gives THP(71) so that d(0) = —P(7+) = —1 =0. For
each pair of sentences o,, 6, Lemma 1 gives

d(oyvo,) = —P(7(oy v ay))

= —P(76,A703)

= —(P(70,) A P(70,))
d(e,)vd(c,)

as required.
Finally (PN) gives, for each sentence o,

TF7P(77P(76))—7P(70)

so that d%(¢) = d(o), which completes the proof.
The derivative operation d gives us a certain closure operation ¢ (as in
Lemma 4). We have already met this for

c(o) = ovd(o)

=ov —P(70)
= P(76)—0
=0 .

This observation gives us a more instructive proof of Theorem 5.1 of (1).

We can now interpret properties of the suitable theory 7, P) as properties
of the pseudo-topological space {B(T), d). This gives us some interesting
analogies. For instance, we have the ““ set ”’ of limit points

L=d(1)=7P(77L) = 7P(1) = 1%,
and the ““set” of isolated points 7 = —L = P(1). Notice also that, for each
sentence &,
is(6) = 6 —d(0) = o A P(0) = 7(70)".
Remembering the definition (g, b, ¢, d) given at the end of Section 2, we have
the following theorem.
Theorem 5. For each suitable theory (T, P) the following equivalences hold.
(a) <T, P) has (G)<>(B(T), d) has an isolated point.
() (T, P) has (FG)<«<{B(T), d) has a dense set of isolated points.
(¢) T, P) has (L)=>{B(T), d) is scattered.
(d) {T, P} has (Sy>{B(T), d) is discrete.
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Proof. (a) We have
T, P) has (G)<>not [TH1*]

<« L#1

< I#0
as required.
(b) We have
(T, P) has (FG)«=T+P(1)"
<c(l)=1
as required.

(c) We have
T, P) has (L)<>(¥Yo)[TH(70)*=Tt70]

<(Vo)[70 # 1=(70)* # 1]

) <(Vo # 0)[is(s) # 0]
as required.
(d) Finally we have
{T, P) has (S)THFP(1)

<l=1
as required.
Let us now look at the separation properties of {B(T), d). First we note the
following.

Lemma 5. For each suitable theory (T, P), a sentence o is {T, P)-nice if
and only if o is open in {B(T), d).

Proof. Clearly ¢ is open if and only if 7¢ is closed, i.e.
70 = ¢(70) = 76 v 7P(0)
and this occurs exactly when 7P(¢) < 70, i.e. THo—P(c). Hence the result.
As we remarked in Section 2, there is some justification for considering
{B(T), d) to be a Ty, (and hence T,) pseudo-space. However, in most cases it
will not be 7).
Clearly, a space is T, if and only if each non-empty set has a non-empty

closed subset, equivalently if each non-universal set has a non-universal open
superset. Thus we have the following.

Corollary. For each suitable theory {T, P}, the pseudo-space {B(T), d> is T,
if and only if for each non-provable (in T) sentence o there is a {T, P-nice, non-
provable sentence v such that THe—v.

In the next theorem we use N to suggest complete number theory.
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Theorem 6. Let (T, P) be a suitable theory such that T is a proper subtheory
of some theory N, where

NWP(o)=>T+o
holds for each sentence 6. Then {B(T), d) is not T},.

Proof. Suppose, on the contrary, that {(B(T), d) is T;, and consider any
o€ N—T. The above Corollary gives us a sentence v such that

THo—-v, THv—P(v),

but not THv. The first and second of these give N-P(v), and so THv, which is
a contradiction.

4, Further remarks

Given any suitable theory we have two operations (*)*,(*)”. We can form
various composites of these, but this gives us just one new operation (-)V,
where (as in (1)) 6V = ¢ vo~. To see this we remember that (-)*, (*)” are
idempotent and note the following theorem.

Theorem 7. For each suitable theory {T, P) and sentence o, the sentences
6v,a%”, 6™ % are each provably equivalent to P(1)—a.

This theorem gives us the following

Corollary. The properties (P) (of (1)) and (FG) are the same.

The results given here can be viewed as results about certain modal algebras.
Consider the propositional modal system based on the symbols 7, =, A, v,
whose axioms are all formulas of the form

(i) tautology,
(i) O(4-B)~(00A-[B)
(i) J4-004

and whose rules are modus ponens and 4/[J4. The modal algebras for this
system are exactly the pseudo-topological spaces, so each class of suitable
theories gives a modal system extending the above system. This suggests several
questions. What is the modal system corresponding to the class of all suitable
theories? (The above?) What is (are) the modal system(s) corresponding to
Peano number theory? Which modal systems can be characterised by classes
of suitable theories?

How far does the pseudo-space of a suitable theory characterise that theory?
For instance, suppose {7, P>, {Ty, P,) have isomorphic pseudo-spaces;
how different can the two theories be?
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