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On the local theta correspondence and R-groups

Atsushi Ichino

ABSTRACT

For the reductive dual pair (U(n,n),U(n,n)) over a p-adic field, we study the local theta
correspondence for certain tempered representations in terms of R-groups. In the case
we consider, the Langlands parameter is preserved, but, a twist occurs in the L-packet.
Moreover this twist is determined by root numbers.

Introduction

Let G = U(n,n) be the quasi-split unitary group in 2n variables over a p-adic field and 7 an
irreducible admissible representation of G. Then the local theta correspondence asserts that
an irreducible admissible representation () of G’ = U(n,n) which satisfies

HomGXG/(w,fT & 9(7‘(’)) 7& 0

is uniquely determined if it exists. Here w is the Weil representation of G x G’ and 7 is the contra-
gredient representation of 7. This correspondence was conjectured by Howe [How79] and proved by
Waldspurger [Wal90] when p # 2. However, it still remains difficult to describe the relation between
7 and 6(m) explicitly. In this paper, we will determine the correspondence for certain tempered
representations. It turns out that root numbers play an important role as in the epsilon dichotomy
by Harris, Kudla and Sweet [HKS96].

More precisely, let F' be a p-adic field with p # 2 and E a quadratic extension of F. Fix § € E*
such that trp/p(d) = 0. We realize G (respectively G') as the isometry group of the hermitian
(respectively skew-hermitian) form given by

0n  —0ly respectivel O 1n
51, O, P Y\-1, 0,/

In fact, G = G’. Then we have the Weil representation w of G x G’ for a fixed non-trivial additive
character ¢¥p of F'. Note that w also depends on the choice of 9.

Let m be an irreducible tempered representation of G. Then m is realized as an irreducible
component of an induced representation I(c) = Ind%(c), where P is a parabolic subgroup of G and
o is a discrete series representation of the Levi component L of P. In this paper, we assume that
L~ GL,,(F) x -+ x GL,,(E) with n = nj + --- + ny. By the induction principle, which is due to
Kudla [Kud86] and extended to the general cases in [MVW87, Chapter 3], we see that 0(m) is an
irreducible component of the induced representation I'(c) = Indg:(a) if o is supercuspidal. Here we
regard P’ = P as a parabolic subgroup of G’. However, this principle does not determine which
component corresponds to .

On the other hand, the irreducible components of (o) are parameterized by the theory
of R-groups, which is due to Harish-Chandra [Sil79b], Knapp and Stein [KS80], and Silberger
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A. IcHINO

[Sil78, Sil79a]. We now recall the computation of R-groups by Goldberg [Gol95]. Write 0 = 01 ®
---®o; with a discrete series representation o; of GL,,(E) for 1 < i < t. Let W be the Weyl group of
G with respect to the split component of the center of L. Note that W is isomorphic to a subgroup
of (Z/27)! x &,. Let R be the subgroup of W generated by the sign change 7; at the ith component
for all i € J, where J C {1,...,t} consists of i such that:

o 0, ~t5 1
e 0; % oj for all j > i;
e the Asai L-function Lagai(s,0;) is holomorphic at s = 0.
Note that R ~ (Z/2Z)% is abelian. Then there exists an algebra isomorphism
C[R] — Endg(I(0)),
r— N(r,o0),

where N (r,0) is obtained from the normalized intertwining operator. In particular, I(o) has the
irreducible decomposition in the form
I(o) = @ T

RGR
where R is the character group of R and
m ={f € I(o) | N(r,o)f = k(r)f for all r € R}.
Moreover we may assume that m; is y-generic. Here x is a fixed non-degenerate character of the
unipotent radical of the standard Borel subgroup of G. Similarly, I’(c) has the irreducible decom-
position in the form
I'(o) = @ T,

K'€R’
where
m,={f el'(o) [N o)f =& (")f forall ' € R'}.
Here we regard W’ = W as the Weyl group of G’, 7, = r; as an element of W/, R’ = R as a subgroup
of W/, and N (', o) as an element of Endg/ (I'(0)). We remark that 7} is also x-generic if we identify
x with a non-degenerate character of the unipotent radical of the standard Borel subgroup of G’.

Then our main result is as follows (cf. Theorem 4.1).
THEOREM. Let k € R. Then 0(r,) = w!, where

K (r;) = K(ri) - €(1/2,04,YF o trg/p)ws, 0)~*

for ¢ € J. Here w,, denotes the central character of o;.

In the proof of the main theorem, we construct explicitly an element 1" of
Homgyg (w ® I(0), I'(0))
which satisfies the following conditions:
i) For each non-zero f € I(o), there exists & € S such that
T(®, f) #0.
ii) Let i €3, ® € S, and f € I(0), then
Nl o)T(®, f) = we, (6) 1e(1/2,04,¢F o trg, p)T(®,N(ri,0)f).
302
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Here S is the space of w. We remark that condition ii is crucial for us. From these properties, one
easily deduces the main theorem.

Notation. Let F' be a p-adic field with p # 2 and E a quadratic extension of F. Throughout
this paper, we fix a non-trivial additive character ¥p of F and an element § of E* such that
trg/p(0) = 0. Let op denote the maximal compact subring of £, | | the absolute value on E, and
x +— T the non-trivial Galois automorphism of E over F. Define a non-trivial additive character
of E by ¢ = ¢F otrg,p. We take the self-dual Haar measure on E with respect to ¢.

Let n € Nand n = (ng,...,n;) € N such that n = ny + -+ + n;. Put
X, ={z e M,(E) |'z =2},
Zn ={2=(2ij) € Mp(E) | zij =01if i > j},
where z;; € My, o, (E) for 1 <1i,j <t. We define a parabolic subgroup P, = LnUy of GL,(E) by
L, = {a = diag(ai,...,a:) | a; € GL,,(E) for 1 < i < t},
Un ={u = (uij) € Zn | uyy = 1,, for 1 <@ < t}.
For a = diag(a1,...,a;) € Ly and A = (\1,...,\) € C!, we write
la* = |det ar|M - - - |det ay| .
Define p, € C! by
20n = (N —n1,. .., =Ny = =Ny F N1 F Ny ).

Then | |’ is the modulus character of P,.

1. L and e-factors for GL,,

In this section, we review the theory of L and e-factors for GL,, by Godement and Jacquet [GJ72].
Let o be a discrete series representation of GL,(FE). Then the standard L-factor L(s, o) is holomor-
phic for Re(s) > 0. For ¢ € S(M,(FE)), s € C, and a matrix coefficient ¢ of o, put

Z(p.5,6) = /G s oy POl do.

This integral is absolutely convergent for Re(s) > (n — 1)/2, and has a meromorphic continuation
to the whole s-plane. Moreover
Z(p,s+(n—=1)/2,¢)
L(s,0)

is entire.

Let & be the contragredient representation of 0. Then ¢(a) = ¢(a™"') is a matrix coefficient of &.
We define the Fourier transform ¢ € S(M,(E)) of ¢ by

() = / o P

Then the following functional equation holds:

Z(p,1—s+ (n—1)/2,0)
L(1—-s,0)

Here €(s,0,1) denotes the standard e-factor.
We write 5(a) = o(a) and ‘o1 (a) = o(*a™?) for a € GL,(E).

303
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LEMMA 1.1. Assume that o ~ ‘G~'. Then
€(1/2,0,¢)wy (8) 71 = £1,
where w, is the central character of o.

t 1

Proof. Since 6 ~"'c~" >~ ¢ and ¢ = ¢p o trg/p, we see that

€(s,0,) = €(s,0,9) = €(s,0,1).
On the other hand, we have
6(87 g, 11))6(1 - S, 5-7 sz)) = w(r(_l)v

hence
6(1/27 g, ¢)2 = wa(_l) = w0(5)2' O

2. Weil representations

For n € N, let V = V,, be the space of column vectors E*" equipped with a hermitian form ( , )

defined by
Nt On _5171 /
(x,z") = x(éln 0, )* €EFE

for 2,2’ € V. For each | € N, we identify V! with My, ;(E), and put
0, —01
Nt~ n n /
(x,2") = x<51n 0, >x e M;(E)

for 2,2’ € V!. Let G = G,, denote the isometry group of (V,( , )), i.e.,
. (0, —61,\ [0, -1,
o1, 0, )77 \61, o0, )"

G;l = {g' S GLQn(E)

Gn = {g S GLQn(E)

Similarly, we define G’ = G|, by

In fact, G = G".

For the reductive dual pair (G,G’) in Spg,2(F), we have the Weil representation w of G x G’ on
S =8(V") = S8(May,,(E)) as in [Kud94, § 5]. Here we take n = ¢ and { = 1 with the notation in
Theorem 3.1 of [Kud94|. Let ® € S and = € V™. Then

w(g,1)®(z) = ®(g~'z)
for g € G. The action of G’ is given by the following formulas. For a € GL,(E) and b € X,,,

W (1, (;n t331>> B(z) = |a]"®(za),

w <1, (32 1bn>> B(z) = p(tr((z, 2)b)/2)(x).

0 0 1; 0

0 1,10 0 roomN " /
oL | o | | e = [ e na)

0 0 0 1,
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for ' € V! and 2 € V"L Here dy is the self-dual Haar measure on V! with respect to the pairing
Y(tr(, )). More precisely,

dy = |5|ln H dyij
Z"j
for y = (yi5) € Vvi= My, 1(E), where dy;; is the self-dual Haar measure on E with respect to 1.
3. R-groups

Let n = (n1,...,n;) € N be a partition of n. We define a parabolic subgroup P = LU of G by

L:{<(;L t;)fl>6G aELn},
Uz{(éﬁ tu*_1>eG ueUn}.

Put p = py +n/2. Then | [* is the modulus character of P. Let K = G N GLa,(0g) be a maximal
compact subgroup of G. Then the Iwasawa decomposition G = PK holds.

For 1 < ¢ < t, let 0; be a discrete series representation of GLy,(E) on V; with the central
character w,,. Then 0 = 01 ® - - - ® 0 is a discrete series representation of Lon V=V, ® --- ® V;.
For A € C!, we write I(o,\) = Ind%(a| |). Let W be the Weyl group with respect to the split
component of the center of L, and w € GG a representative for an element of W. For a holomorphic
section f of I(o, M), put

Mw,o. V() = [ O (wug) du.
(UnwUw=1H)\U

This integral is absolutely convergent if Re(A;) > --- > Re(\) > 0, and has a meromorphic
continuation to C'. By Theorem 2.1 of [Art89al, there exist meromorphic functions r(w, o, \) of A
such that the normalized intertwining operator

N(w,0,)\) = r(w,o,\) " M(w, 0, \)
is holomorphic on /—1R? and that the cocycle condition
N(ww',0,0) = N(w,w'o,0)N (v, 7,0)

holds for representatives w,w’ € G for elements of W. See also [Sha90, § 7].
We now recall the computation of R-groups by Goldberg [Gol95]. Let J be the set of i € {1,...,t}
such that:

e 0, X~ tﬁi_l;
e 0; % ojfor all j > i;
o Lasi(s,0;) is holomorphic at s = 0.

Here Lag,i(s,0;) is the Asai L-function for o; defined by the Langlands—Shahidi method [Sha90,
Gol94]. For 1 <i<t, putly =ny+---+nj—1, miy =nit1 + -+ ng, and

L, 0 0]0 0 o0
0 0 0|0 1, 0
0 0 1,]0 0 0
wi=l 0 o1 0o o0 |%
0 ~1,, 0|0 0 0
0 0 0|0 0 1
305
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Let r; be the image of w; in W and R the subgroup of W generated by r; for all ¢ € J. For each
i € J, we fix an isomorphism A; : V; = V; such that A? = id and A;oi(a) = t&;I(a)Ai for all
a € GLy,,(E). Then

N(ri,0) = wy, (6)A; N (w;, 0,0)
I

is a self-intertwining operator of I(o) = I(c,0) and satisfies N'(r;,0)? = id. For r =7y, ---7;, € R
with {iq,...,ix} C J, put

N(r,o) =N(ri;,0)---N(ri,,0).
By the theory of R-groups, the algebra homomorphism defined by
C[R] — End¢(I(0))
r— N(r,o)

is in fact an isomorphism. Let R denote the character group of R. For each k € R, let
e ={f €Il(o) | N(r,o)f = k(r)f for all r € R}.
Then we see that . is irreducible and

I(o) = @ﬂ'ﬁ.

KER

Moreover, replacing A; with — A; if necessary, we may assume that 71 is y-generic. Here y is a fixed
non-degenerate character of the unipotent radical of the standard Borel subgroup of G.

Similarly, we write I’(o, \) = Ind% (o] |*) and I'(0) = I'(0,0). Here we regard P’ = L'U’ with
L' = L and U’ = U as a parabolic subgroup of G'. We also regard W' = W as the Weyl group of
G, w, = w; as an element of G', r, = r; as an element of W', R’ = R as a subgroup of W', and x as
a non-degenerate character of the unipotent radical of the standard Borel subgroup of G’. For each
k' € R, let

m,o={f el'(o) [N o)f =& (")f forall ' € R'}.

Here we regard N (r’,0) as a self-intertwining operator of I'(¢). Then 7/, is irreducible, 7} is

x-generic, and
I'(o) = @ .
K eR

4. The main theorem

Let 7 (respectively ') be an irreducible admissible representation of G (respectively G'). We write
O(m) =" if
Homgy g (w, 7 @ 7') # 0.
Waldspurger [Wal90] showed that 6() is uniquely determined if it exists.
Let x € R. By Lemma 1.1, we can define 6(k) € R’ by

0(k)(r7) = K(ri) - €(1/2, 04, ¥)wo, (8) 7

for 7 € J. Then our main result is as follows.

THEOREM 4.1. For k € R,

9(7'('&) = Wé(ﬁ)

We will give the proof in the next two sections.
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Remark 4.2. Even if p = 2, we can prove that

HomGXG/(w,ﬁ'ﬁ & Wé(n)) 7& 0.

5. An equivariant map
Let 7 (respectively 7’') be an admissible representation of G (respectively G'). Amap T : w®@m — 7’
is said to be (G x G')-equivariant if

T(w(g, g )®,m(g)f) =='(g")T(®, f)

forallge G, ¢ € G', ® € S, and f € 7. Let Homgxg (w ® m,7’) denote the space of (G x G')-
equivariant maps T : w ® m — 7’. Then

Homg v (w ® m, 7T,) ~ HOIHGXG/(W, TR 7T,).
In this section, we construct explicitly an element of
Hom(;x(;/(w & I(O’, )\), I/(O', )\)),

and study its properties.
For ® € S, define a function Fg on G x G’ by

Fo(g,9") =/ w(g,9")® <g> Y(tr(2)) de.

Zn
Then Fg is left (U x U’)-invariant and satisfies
Fy(ag,ag’) = |a|* Fa(g,9')
for a € Ly. Here we regard a as an element of L = L. Let ¢ be the contragredient representation

of o and V the space of &. For g € G, ® €8, a holomorphic section f()‘) of I(o,\), and © € V, put
t

Z(g', @, f™,0) = [[ L +1/2,00) 7" o Fa(9,9")(f ™ (9),) dg.
=1

Here (, ) :V x V — C is the natural pairing.

LEMMA 5.1. If Re(\;) > 0 for all i, then Z(g',®, fM, ) is absolutely convergent. Moreover it
extends to a holomorphic function of A on C!. In particular, for fixed ¢’, ®, ¥, and \g € C!, the
value of Z(g',®, fM,5) at A = A\g depends only on f*0).

Proof. For each ® € S, define U(®) € S(M,,,(E)® --- @ M,,(E)) by

U, .. 2 ®) = / o <g> W(tr(@2) dz,

where z; € M,,,(E) for 1 <i <t and x = diag(xy,...,2) € M,(E). Then

t
Fq;((lg, g/) = H |ai|ni+...+nt\1/(a17 ceey QS w(g)gl)q))
i=1

for a = diag(ay,...,a;) € Ly. Hence

t
[Tz +1/2,00)2(d @, 1V, 5) = / Fy(ak, g')(o(a)f N (k), )|a]*~* dadk
. LxK

=1
t
[ [ v a9 o@ W ®). ) ] a4/ e da,
nJ K

i=1
and this concludes the proof. O
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Let ¢ € G’ and ® € S. Let f be a holomorphic section of I(o, \). Then we see that there
exists an element T'(¢g'; ®, fM)) of V such that

(T(g;®, fV),0) = Z(g, @, fV, v)
for all & € V. Moreover it satisfies
T(p'g;®, fN) = |a|**o(a)T(g; @, f)

for p/ = au’ € P’ with a € L' and «/ € U’, hence defines a holomorphic section T'(®, fV) of I'(a, ).
Thus we obtain a (G x G')-equivariant map

T:w®I(o,\) — I'(o,\). (5.1)

Fix d <t. Let 1 = (n1,...,n4) and m = (ng441,...,n¢) be partitions of | = ny + --- + ng and
m=ngy1 + -+ + ng, respectively. For ® € S, define another function Fg on G x G’ by

= ] ] w(g.4)®
u€ly J 2€Zm JvEM; 1, (E)

Then Fp is also left (U x U’)-invariant.

Y (tr(z)) dv dz du.

o o o=
O O n <

LEMMA 5.2. If Re()\;) < 0 for all i < d and Re(\;) > 0 for all j > d, then

(T(g:®, fM), 0 me e +1/2,05, ) "L(=X\; +1/2,6;) 7"

t

< I 2o+ 1207 [ a0 0.0 ds.

j=d+1

Proof. Let ¥ € S(M,,,(E)&---@&M,,(E)). We define the partial Fourier transform ¥ € S(M,,, (E)&
- @ M,,(E)) of ¥ by

iI(xla .. 7xt) - / \I’(yh - Yd, .Td+1, LI axt)¢(tr($,y)) dyl e dyd7
Mnl (E)@"'@Mnd(E)
where o’ = diag(z1,...,24) € M;(F) and y = diag(y1,...,yq) € Mi(E). For 1 < i < t, let ¢; be a
matrix coefficient of o;. If |Re(\;)| < 1/2 for all i < d and Re();) > —1/2 for all j > d, then we

have

d t
[Tz0+ 1/2,02-)‘1/ U(ay, ..., ar) [ [ di(ai)a;} /2 da
=1 i=1

n

d
— H e\ +1/2,04, ) T L(=X\; +1/2,65)7 ¢

X

5\
ED
B

1 :] a

aZ |a| Xitn;/2 H ¢J |a]|)\ +nj/2da
j=d+1

by the functional equation (1.1).
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We now take W = W(®) as in the proof of Lemma 5.1. Then

/

z v

1

\Il(ajl,...,xt;@):/ / / / ) 0 =
Moy (B)®-®Mn, (E) J €2 J 216 2 JoeMy () 0 0

0 O

x P(tr(yz’) + tr(a” ") (tr(2'y)) dv d2" d2’ dyy - - - dyq,
where 2" = diag(zg411,...,2¢) € M,,(E). By the Fourier inversion formula, this integral is equal to

Z(u,x’) v

"
/ / / o 0 Y(tr(2"2")) dv dz” du,
ueh J2"EZm ’UEMl’m(E) 0 0
0 0
where 2'(u,2") = (2};) € Z) with 2; = u;; for 1 <i < j <dand zj; = —z; for 1 <7 < d. Hence
d t
U(—ar',. o —ag ager, .. an @) = [ Jlas 0™ T lagl ™™ " Fa(a,1)
i=1 j=d+1

for a = diag(aq,...,as) € Ly. Therefore

d t
[ a0 TLaeial ™ ] oy(alas

=1 j=d+1
d t
= [ o0 Tenm(01600) T osaplap = da
g =1 j=d+1

and this concludes the proof. O
Let H = G,, and H' = G’,. We define embeddings H — G and H' — G’ by
b4

A B . 0
C D 0
0

We also regard L; and Ly, as subgroups of L,. Let wy be the Weil representation of H x H’
on Sy = S(V') = S(Maym(E)) asin § 2. Let 0/ = 01 ® -+ ® 04 and oy = 0441 Q@ -+ ® 0y.
For A = (A1,..., M) € C, oput Ag = (Agy1,...,\) € C7% Then we have an (H x H')-equivariant
map

—

Qo o

o FPlo o
Tolwo

THZwH®I(O'H,)\H) —>I,(0'H7)‘H)

as in (5.1). Define an (H x H')-equivariant map

S — Sy
b — Oy
by
2w
= <z> - /z/ez1 /ueMl,m(E) ¢ 8 30: W(tr(z)) dvdz"
0y
309
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Let V' and Vg denote the space of &' and &, respectively. For a holomorphic section f*) of I (o, \),
ge G, and ¥ € V', define a holomorphic section fl(;‘) (9,7") of I(om, i) by

A =, ~ ~ -

i (3 g,) = Vi 31— (fV(hg), ¥ @ @)

for h € H. The following lemma reduces an intertwining property of T' with respect to H and H’
to that of Ty.

LeEMMA 5.3. If Re(\;) > 0 for all i < d, then

d
vol(Kpr) [ [ L + 1/2,0: (T (1 @, f V), ' ® @)
i=1

N / (Ty (1 [w(a'k, D)y, £ (k, 6 (")), @)|a/[*7 da’ dk
L1><K
for h' € H'. Here Ky = H N GLyy,(0R).

Proof. First, observe that the right-hand side is absolutely convergent. Hence we may assume that
Re(\;) > 0 for all i < t. For a = diag(ay,...,a;) € Ln, we write o/ = diag(ay,...,aq) € Ly and
a” = diag(agyq,...,at) € Ly. Then

wl(Kn) [ Falg 1) (0).7 @) dg

:vol(KH)/ » /EZ w(ak, h')® <g> W(tr(2))(o(a) fV) (k), 7 @ @)|a|* " dz da dk

/

z v

"

QY S N By S T
kOEKH LIXLmXK z GZ] 2"€Zm 'UGMI m 0 0

0 O

x (tr(2') + tr(2")) (o (a”) fP (kok), & ('~ @ @)|d'a”|} P dv dz" d2' dd’ da” dk dkg

/leK/meH /mWH (a"ko, ') [w(d'k, 1)®] ( >1/J(tr(z”))

s (o (") (kos k, 6" (/1)) )|’ a” M7 dz" da” dko da dk

:/ / Flor,ya], (@"ko, 1)
LlXK mXKH
< (on(a”) 17 (ko k,&' (' ™)), @)|aa” " da” dko da’ dk. -

LEMMA 5.4. Let \g € C! and assume that
t
i=1

is holomorphic at A = \g. Let f*) be a holomorphic section of I(o, \) such that Qo) £ 0. Then there
exists ® € § such that

T(®, f2) #0.

In particular, for a subrepresentation m of I(o, \y),
T|won : w®@m — I'(0, Xo)

is a non-zero (G x G')-equivariant map.
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Proof. We may assume that f() is a standard section, i.e., its restriction to K is independent of .
Put d =t and assume that Re(A;) < 0 for all i. By Lemma 5.2, it suffices to show that there exist
® € § and v € V such that

Fy(g,1)(f M (9),9) dg (5.2)
U\G
is non-zero and independent of .
Let
1, b
N_{<On 1n> EG‘ beXn}
and
1, "
Tro = <0 > eV = Mgnm(E).
Since
Folg.) = [ wlo. ) () du= [ (g )00 du
n N\U
we have

6:2)= [ (g )00V (). 0y
NG
Take © € V so that (fN(g),d) # 0 for some g € G. We define a non-zero smooth function ¢ on K
by p(k) = (fN(k),5) for k € K. Then ¢ is left (N N K)-invariant and does not depend on . Since
gr— 9_1$0
is a homeomorphism and G -z is locally closed in V', there exists ® € S such that suppPNG-zg =
K -z and ®(k~1xg) = ¢(k) for all k € K. Then

— -1, (N) o _ 2 .
(5.2) = /N o V0.9 dg / [p(k) 2 dk # 0 O

(NNEW\K

6. Compatibility with intertwining operators
In this section, we complete the proof of Theorem 4.1. A key step is to show that the (G x G')-
equivariant map (5.1) is compatible with the action of intertwining operators.

LEMMA 6.1. For ¢ € S(M;(E)),

/ / (tr(*o2’)) dv da’ = |5]"*/2 / o(6z) dz.
z'eX; JveM(E reX)

Proof. We write v = dy + 3/ with y,3’ € X;. Then the left-hand side is equal to

16]1/2 / / / oGy + 4 )b (er(tg'e)) dy dy da.
reX; Jy eX; JyeX;

Hence the lemma follows from the Fourier inversion formula. O

Letd=1,ie,l=n1,m=n—-ny,1=(n1),andm = (ny,...,n;). Forx € X;and y,b € M ,,,(E),
define elements u(x,y) and u(b) of U by

L 0|z y 1 ‘ 0 0
0 1n|'g O o 1./ 0 o
e =\ o1, o |0 W0 (1 o
0 0]0 L, 0 0 |- 1,
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In the same way, define elements «'(2’,y") and u/(b') of U’ for 2’ € X; and ¢/, b’ € M ,,,(E). We put
0 0 ‘ 1, 0

0 1,0 0
v=1l—" 010 0 |€%
o 010 1,

and regard w’ = w as an element of G’.
PROPOSITION 6.2.

M(w', 0, )T(®, fV) = [6]"Mwgy, (—8)e(—=A1 4+ 1/2, 5671, 0)T(®, M (w, 0, X) fV).
Proof. We may assume that Re(A1) > --- > Re(\;) > 0. We put

(61, 0
a5—<0 1m>ELn,

and regard as as an element of L. Let v € V. Then

/ Fq>(aag,g’)<f(”(g)ﬂ7>d9=\%W/ Fo(g.9")(fV(az'g),7) dg
\G \G

= Jas| M Pwy, (6) 7! Fo(g.9")(fV(g), ) dg.

U\G
Hence
t
[TLO + 172,00 (MW, 0, T (g @, f), 5)
=1
t
[z 1200 | (T~ g's @, FO), 5) du!
Pl (U'nw'U'w! P \U’

:\/(U/ﬂ g’ ’*1)\U/ U\GFC}(Q,w,_lu,g/)<f()‘)(g)76> dgdu,

= a5 P (6) / / Fa(asg,w ™ d'g)(f ™ (g), 5) dul dg.
U\G J (U'nw'U'w ~H\U’

On the other hand, by Lemma 5.2, we have

t
wo, (—D)e(=A1 +1/2,'57 ) LA + 1/2,61) [[ L + 1/2,05)(T(g; @, M(w, 0, 0) f V), )
J=2

= F@(g7g,)<M(w7U7 )‘)f()\)(g)777> dg
U\G

-/ / Fa(g.9)(fD (wlug), 3) dudg
U\G J (UnwUw—

- / Fq>(gg)<f“ (w™lg),5) dg
(UnwUw—1)\G

_ / F (wg, ¢ )(fN(g), ) dg
—“LUwnU)\

wu, =) 5 duda.
/U\G/ 1WAl Fy(wug, ¢')(fM(9),9) dudg

Note that these integrals are absolutely convergent since [(fM(g ), 0) < 1N (@) 15]], where || || is
the Hilbert space norm on V. Indeed, || || is an element of I(1,Re(\)). Thus it remains to show
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that
|a6|_p/ F@(aa,w,_lu') du/ :/ F@(wu, 1) du. (6.1)
(U "' U'w! ~)\U’ (w=1UwNU\U
We remark that
1;  =x * *
0 1,,| % =
U= 0 o0l o |€¢
0 0 | x 1,
and
1, 0 ‘0 0
0 1 0 =
-1 _ m
w UwnNU = 0011 0 cqd,,
0O 010 1,
hence

{u(z,y)u(b) | v € Xi,y,b € My (E)}
is a set of representatives for (w™1Uw N U)\U. Similarly,

{ul(m'7y')u'(b,) | .T/ € Xl7y,7 b/ S Ml,m(E)}

is a set of representatives for (U’ Nw/'U'w'~)\U".
First we compute the left-hand side of (6.1), i.e

“‘5'_’)/ / / Fo(as, 0" (o/, 4/ ) (1)) dy da’ d.
b'EMl’m(E) r’'eX; y’EMlym(E)

We see that Fgp(1,w'") is equal to

V1 U2

w(l,w' ™ H® 0 =2 (tr(v1) + tr(z)) dvy dvg dz
2€E0m V1,02 0 0
0 O

U3

LA A A A ] D
Zm Jv1,v2 J03,04,V5,06 U5
V6

x (= tr (8 v5v1))Y(tr(v1) + tr(2)) dvs dvg dvs dvg dvy dvg dz

U3 ]

= |(5|l”_l2 / / o 1)_41 - Y(tr(z)) dvy dvs dvy dvg dz.
m J v2,V3,V4,06 =01 0
0
Here vy, v3,v5 € Mj(E), va € My, (E), and vy, v6 € My, 1 (E). Hence

/ / ,w'_lu’(m',y’)) dy' dz’
' eX; EMl m(
U3 (%]

2 - z
= |§)n" / / / / o .
X1 S My (E) J Zn Jv2,03,04,06 —0 111 0

U6

0
x P(tr(‘vg — 6t vgvg)a’ + tr(*og — 8" 2ve)y )1 (tr(2)) dvg dvs dvy dve dz dy' dx’
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V3 — 5t@6114 Vg — 5t562
—2 V4 z
SR A Y A AL
X1 I My (E) J Zm Jv2,03,04,06 —07' 0
Vg 0
x Y(tr(*vgz’) + tr(*oey))) Y (tr(2)) dvg dvs dvy dvg dz dy' da’.
By Lemma 6.1 and the Fourier inversion formula, this integral is equal to

or — 5t56’04 —5t1_16Z

e z
|6]! l2/2/ / / _5 11 0 Y (tr(z)) dvy dvg dz dx
z€X) J Zm Jva,06 L
V6 0
T — "Vglg —tﬁﬁz
p ~1 V4 z
= |as| 5 1)@ Y(tr(z)) dvy dvg dz dex.
X1 J Zm Jva,06 L 0
V6 0

Hence the left-side hand of (6.1) is equal to

\/b/EMlm /IEXL \/ZEZm /U4EMml /U‘GEMW’L(E)

xr — t7762)4 zb — t2767)4b, — t@@Z

!
@ 1]]_4 ’U4bb,‘|’ : Y(tr(2)) dve dvg dz dzx db'.
l
Ve 'Uﬁb,

On the other hand, the right-hand side of (6.1) is equal to

/EMl m( /IEXL /yEML m(E) LEZm /U‘EML m(E)

11 (Y
X w(wu(—z, —y)u(b), 1)® 8 g Y(tr(z)) dv dz dy dx db.
0 0

Calculating directly, we see that

1, v x—bly zv—0bz— by
110 =2 ty z + v
_ 1 _
T E Tl . .
0 0 ‘b thy
Therefore Equation (6.1) holds. O

COROLLARY 6.3. Let x € R. Then
for all ® € S and f € 7.

Proof. Let ¢ € 3. Then
M (w}, 0, NT(®, fN) = 18", (8) " e(=Ni + 1/2, 01, ¥)T(®, M(wi, 0, A) f™)

by Proposition 6.2. Indeed, applying Lemma 5.3 with d = 7 — 1, one reduces the case ¢ > 1 to the
case ¢ = 1. Hence

N(rf,0)T(®, ) = we, (8) "' e(1/2,04,U)T(®, N (r4,0) f)
for all ® € S and f € I(o). This concludes the proof. O
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Let x € R. Combining Lemma 5.4 and Corollary 6.3, we obtain a non-zero (G x G')-equivariant
map

Tlwon, : W& T — 71'{9(%).
Therefore
HomGXG/(w, T ® Wé(n)) ~ Homgxg/ (w & T, Wé(ﬁ)) 75 O,

and this concludes the proof of Theorem 4.1.

7. Functoriality

In this section, we interpret our main result in terms of the Arthur conjecture [Art89b]. Let Wr be
the Weil group of F' and G = G x W the L-group of GG. For a discrete series representation o of L,
let r : L — LI denote the Langlands parameter associated to . Here L = Wrx SU 2(R). By the
composition of ¢y, and the embedding “L c LG, we obtain a Langlands parameter ¢ for G. Let S,
be the centralizer in G of the image ¢(Lr), and put S, = Sw/SOZ( U with T' = Gal(F/F). Let
Sl be the subgroup of cosets in S, which act on SO by inner automorphisms. Then Sl ~S,, ={1}
smce L~ GL,,(E) x---x GLnt( ). Therefore, assummg a conjecture in [Art89b, § 7], we should
have

S, ~ R. (7.1)

We remark that (7.1) is also consistent with the calculation of S, in Proposition 2.1 of [Pra00]. If P
is a Borel subgroup of G, then (7.1) is proved in [Key87, § 2]. Let

M, = {r. | k € R} ~S,.

Then IL, should be the L-packet of ¢. Here the trivial character of S, corresponds to the y-generic
representation . Similarly, we regard ¢’ = ¢ as the Langlands parameter for G’ and let

M, ={m, | & € R} ~ S<p’

Then the map

Sy — S¢/
k+— 0(K)
defined in § 4 determines the local theta correspondence
I, — IL
T — 0(m).
Remark 7.1. This interpretation of Theorem 4.1 is consistent with a conjecture of Prasad [Pra00].
Note that he uses the extended L-packet by Vogan [Vog93], but it suffices to consider the usual

L-packet in this case. Indeed, ¢ is not a Langlands parameter for the non-quasi-split inner form
of G.
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